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Abstract
Planning is a powerful approach to control problems with known environment dynamics,
but in unknown environments the agent first needs to learn a model for the system
dynamics. This is particularly challenging when the underlying states are only indirectly
observable through high-dimensional visual observations, such as images.

We propose a latent Gaussian process dynamics model that learns low-dimensional
environment dynamics entirely from images. The method infers latent state representa-
tions from observations using neural networks and models the system dynamics in the
learned latent space with Gaussian processes. All parts of the model can be trained
jointly by optimizing a lower bound on the likelihood of transitions in image space.
Additionally, we present a simplified version in which state representations and system
dynamics are learned separately.

We evaluate both approaches in two environments of different complexity, Pendulum
and CartPole, and show that the proposed model outperforms the separately trained
method on the Pendulum environment. Further, the agent is able to use the learned
latent dynamics model to efficiently solve the Pendulum swing-up task by planning in
latent space. Finally, we demonstrate fast adaptation capabilites of the trained agent
to environments with modified system dynamics.

Zusammenfassung
Planung ist ein leistungsfähiger Ansatz zur Steuerung von Problemen mit bekannter
Umgebungsdynamik. In unbekannten Umgebungen muss der Agent jedoch zunächst
ein Modell für die Systemdynamik erlernen. Dies ist insbesondere dann eine Herausfor-
derung, wenn die zugrunde liegenden Zustände nur indirekt durch hochdimensionale
visuelle Beobachtungen, wie z. B. Bilder, erkennbar sind.

In dieser Arbeit stellen wir ein latentes Dynamikmodell vor, welches vollständig aus
Bildern erlernt wird. Die latenten Zustandsdarstellungen werden mit neuronalen Netzen
aus Beobachtungen abgeleitet, und wir modellieren die Systemdynamik im erlernten
latenten Raum mit Gaußschen Prozessen. Alle Teile des Modells können gemeinsam
darauf trainiert werden, eine Untergrenze für die Wahrscheinlichkeit der Bildübergänge
zu optimieren. Wir präsentieren außerdem eine vereinfachte Version unseres Modells,
in der Zustandsdarstellungen und Systemdynamik separat gelernt werden.
Wir bewerten beide Ansätze in zwei Umgebungen unterschiedlicher Komplexität,

“Pendulum” und “CartPole”, und zeigen, dass das vorgeschlagene Modell die separat
trainierte Methode auf dem Pendelsystem übertrifft. Darüber hinaus kann der Agent
mit dem erlernten Modell im latenten Raum planen und kann damit das Pendel auf-
schwingen und balancieren. Zuletzt demonstrieren wir schnelle Anpassungsfähigkeiten
des Agenten an Umgebungen mit geänderter Systemdynamik.
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Chapter 1

Introduction

1.1 Motivation

Reinforcement learning (RL) has shown success for a number of applications, including
Atari games (Mnih et al., 2015), robotic manipulation (Gu et al., 2017), navigation
and reasoning tasks (Oh et al., 2016), and machine translation (II et al., 2014). Many
such results were obtained with model-free deep RL, where the agent directly learns a
policy function, in the form of a neural network, by interacting with the environment.
However, such approaches commonly require a large number of interactions, which often
hinders their application to real-world tasks: Performing actions in real environments,
such as driving a vehicle or moving a robot, can be orders of magnitude slower than
performing an update of the policy model, and mistakes can carry real-world costs.

Model-based RL is a promising direction to reduce this sample complexity. In model-
based RL, the agent acquires a predictive model of the world and uses that model to
make decisions. This offers several potential benefits over model-free approaches. First,
learning a transition model enables the agent to leverage a richer training signal by
using the observed transition instead of just propagating a scalar reward. Further,
the learned dynamics can be independent of the specified task and could therefore
potentially be transferred to other tasks in the same environment. Finally, instead of
learning a policy function the agent can use the learned environment for planning to
chose its actions.

For environments with only a few state variables, PILCO (Deisenroth and Rasmussen,
2011) achieves remarkable sample efficiency. A crucial component is its use of Gaussian
processes to model the system dynamics, which allows PILCO to include the uncertainty
of the transition model into its policy search. However, in many problems of interest
the underlying state of the world is only indirectly observable through high-dimensional
visual observations, such as images. In order to enable fast planning, the agent can
learn low-dimensional state representations and model the system dynamics in the
learned latent space. Models of this type have been successfully applied to simple tasks
such as balancing cartpoles and controlling 2-link arms (Banijamali et al., 2018; Watter
et al., 2015). However, model-based RL approaches are generally known to lag behind
model-free methods in asymptotic performance for problems of this type. Recently,
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Chapter 1 Introduction

PlaNet (Hafner et al., 2019) was able to match top model-free algorithms in complex
image-based domains. PlaNet learns environment dynamics from pixels and chooses
actions through online planning in latent space. Notably, all components in PlaNet are
modeled through neural networks.

1.2 Contribution

In this thesis, we combine Gaussian processes with neural networks to learn latent
dynamics models from visual observations. All parts of the proposed model can be
trained jointly to optimize a lower bound on the likelihood of transitions in image
space. To unify the different data requirements and limitations of both models, we
motivate a subset-of-data approximation for the marginal log-likelihood of the Gaussian
process. This allows us to provide more training data to the neural network while
keeping the computational cost for the Gaussian process constant. The predictions of
the learned dynamics model enable the agent to successfully solve a swing-up task in
the Pendulum environment. Finally, the Gaussian processes allow the agent to quickly
adapt to environments with modified system dynamics.

1.3 Thesis Structure

We begin with a review of related scientific literature in Chapter 2, covering related
work on planning in known state spaces and on state representation learning. Our goal
is to combine findings of both fields in order to learn low-dimensional latent dynamics
models from images. With this motivation we further review previous approaches that
combine neural networks and Gaussian processes in a joint model.
Chapter 3 provides theoretical background on machine learning, neural networks

and Gaussian processes. It covers basic terms and definitions, as well as all required
concepts for the proposed method, including stochastic gradient descent, convolutional
layers and variational auto-encoders.
We introduce our proposed method in Chapter 4. Section 4.1 formally defines the

considered state space models and the underlying generative process. In the simpler
case of fully observable states, we can model the system dynamics directly through
a Gaussian process, as shown in Section 4.2. In order to approach the more difficult
setting with visual observations, we propose a combination of neural networks, for state
inference and generation of observations, with Gaussian processes, to model the system
dynamics in latent space. We present the proposed model in Section 4.3 and derive a
training objective in Section 4.4. As a comparison, Section 4.5 provides a simplified
version of our model with separately learned latent states and system dynamics. In
order to apply the method to planning and control, we discuss two approaches to
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1.3 Thesis Structure

sample sequences from the dynamics model (Section 4.6) and then introduce the chosen
online planning algorithm in Section 4.7.
Chapter 5 covers the evaluation of our method. The chapter starts with general

information on the considered environments, relevant metrics, and numerical consid-
erations for training. We then present results of both the proposed method and the
separately learned model and compare these to a Gaussian process dynamics model
on the true physical states. The evaluation first covers the quality and accuracy of
predictions independently of any control task and we visualize and analyze the learned
latent spaces. Then, we evaluate the learned models for planning and control and
demonstrate model adaptation to new physical properties.
We conclude the thesis in Chapter 6 by briefly reviewing the main results and we

propose multiple starting points for future improvements.
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Chapter 2

Related Work

Planning in state space

When measurements of the low-dimensional physical states of the environment are
available it is possible to learn the dynamics directly in state space. PILCO (Deisenroth
et al., 2015; Deisenroth and Rasmussen, 2011) models the system dynamics with a
Gaussian process and achieves remarkable sample efficiency. One reason for its success
is the good uncertainty estimation of the Gaussian process model predictions, which
can be incorporated into the long-term planning. This approach has since also been
extended to partially observable Markov decision problems (McAllister and Rasmussen,
2016). Deep PILCO (Gal et al., 2016) extends PILCO’s framework to use Bayesian
neural network dynamics models, allowing for better scaling with the number of trials
and the dimensionality of the observation space. Deep PILCO has been successfully
applied for learning swimming controllers for a 6-legged autonomous underwater vehicle
(Higuera et al., 2018). Doerr et al. (2017) extend the original PILCO in order to optimize
the model directly with respect to the likelihood of observed trajectories, as opposed
to optimizing one-step-ahead predictions, leading to better long-term predicitons and
higher resilience against noisy input and output data. Finally, Chua et al. (2018) use
ensembles of neural networks to model system dynamics, matching performance of
model-free approaches on the cheetah running task while being data-efficient.

State representation learning

The true low-dimensional physical states are often not directly available. Instead,
we can often only indirectly observe the considered dynamical system through visual
observations, such as images. The goal of state representation learning is to infer low-
dimensional latent states from these high-dimensional visual observations. The learned
representation is then often used in order to predict future states or observations, as
well as for planning actions.

Mattner et al. (2012) control an inverted pendulum by embedding the visual input
into a two-dimensional latent space using a standard auto-encoder. However the authors
do not explicitly model the system dynamics to predict future states for planning.
Wahlström et al. (2014) map images to lower-dimensional latent representations with a
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deep auto-encoder and learn low-dimensional system dynamics with a second neural
network, training both models jointly. They evaluate the results in image prediction
tasks but do not use the learned models for planning or control. Embed-to-control
(Watter et al., 2015) and RCE (Banijamali et al., 2018) are approaches which consider
planning and control during the learning of latent representations. They both encode
images into a linearizable latent representation, which then allows for classical optimal
control methods such as LQR, but has limitations for environments which are diffi-
cult to linearize. Assael et al. (2015) improve data-efficiency and training times by
concatenating latent representations instead of high-dimensional images to describe
the current system state. Deep Variational Bayes Filters (DVBF) (Karl et al., 2016)
are able to learn and identify latent representations of the state space of a dynamical
system from image sequences. In their experiments the authors use locally linear state
transitions, parametrized by a neural network, and were able to show good results for
the dynamic pendulum and the bouncing ball experiments. In comparison, we want
to explore general non-linear system dynamics in the learned latent space. Fraccaro
et al. (2017) propose to model the non-linear system dynamics with a linear Gaussian
state space model (LGSSM), combined with variational auto-encoders to map the
high-dimensional images to lower-dimensional latent states, allowing to compute exact
posterior distributions. A thorough review of state-of-the-art approaches of the recent
years to state representation learning is given by Lesort et al. (2018), with comparisons
of learning objectives, model architectures, used priors, and evaluation metrics and
environments. More recently, SOLAR (Zhang et al., 2018), a Bayesian latent variable
model with locally linear dynamics in latent space, has shown good performance and
high data-efficiency on more complex robotic tasks, including manipulation tasks on a
real Sawyer robotic arm directly from camera images.
Finally, we highlight PlaNet (Hafner et al., 2019), a purely model-based agent

that learns the environment dynamics from pixels and chooses actions through online
planning in latent space. The authors model the non-linear latent dynamics through
both a deterministic and stochastic transition function, and the variational objective
directly encourages multi-step predictions. PlaNet solves control task with contact
dynamics, partial observability, and sparse rewards, using significantly fewer episodes
than top model-free algorithms while reaching a similar and sometimes higher final
performance. The proposed architecture has similarities with our approach, but instead
of modeling the system dynamics through a combination of deterministic and stochastic
transition functions we want to use Gaussian processes, motivated by their earlier
successes for modeling system dynamics. Additionally, we want to investigate the
general task of learning system dynamics and we do not directly train for control.
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Combining Gaussian processes and deep neural networks

There are many different attempts to combine Gaussian processes with neural networks,
trying to get the best of both worlds. One approach to use the expressiveness and
flexibility of neural networks in Gaussian processes is deep kernel learning, proposed by
Wilson et al. (2015b). The authors first map the inputs into a different representation
space with a deep neural network before applying the GP kernel function, and jointly
train both models through the marginal log-likelihood of the training data. In order to
scale to the large datasets which are required to train the deep kernel the authors apply
stochastic kernel interpolation (Wilson et al., 2015a; Wilson and Nickisch, 2015). This
has since been extended (Wilson et al., 2016) by using stochastic variational inference
(Hoffman et al., 2012), allowing for multi-task classification and mini-batch training.
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Chapter 3

Theoretical Foundations

3.1 Machine Learning and Regression

Machine learning is a scientific discipline which investigates methods to provide knowl-
edge to computers through data, observations and interacting with the world. With the
appropriate algorithms and statistical models computers should then use this acquired
knowledge to correctly generalize to new settings. A simplified example could be to
consider images of cats and dogs, with the task consisting on correctly classifying
new images into one of these two categories. Real-world usage of machine learning
extends far beyond such a simple example and is widely used in fields such as computer
vision and natural language processing, with applications such as autonomous driving,
medical imaging, finance, climate modeling, and many more.
The goal in many machine learning problems is to learn the relation between an

input x ∈ X and a target y ∈ Y, which is often approached by learning a function
f : X → Y. We often consider parametric functions, such as for example the linear
function f(x;w, b) = xTw + b. In supervised learning we chose this function using a
given dataset of pairs of inputs and targets, which we also call the training data, and
the task could then be reformulated as learning the parameters (w, b) in such a way
that best explains the training data.

In regression we consider continuous targets Y ⊂ Rm, and in classification the targets
are discrete values Y ⊂ N0, called labels. A different learning approach is unsupervised
learning, where we are not given any labels y and instead want to learn about the
structure of the data X, with tasks such as clustering or outlier detection, or data
generation. Reinforcement learning describes a third approach to machine learning,
where models are typically trained by interacting with an environment and receiving
reward. For a thorough overview on machine learning see for example Pattern Recogni-
tion and Machine Learning by Bishop (2006), The Elements of Statistical Learning:
Data Mining, Inference, and Prediction by Hastie et al. (2013), or Machine Learning:
A Probabilistic Perspective by Murphy (2012). More specifically for reinforcement
learning we refer to Reinforcement Learning: An Introduction by Sutton and Barto
(2018).

In this thesis, two specific methods are of particular interest: Neural networks
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Chapter 3 Theoretical Foundations

(Section 3.2) and Gaussian processes (Section 3.3). Neural networks describe a broad
class of parametric functions. On the other hand, a Gaussian process is a non-parametric
Bayesian method, which uses the given training data in order to provide probabilistic
estimates over function values, including uncertainties of these estimates. In the
following we introduce both of these methods.

3.2 Deep Neural Networks
Artificial Neural Networks have generated a lot of excitement both in research and
industry, thanks to many breakthrough results in fields such as computer vision, speech
recognition, and text processing (Krizhevsky et al., 2012). This can be attributed
to a large number of factors, notably the increase of computational power and the
development of efficient hardware for these types of models, together with the availability
of large datasets. This increase in attention in turn lead to many scientific advances in
the field of deep-learning, resulting in even more breakthroughs.
Neural networks themselves have been known for many decades. A historical

precursor of the neural network, a linear binary classifier called the perceptron, has
been introduced by Rosenblatt (1958). Neural networks generalize the perceptron by
replacing the binary step function with general nonlinear functions, and modern deep
learning considers models with many such stacked layers, each consisting of a parametric
linear function and an element-wise non-linearity. A motivation for such models is
given by the “universal approximation theorem” (Cybenko, 1989), which states that
a two-layer neural network with sigmoid activation functions is able to represent any
continuous function up to arbitrary precision. This has since been extended to a larger
class of non-linear activations (Hornik, 1991), as well as to width-bounded but deep
networks with ReLU activation functions (Hanin, 2017; Lu et al., 2017).
In the following we define neural networks and introduce common terms such as

layers and activation functions. We explain how the parameters of these networks can
be learned with gradient-descent. Finally we introduce more specialized concepts such
as convolutional layers, auto-encoders and variational auto-encoders, all of which we
will use in later chapters of this thesis for our proposed method.

3.2.1 Single layer neural networks
Consider a dataset consisting of inputs X = {x1, . . . , xN} and targets y = {y1, . . . , yN}
with xi ∈ Rn and yi ∈ Rm. A dense or fully-connected neural network with a single
layer defines a function f : Rn → Rm with the following operation:

f(x) = σ(Wx+ b), (3.2.1)

with weight matrix W ∈ Rm×n, bias vector b ∈ Rm, and element wise application of
the non-linear activation function σ : R→ R.

10



3.2 Deep Neural Networks

3.2.2 Activation functions

Common choices of activation functions are the sigmoid function σ(x) = 1
1+e−x , the hy-

perbolic tangent tanh(x) = e2x+1
e2x−1 and the rectifier linear unit (ReLU) relu(x) = max(x, 0)

(Glorot et al., 2011), shown in Fig. 3.1. More recently proposed activation functions
include the the leaky ReLU (Xu et al., 2015), the parametrized ReLU (He et al., 2015),
Swish (Ramachandran et al., 2017), or the exponential linear unit (ELU) (Clevert
et al., 2015).
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Figure 3.1: Examples of some commonly used activation functions.

3.2.3 Multi-layered neural networks

Deep neural networks consist of multiple layers f1, . . . , fL, each defined as in Eq. (3.2.1)
with weights Wl ∈ Rdl×dl−1 , biases bl ∈ Rdl and activation function σl : R → R, for
each l ∈ {1, . . . , L}. Note that d0 = n and dL = m in order to match the dimensions
of the dataset. A deep neural network is then defined as the sequential application of
these layers to the input data, leading to a function of the form

f(x) = fL (fL−1 (. . . (f1 (x)))) . (3.2.2)

We compactly denote the set all parameters of the neural network with θ = {Wl, bl}Ll=1.
Note that while the activation functions {σl}Ll=1 can be chosen independently from
each other, it is often done in practice to consider a common activation function σ for
all but the last layer.

3.2.4 Gradient-based learning

In a supervised regression task we consider a dataset of inputs X = {x1, . . . , xN} and
targets y = {y1, . . . , yN} with xi ∈ Rn and yi ∈ Rm, and we want to find a function
f : Rn → Rm, x 7→ ŷ which best explains the data. We approach this task by defining
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a loss function to measure the dissimilarity of the predicted targets to the real targets
on the dataset, such as for example the mean-squared error or L2-loss

L(y, f(X, θ)) = 1
N

N∑
i=1
‖yi − f(xi, θ)‖22 , (3.2.3)

where we write f(X, θ) := {f(xi, θ)}Ni=1 as the element-wise application of the neural
network to each input.
Assume that the chosen loss function is fully differentiable with respect to f(xi, θ)

for all i ∈ {1, . . . , N}, and note that the deep neural network f is differentiable (almost
everywhere) with respect to θ. We can thus compute the gradient of L(y, f(X, θ)) with
respect to θ and we therefore chose to minimize this function using a gradient descent
based optimization scheme.

In practice it is common to perform stochastic gradient descent (Bottou, 2010), where
instead of computing the gradient over the whole dataset at once, we consider subsets of
the data called batches and perform a gradient steps for each batch. This circumvents
hardware limitations which one might encounter when training on very large datasets,
but it has also been shown to improve the stability of the training (Ge et al., 2015;
Masters and Luschi, 2018). We call a single training iteration over all batches an epoch.
Further, gradient descent methods with momentum, most notably the Adam algorithm
(Kingma and Ba, 2014), are very common in deep learning research.

3.2.5 Convolutional layers
In fully-connected layers as defined in Eq. (3.2.1) we consider the full input vector x for
the computation of each single output dimension f(x)i. In contrast, convolutional layers
(LeCun et al., 1989; LeCun et al., 1998) define more structure in the weight matrix
W by considering sparse matrices which share values in multiple entries. A practical
motivation in the context of computer vision might be the concept of translation
invariance: Shifting the whole input image by a single pixel should not lead to large
changes in the output. Convolutional layers convolve the input data with filters, as
depicted in Fig. 3.2, the parameters of which are learned during the training process.
This convolution operation is thus translation equivariant. As with fully-connected
layers we add a bias term to the resulting output and apply a non-linear activation
function element-wise. Used in combination with pooling layers, which effectively
downsample a tensor by aggregating values, we obtain neural network architectures
which are invariant to small translations.

Convolutional layers are commonly employed in many image processing tasks and
most architectures contain convolutional layers at least in the first few layers of the
network.
In image generation we consider the inverse case: The dataset consists of images

as targets and often of lower-dimensional vectors as inputs. In order to upsample
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3.2 Deep Neural Networks

Figure 3.2: Neurons of a convolutional layer (blue) connected to their receptive field (red).
Source: https://upload.wikimedia.org/wikipedia/commons/6/68/Conv_layer.png
by Aphex34 [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)]

low-dimensional representations into higher-dimensional images we can use transposed
convolutional layers, which describe an operation with the same connectivity as a
normal convolution but in the backward direction. This is also commonly known as
deconvolutional layer, but note that this name name is misleading, since it does not
provide an inverse operation to a given convolution. For more thorough definitions of
both the convolution and tranposed convolution, as well as for visual examples, see
(Dumoulin and Visin, 2016).

3.2.6 Auto-encoders
Auto-encoders are deep neural networks which are designed in a way to learn compact
low-dimensional representations of data.
Given a dataset X = {x1, . . . , xN} of inputs xi ∈ Rn we consider a reconstruction

task where the targets correspond to the data itself, that is yi = xi. In order to learn
low-dimensional data representations we further consider a neural network f : Rn → Rn
of the form f(x) = fd(fe(x)) with encoder fe : Rn → Rm and decoder fd : Rm → Rn.
We then train the network to learn to reconstruct the original data X by minimizing a
loss function, such as the mean-squared error (MSE)

LMSE(x, f(x)) = 1
N

N∑
i=1
‖xi − f(xi, θ)‖22 , (3.2.4)

or the binary cross-entropy (BCE) loss

LBCE(x, f(x)) =
∑
i

−(xi log(f(x)i) + (1− xi) log(1− f(x)i)). (3.2.5)

By choosing m � n the network needs to compress each data-point xi into an
m-dimensional latent representation hi := fe(xi) in such a way to allow for good
reconstructions of the decoder. See Fig. 3.3 for a visualization of this model architecture.
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https://upload.wikimedia.org/wikipedia/commons/6/68/Conv_layer.png
https://creativecommons.org/licenses/by-sa/4.0


Chapter 3 Theoretical Foundations

Figure 3.3: Schematic illustration of an auto-encoder. Both the encoder and decoder are deep
neural networks with many layers. A main characteristic of an autoencoder is the
bottleneck-layer in which the network has to encode all necessary information for
reconstruction into a lower-dimensional representation h.
Source: https://commons.wikimedia.org/wiki/File:Autoencoder_schema.png by
Michela Massi [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)]

To provide a small example consider a dataset consisting of images of hand-written
digits, each with 16× 16 pixels. Each datapoint xi is thus a 256-dimensional vector,
but it is well conceivable that the contained information could be described in a
more compact way. Knowing just the shown digit might already allow for reasonable
reconstructions of xi. With further information regarding the writing style, such as
how curly it is drawn or how cursively it is oriented, it might be possible to allow for
near-perfect reconstructions.
Note that we can not control how exactly the network chooses to compress the

original information, or which meaning the latent representations might have, since
the objective of the network consists only of minimizing the chosen reconstruction
loss. In the following section we present a different approach motivated by learning the
underlying generative model.

3.2.7 Variational auto-encoders

Variational auto-encoders (VAEs) (Kingma and Welling, 2013; Rezende et al., 2014)
seem similar to auto-encoders from a neural network perspective: They also consist of
an encoder, which maps a datapoint to a lower-dimensional hidden representation, and
a decoder, which tries to reconstruct the original datapoint. However, VAEs consider
the underlying generative process and describe a more probabilistic approach.
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Consider data X = {xi}ni=1, consisting of i.i.d. samples of some random variable x.
Assume the data is generated from an unobserved random variable z by first sampling
zi from the true prior distribution pθ∗(zi), then generating xi from the conditional
likelihood pθ∗(xi|zi), assuming that the prior pθ∗(zi) and likelihood pθ∗(xi|zi) come
from parametric families of distributions pθ(zi) and pθ(xi|zi) with parameter θ. We
are interested in learning the true generative distribution p(x). Unfortunately, we
cannot compute the marginal likelihood directly since the integral

∫
pθ(x|z)pθ(z)dz is

intractable. Additionally the true posterior distribution pθ(z|x) = pθ(x|z)pθ(z)
pθ(x) is also

intractable.
One approach to such problems, which will lead us to VAEs, is with variational

inference. The main idea of variational inference is to approximate an intractable
distribution, here pθ(z|x), with some parametrized distribution qφ(z|x). We then opti-
mize the variational parameters φ of qφ(z|w) such that the Kullback-Leibler divergence
between the approximating variational distribution and the true posterior distribution
is minimized.

We start by deriving a decomposition of the KL-divergence DKL [qφ(z|xi)||pθ(z|xi)]
between the variational distribution qφ(z|xi) and the true intractable pθ(z|xi):

DKL [qφ(z|xi)||pθ(z|xi)] =
∫
qφ(z|xi) log

(
qφ(z|xi)
pθ(z|xi)

)
dz (3.2.6)

=
∫
qφ(z|xi) log

 qφ(z|xi)
pθ(xi|z)pθ(z)

pθ(xi)

 dz (3.2.7)

=
∫
qφ(z|xi) log

(
qφ(z|xi)
pθ(z)

)
dz (3.2.8)

−
∫
qφ(z|xi) log (pθ(xi|z)) dz (3.2.9)

+
∫
qφ(z|xi) log (pθ(xi)) dz (3.2.10)

= DKL [qφ(z|xi)||pθ(z)]− Eqφ(z|xi) [log pθ(xi|z)]︸ ︷︷ ︸
=:−L(θ,φ;xi)

(3.2.11)

+ log (pθ(xi)) . (3.2.12)

This gives

log (pθ(xi)) = DKL [qφ(z|xi)||pθ(z|xi)] + L (θ, φ;xi) , (3.2.13)

with L (θ, φ;xi) as defined previously. Since the KL-divergence is always positive, that
is DKL [qφ(z|xi)||pθ(z|xi)] ≥ 0, we get

log (pθ(xi)) ≥ L (θ, φ;xi) . (3.2.14)
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Further note that log pθ(x1, . . . , xn) = ∑N
i=1 log pθ(xi), and thus

log pθ(x1, . . . , xn) ≥
N∑
i=1
L (θ, φ;xi) =: L (θ, φ;X) . (3.2.15)

In order to maximize the data likelihood pθ(x1, . . . , xn) we want to optimize the lower
bound L (θ, φ;X). We also call L (θ, φ;X) the evidence lower bound or ELBO. The
ELBO contains two separate optimization objectives. In order to maximize the ELBO
we need to minimize the KL divergence between the variational distribution and the
prior distribution while maximizing the expected log-likelihood.
For insights into the general case and into the estimation of gradients of this lower

bound we refer to (Kingma and Welling, 2013). In the following we will describe a
special case of this setting where distributions are parametrized by neural networks.
We assume a centered isotropic multivariate Gaussian prior pθ(z) = N (z; 0, I), as

well as a multivariate Gaussian pθ(x|z) whose distribution parameters are computed
from z with a neural network. We denote the dimensionality of the latent space with
J . Note that the true posterior pθ(z|x) is intractable. We further assume the true (but
intractable) posterior takes on a approximate Gaussian form with an approximately
diagonal covariance, and chose the variational distribution

log qφ(z|xi) = logN (z;µ(xi), σ(xi)2I), (3.2.16)

with µ(xi), σ(xi) being outputs of the encoding MLP. In this specific case we can
estimate the ELBO with

L(θ, φ;xi) '
1
2

J∑
j=1

(
1 + log(σ(xi)2

j )− µ(xi)2
j − σ(xi)2

j

)
+ 1
L

L∑
l=1

log pθ(xi|z(l)
i ), (3.2.17)

where z(l)
i = µ(xi) + σ(xi) � ε(l) and ε(l) ∼ N (0, I). We call this sampling pro-

cedure, where we sample z by reparametrizing a standard normal sample ε, the
reparametrization-trick. Note that a single sample, that is L = 1, is often sufficient in
practice to estimate and optimize this lower bound. For the full derivation we refer to
(Kingma and Welling, 2013).

Going back to a neural network perspective and considering the previously defined
auto-encoders, we can interpret the training objective in Eq. (3.2.11), or more concretely
for the neural network case in Eq. (3.2.17), as consisting of two parts. We first have a
log-likelihood term Eqφ(z|xi) [log pθ(xi|z)], which essentially describes the reconstruction
of the data point xi. Assuming a Gaussian decoder with fixed variance, maximizing
this likelihood is equivalent to minimizing the MSE between the reconstruction and
the original xi. This term thus corresponds to the AE objective, while considering the
additional sampling step of the latent zi. The second term DKL [qφ(z|xi)||pθ(z)] can
be seen as a regularization term for the encoder network. In comparison to AEs, VAEs
are commonly considered to produce more structured latent representations.
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3.2.8 β-VAEs

Higgins et al. (2017) proposed the β-VAE, a modification of the variational auto-
encoder. The authors introduce an adjustable hyperparameter β to balance latent
channel capacity and independence constraints with reconstruction accuracy. This
leads to a lower bound of the form

L (θ, φ;xi) = Eqφ(z|xi) [log pθ(xi|z)]− βDKL [qφ(z|xi)||pθ(z)] . (3.2.18)

Note that β = 1 corresponds to the standard VAE as previously defined. The authors
demonstrate that β-VAE with appropriately tuned β > 1 qualitatively outperform
VAE and argue for improved disentanglement in the learned latent representations.

3.3 Gaussian Processes
A Gaussian process (GP) can be seen as a generalization of the Gaussian probability
distribution. Whereas a probability distribution describes random variables which are
scalars or vectors, a stochastic process describes functions. By focussing on processes
which are Gaussian, it turns out that many computations required for inference and
learning become relatively easy and computationally tractable. Thinking of supervised
learning as learning a function from examples can be cast directly into the Gaussian
process framework as inference of a Gaussian process conditioned on the examples.
Interestingly, Gaussian processes are mathematically equivalent to many well known
models, including Bayesian linear models (Rasmussen and Williams, 2005), spline
models (Kimeldorf and Wahba, 1970), large neural networks (under suitable conditions)
(Lee et al., 2017; Neal, 1996; Novak et al., 2018; Williams, 1997), and are closely
related to others, such as support vector machines (Seeger, 2002). In contrast to the
previously described neural networks, Gaussian processes provide an estimate of their
own uncertainty.
In the following we provide a brief introduction to Gaussian processes. We provide

a formal definition, explain the conditioning of the GP over given training data, and
describe the inference process while providing visual examples. We further show how
we select models which maximize the data likelihood and how we use additional prior
knowledge. We conclude by pointing to current research directions of interest.

3.3.1 Definition

We follow the introduction given in Rasmussen and Williams (2005, Section 2.2).

Definition 3.1 (Rasmussen and Williams (2005, Definition 2.1))
A Gaussian process describes a distribution over functions, such that any finite number
of function values have a joint Gaussian distribution.
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A Gaussian process f is completely specified by its mean function µ and kernel
function or covariance function k, defined by

µ(x) = E [f(x)] (3.3.1)
k(x, x′) = E

[
(f(x)− µ(x))

(
f(x′)− µ(x′)

)]
. (3.3.2)

We write the Gaussian process as f ∼ GP(µ, k).
Consider a finite number of input points X = {x1, . . . , xn}, xi ∈ Rd. The result-

ing function values f(X) := [f(x1), . . . , f(xn)]T are then distributed according to a
multivariate Gaussian distribution

f(X) ∼ N (µ(X),K(X,X)), (3.3.3)

with mean vector µ(X) = [µ(x1), . . . , µ(xi)]T and covariance matrix (K(X,X))ij =
k(xi, xj).

It is often sufficient to choose µ to be zero, since we can normalize the given dataset
to have zero mean and unit standard-deviation. Further, having a fixed deterministic
mean function is equivalent to modeling the difference between the observation and
the mean function with a zero-mean Gaussian process (Rasmussen and Williams, 2005,
Section 2.7). In the following, since we make use of this property for the GP dynamics
models introduced in Section 4.2, we consider this case of a deterministic mean function.
Example 3.2 (Gaussian process with squared exponential kernel)
Consider a GP f ∼ GP(0, k) with zero mean and the squared exponential function as
covariance function, defined as follows:

k(xi, xj) = exp
(
−1

2 ‖xi − xj‖
2
)
. (3.3.4)

Given a collection of input points X∗, here the discretized one-dimensional interval
X∗ = [0, 10] ∩ 0.01 · Z, we can compute the covariance matrix K(X∗, X∗)). We can
then write the distribution over function values f∗ = f(X∗) as f∗ ∼ N (0,K(X∗, X∗)).
Finally, we can sample from this distribution to get different realizations of the Gaussian
process. Figure 3.4a visualizes this example and shows three such samples, together
with the mean function and the 95% confidence interval for the function values.

3.3.2 Prediction with noise-free observations
Instead of randomly sampling from the prior, we want to incorporate knowledge from
training data. Consider a dataset of inputs and noise-free observations D = {xi, fi}ni=1,
with fi = f(xi). In order to predict function values f(X∗) over some test inputs
X∗ we write the joint distribution over training outputs f := f(X) and test outputs
f∗ := f(X∗) as [

f
f∗

]
∼ N

([
µ(X)
µ(X∗)

]
,

[
K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
. (3.3.5)
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Figure 3.4: Three different samples from a GP with squared exponential kernel. (a) shows
samples from the prior distribution. In (b) we sampled from the posterior
distribution, conditioned on the data shown as black dots. The shaded area
represents the pointwise mean plus and minus two times the standard deviation
for each input value, corresponding to the 95% confidence region of the underlying
function values f∗.

We can condition this joint Gaussian distribution on the known function values f ,
leading to

f∗|f ∼ N
(
µ(X∗) +K(X∗, X)K(X,X)−1 (f − µ(X)) ,

K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗)
)
,

(3.3.6)

where we took into account the possibly non-zero mean function µ. For more details
on Gaussian identities see for example (Rasmussen and Williams, 2005, Section A.2).
Since these expressions contain many terms such as K(X,X), K(X,X∗), and

K(X∗, X∗), we will compactly denote these with K = K(X,X), K∗ = K(X,X∗),
and K∗∗ = K(X∗, X∗). Similarly, we write µ = µ(X) and µ∗ = µ(X∗). We can then
write Eq. (3.3.6) more compactly as

f∗|f ∼ N
(
µ∗ +KT

∗K
−1 (f − µ) ,K∗∗ −KT

∗K
−1K∗

)
.
)
, (3.3.7)

For any given set of test inputs X∗ and training data (X, f) we can then calcu-
late the mean and covariance of this distribution and sample from it. Figure 3.4b
shows such an example, where we again consider a discretized interval of test inputs
X∗ = [0, 10] ∩ 0.01 · Z, but this time we condition on training data D = {(1,−2), (2, 0),
(4, 1), (7,−1)} shown as black dots in the image.
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3.3.3 Prediction with noisy observations
We now consider a dataset of inputs and noisy observations D = {xi, yi}ni=1, and we
assume the relationship

yi = f(xi) + εi, εi ∼ N (0, σ2
n). (3.3.8)

We still consider f to be a Gaussian process f ∼ GP(µ, k). Even though we do not
explicitly know the true function values f = f(X) we still have f |X ∼ N (µ,K), by
definition of a GP. Using y|f ∼ N (f , σ2

nI) we can use the formula for products of
Gaussians (see again (Rasmussen and Williams, 2005, Section A.2) for more detailed
information on Gaussian identities) to get y|X ∼ N (µ,K + σ2

nI).
In order to do inference we we again first write a joint distribution over the given

training data and the test values of interest, this time accounting for the noise, and we
get [

y
f∗

]
∼ N

([
µ
µ∗

]
,

[
K + σ2

nI K∗
KT
∗ K∗∗

])
. (3.3.9)

This leads to the conditional distribution

f∗|y ∼ N
(
f̄∗, cov(f∗)

)
, (3.3.10)

where

f̄∗ = µ∗ +KT
∗ [K + σ2

nI]−1 (y− µ)
cov(f∗) = K∗∗ −KT

∗ [K + σ2
nI]−1K∗.

(3.3.11)

Equation (3.3.11) shows an interesting property of the Gaussian distribution: The
covariance does not depend on the observed targets but only on the inputs. The term
consists of the prior covariance K∗∗, minus a term which represents the information
the observations gives us about the function. We can further very simply compute the
predictive distribution of test targets y∗ by adding a term σ2

nI to the variance.
With Eqs. (3.3.10) and (3.3.11) we can calculate the resulting distribution and sample

from it. Figure 3.5 visualizes the mean and variance of the result and shows three
samples of this posterior distribution.

3.3.4 Parametrized kernels
In order to add more flexibility to the introduced Gaussian processes, we typically
consider covariance functions with some free parameters. A variation of the squared
exponential kernel function (see Eq. (3.3.4)) with additional parameters is the radial
basis function (RBF) given by

k(xi, xj) = σ2
f exp

(
−1

2(xi − xj)TΛ−2(xi − xj)
)
, (3.3.12)
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Figure 3.5: Samples from the posterior distribution of a GP conditioned on noisy data. The
shaded area represents the pointwise mean plus and minus two times the standard
deviation for each input value, corresponding to the 95% confidence region of the
underlying function values f∗.

with diagonal Λ. We call σ2
f the outputscale and (Λ)ii = li the lengthscales of the

kernel. When Λ 6= lI we say that we use automatic relevance detection (ARD), since
each input dimension is separately considered and could in theory be “turned off” by
diverging li →∞.
For each choice of signal variance σ2

f , lengthscales {li}i and noise variance σ2
n we

obtain a different GP. We call these parameters the hyperparameters of the Gaussian
process. As an example, we visualize the effect of the lengthscale parameter on the
resulting GP in Fig. 3.6. The figure shows three GPs conditioned on the same set of
training data, shown as black dots. In Fig. 3.6b we show the posterior of a Gaussian
process with a smaller lengthscale of l = 0.3, all other hyperparameters being the same.
The resulting model seems very flexible and is able to fit the points very well, but it
seems to overfit the training data. The uncertainty between points is significantly larger
than in the original GP. Basically, a shorter lengthscale means that the considered
neighborhood for each test input is smaller, thus the prediction falls back to the prior
distribution instead of interpolating between the training points. On the other hand,
Fig. 3.6c shows an increased lengthscale and the resulting function varies more slowly
in x. The curve looks smooth but it does not fit the points well and, in particular, the
provided uncertainty estimates do not seem accurate.

3.3.5 Hyperparameter optimization

We want to find the hyperparameters θ of some Gaussian process f ∼ GP(µ, k) in
such a way that the resulting GP is able to best describe some given, typically noisy,
training data D = {xi, yi}ni=1. For example, if we consider a GP with zero mean and
an RBF kernel the set of hyperparameters would consist of θ = {σ2

n, σ
2
f ,Λ}.

Recall that y|f , θ ∼ N (f , σ2
nI) and f |X, θ ∼ N (µ,K), leading to y|X, θ ∼ N (µ,K +

σ2
nI), as shown in Section 3.3.3.

21



Chapter 3 Theoretical Foundations

0 2 4 6 8 10

0

1

(a) l = 1

0 2 4 6 8 10

−2

0

2

(b) l = 0.3

0 2 4 6 8 10

0

1

(c) l = 3

Figure 3.6: Comparison of different lengthscales. Panel (a) shows the GP from which we
generated the data. Panels (b) and (c) show two different hyperparameter settings.
The blue line shows the mean of the GP, and the gray area indicates the 95%
interval for the underlying function f .

We can write the log-likelihood of y|X as

log p(y|X, θ) = −1
2 (y− µ)T

(
K + σ2

nI
)−1

(y− µ)− 1
2 log

∣∣∣K + σ2
nI
∣∣∣− n

2 log 2π.
(3.3.13)

We call this term the marginal log-likelihood (MLL) of the GP on the given training
data. Note that the kernel matrix K depends on the hyperparameters of the GP.
Further note that we consider the log-probability since it can be computed more easily
and is often numerically more stable.
The different terms of Eq. (3.3.13) can be interpreted as an automatic trade-off

of data-fit and model complexity. The only term involving the observed targets is
− (y− µ)T

(
K + σ2

nI
)−1 (y− µ) describing the ability of the model to fit the data. On

the other hand log |K + σ2
nI| grows as the covariance deviates from the identity matrix,

therefore penalizing model complexity. This is a very interesting and remarkable
property of Gaussian processes, and many other regression methods, in particular
neural networks, are not able to consider such a trade-off automatically and therefore
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tend to overfit if given enough training iterations. For a more complete discussion of
this property in Gaussian processes, including visualizations of the different terms, see
Rasmussen and Williams (2005, Section 5.4.1).

We want to chose the hyperparameters θ∗ such that the MLL is maximized:

θ∗ = arg max
θ

log p(y|X, θ), (3.3.14)

with the MLL as in Eq. (3.3.13). Assuming a differentiable mean function µ and kernel
k, the marginal log-likelihood is fully differentiable with respect to the hyperparameters
θ. We can then maximize the MLL using a simple gradient ascent algorithm, or any
other gradient-based optimizer (see also Section 3.2.4 for more information on gradient
descent). Note that the marginal log-likelihood is non-convex in the parameters θ and
that there often are multiple local optima. Gradient descent therefore does not provide
a convergence guarantee. However these different optima can often be interpreted and
correspond to particular interpretations of the data. One possibility of preventing
convergence to bad local optima is to introduce prior belief over the parameters. We
will discuss this approach in Section 3.3.6.

The computation of the marginal log-likelihood in Eq. (3.3.13) requires the inverse of
the kernel matrix K. The typical computation uses the Cholesky decomposition, which
requires O(n3) computations for training data of size n. This is not an issue for small
datasets and can be easily computed, but it does not scale to larger datasets. There
exist many different approaches to improve this issue, some of which we state briefly in
Section 3.3.7. For a more thorough discussion see for example Liu et al. (2018).

3.3.6 Prior belief over hyperparameters

One of the advantages of GPs and of Bayesian approaches in general is that we can
naturally incorporate some prior belief p(θ) over the hyperparameters. By doing so we
can guide the MLL optimization towards preferable optima. However, it is important
to note that we can also decrease the model performance by choosing unsuitable prior
distributions.
The posterior distribution over the hyperparameters can be computed with Bayes’

rule as
p(θ|X,y) = p(y|X, θ)p(θ)

p(y|X) . (3.3.15)

Note that the normalization term p(y|X) does not depend on the hyperparameters
θ. We can therefore compute the maximum a posteriori (MAP) estimate of the
hyperparameters equivalently with

θ∗ = arg max
θ

log p(θ|X,y) = arg max
θ

log p(y|X, θ) + log p(θ). (3.3.16)
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The first term corresponds exactly to the MLL as computed in Eq. (3.3.13). The
incorporation of prior information on the hyperparameters is therefore very straight-
forward and easy to implement: One simply has to add the log-probabilities of the
hyperparameters to the marginal log-likelihood.

The choice of prior distribution is very flexible. A simple approach could be to use a
uniform prior, or a smooth approximation thereof, but it does not provide meaningful
gradients for most of the considered state space with mostly constant log-probabilities.
A Gaussian distribution can also be a sensible choice, but most of the considered
hyperparameters are bound to be positive while the Gaussian distribution allows for
negative values. We therefore chose the Gamma distribution Γ(α, β) as the prior over
hyperparameters, with density function defined as follows:

p(x;α, β) = βα

Γ(α)x
α−1e−βx, (3.3.17)

where Γ(α) =
∫∞

0 xα−1e−xdx is the gamma function. We call α the concentration and
β the scale of the Gamma distribution.

For a visualization of different Gamma prior distributions over lengthscales and their
corresponding optimization results see Fig. 3.7.

3.3.7 Extensions and current research
We conclude our brief introduction to Gaussian processes by discussing some extensions
of standard Gaussian processes.
A very actively researched problem is the scaling of Gaussian processes to larger

datasets. Liu et al. (2018) provide a general overview on the many different approaches.
Some examples of such approaches include using only on a subset of the full training
data (Hayashi et al., 2019), sparse approximations of the kernel matrix (Williams
and Seeger, 2001), or by introducing a smaller set of inducing points (Snelson and
Ghahramani, 2007). It is also possible to exploit structure in the kernel matrix (Wilson
and Nickisch, 2015).
Notably, Titsias (2009) considered inducing points from a variational perspective.

Together with stochastic variational inference (Hoffman et al., 2012) this allowed for
training such a sparse variational GP on mini batches of data (Hensman et al., 2013).
From a different perspective, there have been many approaches regarding the com-

bination of neural networks and Gaussian processes. While both methods seem very
different (deterministic vs. probabilistic, large data vs. small data) there has been
ongoing research regarding their equivalence (Lee et al., 2017; Neal, 1996; Novak
et al., 2018; Williams, 1997). One approach to combine neural networks with Gaussian
processes is deep kernel learning (Wilson et al., 2015b), where the authors propose to
first map the inputs into a different representation space with a deep neural network
before applying the GP kernel function. This has since been combined with stochastic
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(a) Gamma prior Γ(2, 0.2). The prior is not very restrictive and distributes its mass over a
large range of possible lengthscales. We could come up with such a prior by inspecting the
data, shown as black dots on the right, or having some knowledge on its distribution and
scale. Knowing that it lies in the (0, 10) interval can already be useful to estimate which
range of lengthscales might be reasonable.
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(b) Gamma prior Γ(50, 1). In this example we completely overestimated the lengthscale value.
The learned hyperparameters lead to an almost constant model, underfitting the data and
explaining all variations by the added noise term. Note that the shown confidence interval
describes noise-less function values f , but the learned noise parameter is indeed very large
with σn = 0.5043.
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(c) Gamma prior Γ(1, 100). We restricted the lengthscales to very small values, thus overfitting
to each data point and falling back to the zero-mean prior in-between.

Figure 3.7: Comparison of different prior distributions over lengthscales. The gray area
indicates the 95% confidence interval for the function values.
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variational inference to allow for a more practical mini-batch training setting (Wilson
et al., 2016). A very different approach are deep Gaussian processes (Damianou and
Lawrence, 2012), which consider multiple stacked GPs in a NN-like structure. This
idea has been extended to a convolutional structure (Blomqvist et al., 2018) and to
recurrence (Mattos et al., 2015).
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Chapter 4

Latent Gaussian Process Dynamics Models
from Visual Observations

We are interested in learning dynamical systems from visual observations. Such systems
describe the evolution of a true physical state over time, possibly influenced by actions.
However, we are not able to observe these physical states directly and instead only
obtain a flux of images which show this system. While the physical states might follow
simple rules of classical mechanics, the evolution of the observed images often behaves
in a much more complex way. We therefore consider approaches which learn a latent,
low-dimensional dynamics model, while learning different models to infer latent states
from the visual observations as well as to generate observations from latent states.

In this chapter we first introduce state-space models which describe the considered
problem more formally. We explain how we can model system dynamics with Gaussian
processes and extend the approach to the case of visual observations. The derived
training objectives allow for joint training of the introduced models. Finally, we discuss
approaches to simulate trajectories in the learned dynamics model, which we then use
for planning and control.

4.1 State-space models
We consider a dynamical system in which the true physical states s ∈ S evolve over
time according to a transition function f : S × U → S and actions u ∈ U , with

st+1 = f(st, ut) + ε, ε ∼ N (0, σ2
f ), (4.1.1)

and discrete time steps t. In general, we are not able to observe the states directly and
instead observe them indirectly as observations o ∈ O through a measurement function
g : S → O, with

ot = g(st) + ν, ν ∼ N (0, σ2
g). (4.1.2)

We call ε the system noise and ν the observation noise. Since we observe the true
states s only indirectly we also call them the latent states. Figure 4.1 illustrates the
dynamical system defined in Eqs. (4.1.1) and (4.1.2).

27



Chapter 4 Latent Gaussian Process Dynamics Models from Visual Observations

s1

a1

o1

s2

a2

o2

s3

o3

Figure 4.1: Generative process of a dynamical system. Gray filled circles denote observed
variables, white circles show latent variables.

If f and g are both linear we call the above a linear dynamical system (LDS). In this
thesis, we consider the more general case of non-linear f and g and we call the above a
nonlinear dynamical system (NLDS). We are interested in both inference, where we
want to find a posterior distribution over states s given observations o, as well as in
learning, where our goal is to infer the functions f and g from observations o.

4.2 Gaussian process dynamics models on physical states
We first consider a simplified version of the NLDS specified in Eqs. (4.1.1) and (4.1.2),
in which we are able to fully observe the true dynamical states s. This corresponds to
a special case in which the observation function g is the identity function and where
we have zero measurement noise σg = 0. Our goal in this simplified setting is to learn
the transition function f .

There are multiple examples in literature on GP dynamics models in fully observable
Markov decision processes (Deisenroth, 2010; Ko et al., 2007; Rasmussen and Kuss,
2004). We highlight PILCO by Deisenroth and Rasmussen (2011), a model-based
policy search method which also learns system dynamics with GPs. PILCO showed
unprecedented data-efficient learning from scratch and showcases the advantages of
using a probabilistic dynamics model for planning and control.
We closely follow the approach of Deisenroth and Rasmussen in PILCO for system

dynamics learning. We model the transition function f with a Gaussian process and
write f ∼ GP(µ, k), with µ : (s, a) 7→ s and k the RBF kernel as defined in Eq. (3.3.12).
Recall that modeling GPs with fixed deterministic non-zero mean functions is equivalent
to modeling the difference between the targets and the mean function with a GP with
zero mean. Therefore, our model is equivalent to the proposed model in PILCO, where
the authors model the state differences at each time step with a zero-mean Gaussian
process. To highlight the advantage of this prior function over the common zero-mean
prior for modeling dynamical systems, consider a state-action input which lies far away
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4.2 Gaussian process dynamics models on physical states

from the known data. Since the RBF kernel is not able to extrapolate, a GP with a
zero-mean prior would predict a next state of st+1 = 0. In contrast, with our choice of
mean function, the GP predicts an unchanged state st+1 = st, which we argue is often
a much better uninformed estimate.
In order to learn the GP hyperparameters and to perform posterior inference we

collect training data by randomly interacting with the environment. This provides
us with a dataset consisting of sequences {st, at}Tt=1. Note that we could have many
different sequences of this kind, possibly of different length, but we chose to omit the
sequence index for notational clarity.

Since Gaussian processes model the correlation between data points, we always need
to consider the whole dataset at once. We define

S =

 s1
...

sT−1

 , A =

 a1
...

aT−1

 and S′ =

s2
...
sT


as concatenations of states and actions, respectively. We then consider training
inputs X = [S,A] and training targets y = S′, such that each row in the respective
matrices correspond to a single transition ((st, at), st+1). Finally, we learn the GP
hyperparameters by maximizing the marginal log-likelihood log p (y|X), as introduced
in Section 3.3.5.

Next we consider the posterior distribution p(s∗t+1|s∗t , a∗t ) of the GP dynamics model,
given training data (X, y) as defined above. We follow the formulas for posterior
inference from noisy observations (Section 3.3.3) while taking into account the non-zero
mean function, as well as our formulation where inputs consist of both states and
actions, i.e. x = [s, a]. We get

p(s∗t+1|s∗t , a∗t ) = N
(
s̄∗t+1, cov(s∗t+1) + σ2

nI
)
,

with

s̄∗t+1 = s∗t + kT
∗

[
K + σ2

nI
]−1 (

S′ − S
)

cov(s∗t+1) = k∗∗ − kT
∗

[
K + σ2

nI
]−1

k∗,

where k∗∗ = k ([s∗t , a∗t ], [s∗t , a∗t ]), k∗ = k ([S,A], [s∗t , a∗t ]) and K = k ([S,A], [S,A]). Note
that we included the noise term σnI in the posterior covariance since we provide the
distribution for noisy state transitions.

Finally, for multi-dimensional states we follow the procedure in PILCO (Deisenroth
and Rasmussen, 2011) and train conditionally independent GPs for each target state
dimension. We present results of this approach in Section 5.6.
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4.3 Gaussian process dynamics models from visual
observations

Instead of having fully observable physical states, we are interested in the more general
case of visual observations of the dynamical system. More formally, with the definition
of a non-linear dynamical system in Section 4.1 (see also the graphical representation
in Fig. 4.1), we want to learn both the transition function f : st, at 7→ st+1 and the
observation function g : st 7→ ot given only sequences of observations o1:T and the
corresponding actions a1:T . Additionally, we want to infer states from observations,
which we then propagate through the learned transition function in order to simulate
new state sequences, as well as observation sequences using the observation function. In
the following we introduce models for the transition function and observation function,
and describe the inference process of the joint dynamics model, provided with visual
observations.

In the previous section (Section 4.2) we have shown how Gaussian processes can be
used to model system dynamics, provided the model has access to the true physical
state representations, and PILCO (Deisenroth and Rasmussen, 2011) showed impressive
results with this method. We therefore model the transition function f : st, at 7→ st+1
as in PILCO, with a Gaussian process f ∼ GP(µ, k) with mean function µ : (s, a) 7→ s
and k the RBF kernel.
Next, the observation function g : st 7→ ot generates high-dimensional visual obser-

vations, notably images, from low-dimensional physical states. A natural choice for
models that deal with images are convolutional neural networks (see also Section 3.2.5).
More concretely, since g generates images we chose to model it with a transposed
convolutional neural network (see Section 3.2.5). We describe the chosen architecture
in more detail in the corresponding experiments section (Section 5.5).
In order to apply the transition and observation functions, given only sequences of

observations o1:T and actions a1:T , we need to infer state sequences s1:T . We chose
to learn an encoder q(st|ot) to infer a belief over latent state representations from
the current observation. We consider two different approaches to model q(st|ot): In
our first approach we model q(st|ot) as a diagonal Gaussian where the mean and
variance are parametrized by a convolutional neural network. Another option we
explored is to model the encoder deterministically using a convolutional neural network,
corresponding to a Dirac delta distribution where the location of the point mass is
parametrized by a convolutional neural network. We provide the exact architecture in
the experiments section (Section 5.5).

Note that we implicitly assume that it is possible to reconstruct the full state from
the observation. For observations consisting of single images this assumption seems
unreasonable since it is generally not possible to infer the velocity of objects from
a single still RGB image. To circumvent this problem, we define an observation
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as a sequence of the last k images ot = [it, it−1, . . . , it−k], with ij ∈ RH×W×3 the
generated frame at timestep j. The physical states in the environments we chose in our
experiments (Chapter 5) consist only of positions and velocities of objects and show no
long-term dependencies, such that we chose k = 2.
Figure 4.2 shows a graphical representation of the inference process. The different

types of lines show the different parts of the model, namely the encoder, decoder, and
the dynamics model.

s1

a1

o1

s2

o2

a2

s3

o3

Encoder

Decoder

Dynamics model

Figure 4.2: Inference process of the introduced model. The different lines denote the individual
components of our model as detailed in the legend. The model uses the observed
variables (gray) to compute a belief for the unobserved variables (white). Notably,
the model is able to use its belief over the next state s2 in order to estimate s3
without observing o2. We discuss the sampling of trajectories in more detail in
Section 4.6.

4.4 Training objectives

In the following, we derive two different training objectives to train the proposed
dynamics model by maximizing the likelihood of the given data under our model. We
briefly recall the proposed state space model.
We consider sequences {ot, at}Tt=1, generated by a latent state-space model using a

hidden state sequence {st}Tt=1, with

Transition model: st ∼ p(st|st−1, at−1),
Observation model: ot ∼ p(ot|st),

(4.4.1)

where we assume a fixed initial state s0. As introduced in the last section (Section 4.3),
we consider the transition model as given by a Gaussian process and the observation
model given by a Gaussian with mean parametrized by a deconvolutional neural network
and identity covariance. Note that the log-likelihood under a Gaussian distribution
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with unit variance equals the mean squared error up to a constant. Further, we
defined an encoder q(s1:T ) = ∏T

t=1 q(st|ot) to infer approximate state posteriors from
observations, either as a diagonal Gaussian with both mean and variance parametrized
by a convolutional neural network or as a Dirac delta with deterministic point mass
location, parametrized by a convolutional neural network.

4.4.1 KL-divergence-based training objective

We construct a variational bound on the data likelihood p(o1:T |a1:T ).

log p(o1:T |a1:T ) = logEp(s1:T |a1:T )

[
T∏
t=1

p(ot|st)
]

(4.4.2)

= logEq(s1:T |o1:T )

[
T∏
t=1

p(ot|st)p(st|st−1, at−1)/q(st|ot)
]

(4.4.3)

≥ Eq(s1:T |o1:T )

[
T∑
t=1

(
log p(ot|st) + log

(
p(st|st−1, at−1)

q(st|ot)

))]
(4.4.4)

=
T∑
t=1

(
Eq(st|ot) [log p(ot|st)]

+ Eq(st−1|ot−1)

[
Eq(st|ot)

[
log

(
p(st|st−1, at−1)

q(st|ot)

)]]) (4.4.5)

=
T∑
t=1

(
Eq(st|ot) [log p(ot|st)]︸ ︷︷ ︸

Reconstruction

− Eq(st−1|ot−1) [DKL (q(st|ot)||p(st|st−1, at−1))]︸ ︷︷ ︸
Latent state prediction

)
,

(4.4.6)

where we used the properties of the transition model p(s1:T |a1:T ) = ∏T
t=1 p(st|st−1, at−1),

Jensen’s inequality, the defined decoder q(s1:T |o1:T ) = ∏T
t=1 q(st|ot), and the definition

of the KL-divergence DKL (p(x)||q(x)) = Ep(x)
[
log

(
p(x)
q(x)

)]
. Estimating the outer

expectations using a single reparameterized sample yields an efficient objective for
inference and learning in non-linear latent variable models that can be optimized using
gradient ascent (Kingma and Welling, 2013; Rezende et al., 2014).

For this training objective we only considered the probabilistic encoder, where q(st|ot)
is a Gaussian distribution with mean and variance parametrized by a neural network.
We additionally include a KL-divergence term between the encoder q(st|ot) and a
standard Gaussian prior N (0, I).
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The derivation of the training objective closely resembles the derivation done by
Hafner et al. (2019) while taking into account the different model definitions. The
appeal of this training objective is that the probabilistic encoder gets regularized by
the prediction of the transition model, which we assume should be favorable for the
training process compared to a regularization by KL-divergence to a standard Gaussian
prior. A notable drawback of this training objective is that it factorizes over the
individual training data points. In the context of neural networks, this factorization
is necessary in order to train the model with mini-batch stochastic gradient descent.
However, an important property of exact Gaussian processes is that they model the
covariance between different data points. In order to get meaningful predictions for
single transitions p(st|st−1, at−1) we therefore need to compute the posterior distribution
given some evidence. Thus, we provide all inferred latent states and actions as evidence
to the GP transition model. However, these considerations motivate the derivation of a
different training objective which takes into account this GP property, and we present
such an objective in the following section.

4.4.2 MLL-based training objective

We derive a second training objective while considering the GP viewpoint more closely.
In particular, we aim to find a training objective which considers the covariances
between individual training points and which contains a marginal log-likelihood term
for the GP transition model. We introduce new notation regarding the given training
data and define

Xo :=

 o1, a1
...

...
oT−1, aT−1

 , yo :=

o2
...
oT

 (4.4.7)

as the evidence in observation space as well as

Xs :=

 s1, a1
...

...
sT−1, aT−1

 , ys :=

s2
...
sT

 (4.4.8)

in state space.
Using these definitions, we can write the transition in state space as p(ys|Xs),

provided by the GP dynamics model, for which we can compute the prior likelihood
as described in Section 3.3. Further, we assume that the observation model and the
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encoder factorize over the individual data points.

Decoder: p(yo|ys) =
T∏
t=2

p(ot|st), p(Xo|Xs) =
T−1∏
t=1

p(ot|st), (4.4.9)

Encoder: q(ys|yo) =
T∏
t=2

q(st|ot), q(Xs|Xo) =
T−1∏
t=1

q(st|ot). (4.4.10)

We marginalize the data likelihood p(yo|Xo) in the following way:

p(yo|Xo) =
∫ ∫

p(yo|ys)p(ys|Xs)q(Xs|Xo)dysdXs (4.4.11)

=
∫ ∫

p(yo|ys)
q(ys|yo)

q(ys|yo)p(ys|Xs)q(Xs|Xo)dysdXs (4.4.12)

= Eq(ys|yo)q(Xs|Xo)

[
p(yo|ys)
q(ys|yo)

p(ys|Xs)
]
. (4.4.13)

We then apply Jensen’s inequality to derive our training objective as a lower bound on
the log-likelihood:

log p(yo|Xo) ≥ Eq(ys|yo)q(Xs|Xo) [log p(yo|ys)− log q(ys|yo) + log p(ys|Xs)] (4.4.14)
= Eq(ys|yo) [log p(yo|ys)]︸ ︷︷ ︸

I

+Eq(ys|yo) [− log q(ys|yo)]︸ ︷︷ ︸
II

+ Eq(ys|yo)q(Xs|Xo) [log p(ys|Xs)] .︸ ︷︷ ︸
III

(4.4.15)

We can interpret the three terms in the following way:

I. Reconstruction likelihood. This term corresponds exactly to the “reconstruc-
tion” term in the KL-divergence-based training objective. Since the decoder
parametrizes the mean of a Gaussian distribution with unit variance this is
equivalent to the negative mean squared error up to a constant.

II. Encoder regularization. This term corresponds to the definition of the differ-
ential entropy h(p) := Ep(x) [− log p(x)]. Given a multivariate normal distribution
p ∼ N (µ,Σ) with diagonal covariance matrix Σ and σi := (Σ)ii > 0, the differen-
tial entropy is given by

h(p) = 1
2 log

(
(2πe)N

)
+ 1

2
∑
i

log (σi) , (4.4.16)

which is maximized as the variances σi increase. Thus, considering a probabilis-
tic Gaussian encoder with parametrized mean and variance, this term can be
interpreted as a regularization term which prevents small variances.
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III. Log-likelihood term of the state transitions. The inner term p(ys|Xs)
corresponds to the standard marginal log-likelihood, which is the default training
objective to learn hyperparameters of a GP. However, we consider the MLL in
expectation over the posterior distribution from the encoder.

As before, we estimate the outer expectation using a single reparametrized sample
(Kingma and Welling, 2013; Rezende et al., 2014).

Subset-of-data approximation

In comparison to the KL-divergence-based training objective derived in Section 4.4.1,
we can not factorize Eq. (4.4.15) over individual data points; It was also our main
motivation to consider covariances between points in this derived loss term. Thus,
we cannot minimize this objective by using mini-batch stochastic gradient-descent.
However, stochastic gradient descent with small mini-batches is generally preferred for
training neural networks (see also Section 3.2.4), circumventing memory limitations as
well as often providing more robustness, faster convergence and better generalization
(Bottou, 2010; Ge et al., 2015; Masters and Luschi, 2018).

Another motivation for a mini-batch stochastic optimization scheme comes from the
data requirements of neural networks, which are known to require large amounts of
data in order to provide good results and to generalize well to unseen data. Computing
the MLL as required in Eq. (3.3.13) (III) scales O(T 3) with the dataset size T . In a
full-batch gradient descent training scheme, this effectively limits the amount of data
we could consider for training. By computing the MLL over batches of size B � T
we have a computational scaling of O(B3) and we can increase the size of the dataset
n in order to include more variety to train the NNs. This strategy is know as the
subset-of-data (SoD) approach (Liu et al., 2018, Section III.A.). While there are many
other approaches on scaling GPs to large data (Liu et al., 2018), SoD has been shown
to produce reasonable predictions in the case of abundant or redundant data (Hayashi
et al., 2019). Finally, we argue that GPs are known to require very little data in the
considered environments in order to learn good dynamics models (Deisenroth and
Rasmussen, 2011).

With these considerations, we introduce an approximation of the training objective
defined in Eq. (3.3.13) over a sufficiently large subset of data or batch. We start by
showing the factorization of the two terms of Eq. (3.3.13) which do not contain the
GP dynamics model by using the assumed encoder and decoder factorizations from
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Eq. (4.4.9). For the reconstruction term (I) we get

Eq(ys|yo) [log p(yo|ys)] = E∏T

t=2 q(st|ot)

[
log

(
T∏
t=2

p(ot|st)
)]

=
T∑
t=2

Eq(st|ot) [log (p(ot|st))] ,

and we similarly show the factorization for the regularization term (II) as

Eq(ys|yo) [− log q(ys|yo)] =
T∑
t=2

Eq(st|ot) [− log q(st|ot)] .

Considering a mini-batch with indices B ⊂ {1, . . . , T} of size B = |B|, we approximate
these two terms as

Eq(ys|yo) [log p(yo|ys)] ≈
T

B

∑
t∈B

Eq(st|ot) [log (p(ot|st))] (4.4.17)

and

Eq(ys|yo) [− log q(ys|yo)] ≈
T

B

∑
t∈B

Eq(st|ot) [− log q(st|ot)] . (4.4.18)

Finally we assume

Eq(ys|yo)q(Xs|Xo) [log p(ys|Xs)] ≈ E∏
t∈B q(st|ot)q(st−1|ot−1)

[
log p(sB|s(B−1), a(B−1))

]
,

(4.4.19)
where we define (B− 1) := {t− 1|t ∈ B} element-wise by a slight abuse of notation. By
randomly sampling a subset B ⊂ {1, . . . , T} to compute the gradients for the gradient
descent scheme we obtain the desired mini-batch training scheme.
We remind the reader once more that the approximation proposed in Eq. (4.4.19)

represents a strong assumption which does not hold in general. While we explored both
the exact full-batch training as well as training in mini-batches for varying batch sizes,
we achieved our best results by training on a larger data set with the mini-batches.
We again suspect that the reason this approach is sensible in this context is due to
both the data-efficiency of GP dynamics models (which required data in the order of
order of 20 rollouts or 1000 transitions) in combination with the abundance of available
simulation data (we often considered datasets in the order of 200 rollouts or 10000
transitions).
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4.5 GP dynamics models on dynamics-unaware embeddings

We propose a simplified approach to combine AEs or VAEs for state representation
learning with GPs for modeling system dynamics in the following two-stage procedure.
We first learn state representations st for each observation ot by training an AE
or VAE on a dataset of observations D = {oi}Ni=1 without considering any system
dynamics. This first stage corresponds to a standard AE or VAE training as described
in Sections 3.2.6 and 3.2.7. We then use the learned encoder g−1 : ot 7→ st to
map the transitions in observation space (ot, at, ot+1) to observations in latent space
(st, at, st+1) such that we obtain a low-dimensional dataset of latent state transitions
D = {(st, at, st+1)}Tt=1. Finally, we train a GP dynamics model on these state transitions
in the learned, but fixed, latent space by proceeding exactly as for GP dynamics models
on the true physical states (see Section 4.2).
We include results for this proposed simplified latent GP dynamics model in Sec-

tion 5.7.1.

4.6 Sampling trajectories from a Gaussian process dynamics
model

The goal of learning a dynamics model for a given environment is to use the learned
model in order to simulate the interaction with the environment. Ideally, this simulation
perfectly describes the real environment. More formally, we want to generate a sequence
of states {st}Tt=1 from an initial state s0 and a sequence of actions {at}T−1

t=0 .

4.6.1 Mean propagation

In mean propagation, we select the state with maximum likelihood under the posterior
distribution of the transition model p(st+1|st, at). Since p(st+1|st, at) is a Gaussian
distribution, the maximum likelihood estimate corresponds to the mean. We can then
recursively apply the transition model to the new predicted state st+1 and action at+1
in order to compute st+2.
This approach is very simple to implement and computationally very cheap since

it only requires to compute the mean of the Gaussian process prediction, but not its
covariance. However, this property is also the main drawback: We do not consider any
uncertainty. We lose the advantages of having a probabilistic model which also models
uncertainties.
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4.6.2 Moment matching
In order to consider the uncertainties in st ∼ N (u, S) when computing the posterior
p(st+1|st, at), we need to marginalize over st and compute

p(st+1|u, S, at) =
∫
p(st+1|st, at)p(st|u, S)dst. (4.6.1)

In the special case of Gaussian processes with RBF kernels, it is possible to obtain
exact analytical expressions for the mean and variance of the marginalized predictive
distribution (Quiñonero-Candela et al., 2003). This approach is also known as moment
matching since we approximate the true distribution with a Gaussian while exactly
matching the true mean and variance. Notably, Deisenroth and Rasmussen (2011) also
applied moment matching in PILCO.
A main application which requires simulating new sequences under the learned

dynamics model is planning and control. We used the cross-entropy method in a
model-predictive control setting (Section 4.7). In order to apply this method, we need
to generate state trajectories for a larger number of candidate action sequences (e.g.
∼ 1000 sequences). We found this to be unfeasible due to large memory requirements.
Vectorized computation of moment matching as described by Quiñonero-Candela et al.
(2003) requires building an array with N2d entries, where N is the number of data
points in the GP evidence and d the dimension of each datapoint. With N = 1000 and
d = 3 this gives an array with 3, 000, 000 elements. Considering 32 bit float values,
we get a memory requirement of ∼ 0.9 GB for a single computation of the moment
matching solution. It is therefore infeasible to apply moment matching on larger batches
of data. Further, we found sequential application or even the use of mini-batches to
be too time-consuming: A single moment-matching step takes ∼ 0.1 seconds in our
implementation. The chosen CEM-MPC control algorithm (see Section 4.7) with
parameters H = 20, I = 10, J = 1000 requires 200, 000 such evaluations, such that the
generation of a single action would require ∼ 5.5 hours. With a GPU memory limit of
∼ 10 GB, we could decrease this number by a factor of 10 using batches, but it stays
unfeasible to apply moment matching for control. Note that the described memory and
time considerations are specific to our implementation and our choice of using CEM
for planning. Other approaches such as directly learning a policy function through
gradient descent do not require the evaluation of a large number of candidate sequences
and implementations which use CPUs for their computations instead of GPUs might
have both different memory restrictions and computation times.

4.6.3 Conclusion
In conclusion, we used mean propagation for planning and control as well as for
the evaluation of the learned dynamics models. However, moment matching is a
theoretically well-founded approach which considers uncertainties of the dynamics
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model when predicting new state sequences. We argue that it is almost always
preferable to use moment matching over mean propagation if the respective task or the
applied method does not require evaluation of a large number of candidate sequences.

4.7 Planning and Control

Our interest in learning dynamics models from high-dimensional visual observations
is to solve specific tasks in the learned environments. Such tasks could be defined as
balancing a pole which is attached to a cart (the so-called CartPole problem described
by Barto et al. (1983)), getting the highest possible score in ATARI games (Mnih et al.,
2013), or manipulating objects in the real world with a physical robot. While we as
humans typically have a good understanding of our task of interest, we generally need
to describe it using a cost function (or equivalently a reward function) which specifies
good and bad states in order to approach the problem formally. Then, our goal is
to select actions which minimize this cost or equivalently maximize the reward. In
the CartPole example the cost could be proportional to the angle, where an angle of
zero means that the pole points upwards, thus enforcing the desired balancing. In the
example of ATARI games one could consider the score provided by the game engine as
a reward function.

4.7.1 Modeling reward

We consider environments as introduced in Section 4.1 on which we learned a dynamics
model from visual observations as defined in Sections 4.3 and 4.4. Additionally, we now
consider some specific task in this environment defined by a corresponding true reward
function p(rt|st). However, we do not know the true reward function and instead only
have access to rewards which we collected by interacting with the environment, in the
form of sequences {ot, at, rt}. We can use the encoder q(st|ot) of the learned dynamics
model to estimate latent states st from observations ot. These state estimations are then
used to learn a reward model rt ∼ p(rt|st) which we chose as as a scalar Gaussian with
mean parametrized by a feed-forward neural network and unit variance. Maximizing
the data log-likelihood is equivalent to minimizing the mean-squared error between
predictions and the ground-truth rewards. The neural network is trained using gradient
descent. Note that since we consider a fixed encoder, this corresponds to a standard
supervised regression task.

4.7.2 Planning with the cross entropy method

Consider an initial state st, possibly inferred by the learned encoder from an initial
observation ot, where t is the current time step of the agent. Our goal is to find the
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action sequence at:t+H that maximizes the expected sum of future rewards, obtained
by applying the action sequence to the real environment.

In order to estimate the expected reward, we compute state trajectories st:t+H from
the dynamics model using mean-propagation as described in Section 4.6, for which
we can then estimate rewards rt:t+H using the learned reward model. We denote this
mapping from action sequences to the sum of expected rewards with S(at:t+H) and we
call S a performance function.

Now, our goal in planning can be formulated as an optimization problem: We want
to find the action sequence at:t+H which maximizes the performance function S

a∗t:t+H = arg max
at:t+H

S(at:t+H). (4.7.1)

One method to solve this optimization problem is the cross entropy method (CEM)
(Boer et al., 2005; Rubinstein, 1996). CEM is a popular approach for planning of
action sequences and has been applied both on classic control problems (Mannor et al.,
2003; Szita and Lörincz, 2006) as well as in the context of deep reinforcement learning
(Chua et al., 2018; Hafner et al., 2019). The main idea of CEM is to maintain a
distribution over possible solutions, that is over possible action sequences, and update
this distribution at each step such that good solutions become increasingly more likely.
Consider the family of time-dependent diagonal Gaussian distributions over action

sequences at:t+H ∼ N (µt:t+H , σ2
t:t+HI), parametrized with means µt:t+H and variances

σ2
t:t+H , and let f0 = N (0, I) be the initial distribution over actions. We iteratively

sample J candidate sequences a(1)
t:t+H , . . . , a

(J)
t:t+H from fi and obtain their expected

rewards S(a(1)
t:t+H), . . . , S(a(J)

t:t+H). After ordering these candidate sequences according
to decreasing expected return, we select the best K sequences a(1)

t:t+H , . . . , a
(K)
t:t+H . Note

that all selected sequences have a reward equal or higher than γi := S(a(K)
t:t+H). In order

to update the belief over action sequences, consider g≥γi the uniform distributions over
the best K sequences

{
a

(1)
t:t+H , . . . , a

(K)
t:t+H

}
. We then update the current belief over

action sequences by finding the distribution fi+1 in the considered family of Gaussian
distributions closest to g≥γi with regard to the cross-entropy measure, which is formally
defined as

H(p, q) = −
∫
p(x) log q(x)dx. (4.7.2)

Using the fact that g≥γi is a discrete uniform distribution we get

H(g≥γi , q) = −
∫
g≥γi(at:t+H) log fi+1 (at:t+H) dat:t+H (4.7.3)

= − 1
K

K∑
j=1

log fi+1
(
a

(j)
t:t+H

)
, (4.7.4)
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which is equivalent to the negative log-likelihood of
{
a

(1)
t:t+H , . . . , a

(K)
t:t+H

}
under fi+1.

Since fi+1 is a Gaussian distribution, its minimum can be analytically computed as

µ
(i+1)
t:t+H = 1

K

K∑
j=1

a
(j)
t:t+H ,

(
σ

(i+1)
t:t+H

)2
= 1
K

K∑
j=1

(
a

(j)
t:t+H − µ

(i+1)
t:t+H

)2
. (4.7.5)

We repeat this procedure for I optimization steps and return at:t+H = µ
(I)
t:t+H . This

iterative CEM algorithm is outlined in Algorithm 1.

Algorithm 1 Planning with CEM
Input: H Planning horizon distance

I Optimization iterations
J Candidates per iteration
K Number of top candidates to fit

1: Initialize distribution over action sequences f0 ← N (0, I).
2: for optimization iteration i = 1..I do
3: Sample J candidate sequences

{
a

(1)
t:t+H , . . . , a

(J)
t:t+H

}
from fi−1

4: Compute expected rewards
{
S
(
a

(1)
t:t+H

)
, . . . , S

(
a

(J)
t:t+H

)}
// Sort the candidates by decreasing rewards

5: sort
({
S
(
a

(1)
t:t+H

)
, . . . , S

(
a

(J)
t:t+H

)})
// Re-fit belief to the K best action sequences.

6: µt:t+H = 1
K

∑K
k=1 a

(k)
t:t+H , σ2

t:t+H = 1
K

∑K
k=1

(
a

(k)
t:t+H − µt:t+H

)2
.

7: fi ← N (µt:t+H , σ2
t:t+HI)

8: end for
9: return First action mean µt.

4.7.3 Model-predictive control

We apply the presented planning algorithm to the real environment using model-
predictive control (MPC) (Garcia et al., 1989): For each current state belief st we
compute an action sequence at:t+H using CEM and then apply at to the real system.
As a result we obtain a new observation ot+1 from which we can infer a state st+1 and
we repeat this process. Note that the belief over action sequences starts from zero
mean and unit variance again to avoid local optima.
The described approach is a closed-loop control method since we receive feedback

from the environment which we consider while choosing the subsequent action. This is
in contrast to open-loop control where we would plan to apply a full sequence of actions
a0:T without considering the resulting observations o1:T . Further, MPC is not bound
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Chapter 4 Latent Gaussian Process Dynamics Models from Visual Observations

to CEM for planning or even to the considered type of dynamics model. It generally
describes the approach of planning control for a finite time-horizon using a model of
the environment but only applying the first step of the planned control strategy.
We evaluated the proposed dynamics models for control using MPC with CEM as

introduced in this section. We provide the results in Section 5.8.
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Experiments

In the following we present experimental results of our proposed method, learning
latent Gaussian process dynamics models from visual observations.
We first introduce the two OpenAI gym (Brockman et al., 2016) environments on

which we evaluate the proposed methods, Pendulum-v0 and CartPole-v1, and define
the data collecting process. In preparation of the main results we provide examples for
the two different underlying approaches our method builds on, namely unsupervised
representation learning from images and GP dynamics models on physical states. Our
main results show latent GP dynamics models which we jointly trained with the
encoder/decoder pair on the derived training objectives (see also Section 4.4). We
compare our joint training method to the simplified approach of first learning state
representations which are unaware of a transition model on the latent space, as AEs or
VAEs, and then fitting a GP dynamics model to the fixed learned embeddings. Finally
we apply the learned models to control tasks in these environments and demonstrate
transfer to new physical conditions.

5.1 Environments
OpenAI gym (Brockman et al., 2016) provides well-established simulated environments
with tasks of varying difficulty. We considered the following environments:

• Pendulum-v0:
Description: This environment describes a single pendulum to which the actor
can apply torque. The task consists in moving the pendulum such that it points
upwards and to balance it in this position, which we also call performing a
“swing-up”. It is not possible to directly move the pendulum to the goal position
and a minimum of one swing to each side are required in order to gather sufficient
momentum. For a render of this environment see Fig. 5.1a.
States and actions: The true physical states consist of the angle θ and the
angular velocity θ̇ of the pendulum, with velocities |θ̇| < 8. The state is typically
encoded in a three dimensional vector s = (cos(θ), sin(θ), θ̇). This encoding makes
the state space continuous, eliminating the jump from 0 to 2π, which is beneficial
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for many methods, notably for GPs with RBF kernels. Figure 5.2 shows a 3D
visualization of the true physical state space. Finally, the action a consists of a
single real scalar describing the torque applied to the joint, with a ∈ [−2, 2].
Modifications: We removed the rendering of the last applied action from the
environment.

• CartPole-v0:
Description: A pole is attached by an un-actuated joint to a cart, which moves
along a frictionless track. Figure 5.1b shows a render of this dynamical system.
The environment corresponds to the problem described by Barto et al. (1983).
There are two commonly considered tasks in this environment: In balancing the
pendulum starts upright, and the goal is to prevent it from falling over, and in
the swing-up task the pendulum starts pointing downwards and the actor has
to move the cart in a way to lift the pendulum and to balance it pointing up
afterwards.
States and actions: The true physical states consist of the cart position and
velocity, as well as the pole angle and angular velocity. As for Pendulum-v0 we
encoded the pole angle into its cosine and sine, leading to a five-dimensional state
representation. The action a consists of force applied to the cart in order to push
it to the left or right, with a ∈ [−10, 10].
Modifications: We modified the original version in order to have a continuous
action space, using the applied force of the original CartPole-v0 as the upper
bound for the interval of valid actions. We further do not stop the environment
if the pole angle crosses a certain threshold, as we are interested in the whole
physical state space as well as in the swing-up task. We changed the sparse,
binary reward function into the continuous reward used in the non-sparse CartPole
version of the DeepMind Control Suite (Tassa et al., 2018). Lastly, we slightly
modified the rendering to have a wider pole.

5.2 Data Collection
We generate data for learning the dynamics models by interacting with the environment
and applying randomly chosen actions, uniformly sampled from the respective action
space. The starting configuration depends on the environment. For the Pendulum we
sample the starting state uniformly from the full state space [0, 2π)× [−8, 8]. In the
CartPole environment we start with the balancing position, with central cart, upright
pole, and zero velocities, and we add uniform noise σi ∼ U(−0.05, 0.05) to each state
dimension si. With these random interactions we obtain N sequences of length T ,
giving us a dataset D =

{{
(oit, sit, ait, rit)

}T
t=1

}N
i=1

with observations oit, true physical
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(a) Pendulum.

(b) CartPole.

Figure 5.1: Rendered frames of the considered OpenAI gym environments.

states sit, actions ait and rewards rit for sequence i at time t. We remind the reader that
we consider observations which consist of two subsequent frames, in order to capture
information on velocities, that is ot = [it, it−1] where it is the frame rendered at time
step t. Additionally we added a small amount of Gaussian noise εi,j ∼ N (0, 0.01) to
each pixel of the collected frames, thus equivalently to each observation.

Note that the system states are collected for evaluation purposes and for the results
with GP dynamics models on the true physical states, but are not available during the
training of the proposed method. Similarly, the collected rewards are only relevant in
the context of planning and control. We describe the actual data used for training in
more detail in each corresponding experiments section.

5.3 Model Evaluation

We generally want the model to provide accurate predictions of the learned environment.
However, this notion is still very broad. Pixel-wise losses in image space do often
not accurately reflect the model error. On the other hand, the scale and structure of
the latent space is learned by the model and it might happen that it allows for low
losses while not providing meaningful representations. Ideally we could use the learned
dynamics model for planning and control and evaluate the model on task performance.
However, we also want to learn system dynamics without considering a specific control
task. With these general considerations in mind we present and discuss approaches to
understand and evaluate the different aspects of the proposed model.

A simple metric to evaluate the learned state representations is already contained in
both of the derived training objectives: A reconstruction loss for the encoder/decoder
pair, for example the MSE or BCE. A complete loss of information due to a malformed
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Figure 5.2: Visualization of the true physical state space in the pendulum environment.
For each state si = (θ, θ̇) we show a point at location (cos(θ), sin(θ), θ̇)). We
additionally colored each point according to its angle θ in the left plot, and with
its angular velocity θ̇ in the right plot, respectively.

latent space should become apparent and lead to very high reconstruction errors.
However, the reconstruction loss does not capture our main motivation well. We want a
meaningful latent space which enables a good dynamics model, and it is in our interest if
the latent representations contain only controllable aspects of the environment instead
of precisely describing details of the visual observations.

For latent spaces with dimensions d ≤ 3, which holds for the Pendulum environment,
we can visually inspect the encoded dataset of observations, similarly to Fig. 5.2. Since
we know the true state space we can visually compare the shape of the learned manifold
and intuitively build an opinion on its shape and structure. During our work on the
proposed method this evaluation has been very insightful. For higher-dimensional state
spaces we can visualize projections to a selection of three of the dimensions, allowing
us to visualize CartPole, but due to the high dimensionality of the true physical state
space the visualizations were less insightful and intuitive. A downside is the qualitative
nature of this evaluation. Ideally we want a quantitative metric which coincides well
with our intuitive judgement about the learned latent space.

A quantitative approach to evaluate the information contained in a latent repre-
sentation is to regress the true physical states from the learned latent states (Lesort
et al., 2018). Karl et al. (2016) regress the physical states of a pendulum with a
linear regression. In our experiments the learned state representation did mostly not
accurately recover the original state manifold and linear regression did not seem flexible
enough. Since we model the system dynamics with Gaussian processes we opted for a
support vector regression (SVR) (Drucker et al., 1997), a kernel method which closely
relates to the support vector machine used for classification (Boser et al., 1992). Our
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motivation for this choice was that the SVR does also use an RBF kernel and thus it
might be more indicative of the quality of the learned embeddings for the GP dynamics
model. We use the implementation provided by scikit-learn (Pedregosa et al., 2011).
Indeed, we observed a meaningful correlation between low regression errors and our
own visual and intuitive judgement of the learned representations.
To qualitatively evaluate the dynamical system we can visualize predicted observa-

tions, for multi-step predictions, through the learned decoder and compare them to
the ground-truth observations. Quantitatively this might be best reflected with a MSE
between predicted observations and true observations. However, note that our goal
is not to solve a video prediction task. Errors in pixel space do also not accurately
reflect the amplitude of errors in state space. For example, a small inaccuracy in the
predicted angle of a pendulum might already lead to very little overlap of the rendered
pendulums, thus leading to a high MSE in image space.
We can similarly evaluate prediction errors in latent space. Since the state repre-

sentations are learned by the model they likely deviate in both structure and scale
for different runs. Errors in latent space can therefore not be compared between
different training runs, or between different methods. Still, the evolution of these latent
prediction errors during the training can still be an interesting indicator, especially
together with the errors in image space.

Finally, we can use the learned dynamics model for planning and control and evaluate
the model on task performance. In order to achieve good performance the model needs
to infer meaningful latent state representations, and accurately predict trajectories in
state space. The learned state space also has to be informative enough to learn an
accurate reward model. A downside of this evaluation is that the task performance
might depend on the chosen planner and controller, as well as on their settings. However,
the chosen cross-entropy method has been shown to provide good performance on
complex environments, in combination with learned latent states from pixels (Hafner
et al., 2019), and we therefore assume that task performance should be indicative of
model performance.

5.4 Numerical Considerations for training Gaussian Processes

During our experiments we regularly encountered numerical issues when training
Gaussian processes, both in combination with learning latent embeddings as well as
on the true physical states. This is likely due to the structure of the kernel matrix
during the Cholesky decomposition, which is required in order to compute the marginal
log-likelihood (Eq. (3.3.13)). More concisely, the GPyTorch library (Gardner et al.,
2018), which we used to implement the Gaussian processes in this work, replaces the
exact Cholesky decomposition with a conjugate gradient descent (for more details on
this numerical choice we refer to the GPyTorch paper by Gardner et al.). We therefore
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obtained warnings of failed convergence during the conjugate gradient descent step.
Additionally we were able to confirm that using exact Cholesky decompositions instead
also lead to numerical errors.

From a practical perspective, we encountered these issues during later stages of the
training process when the GP seemed close to convergence. We further suspect that
this issue is in parts connected to the fact the we consider noise-less data: Indeed, we
do not encounter this problem when adding a high amount of noise to the data, or
raising the lower bound on the learned noise level. Since the Cholesky decomposition
is performed on the covariance matrix of noisy predictions (K + σ2

nI) the added noise
corresponds to an added diagonal jitter on the matrix, which is commonly applied to
help numerical stability by keeping the eigenvalues large enough. However, since we
consider noise-less data the noise level quickly diminishes and converges to the chosen
lower bound of 10−4.
Another consideration is the learned outputscale parameter, which multiplies the

whole kernel matrix by some factor σ2
f . By separating this multiplicative factor from the

squared-exponential function, we could write the covariance matrix of noisy predictions
as (σ2

fK + σ2
nI). Thus, large outputscale parameters σf � 1 effectively inversely scale

the added diagonal matrix, while small outputscale parameters σf � 1 make the added
noise more effective and help numerical stability. Indeed, we were able to overcome
these numerical issues both by raising the lower bound on the noise parameter σn as
well as by introducing an upper bound on the outputscale σf .

Finally, we researched related projects on GP dynamics models and encountered
a hyperparameter penalty term in the original PILCO (Deisenroth and Rasmussen,
2011) implementation1, which contained a signal-to-noise-term of the form

penalty =

 log
(
σf
σn

)
log(1000)

30

. (5.4.1)

Instead of defining upper or lower boundaries on the parameters this term enforces
both terms to be in a specified range of each other. We tried including this penalty as
an additional loss term in the training objective and we found that the term helped to
keep numerically stable values for the noise and outputscale. We chose this approach
over setting stricter limits for the noise or outputscale term. All following experiments
include this penalty as an additional loss term.

5.5 Dynamics-unaware state representation learning
We investigate different variations of auto-encoders and variational auto-encoders and
evaluate their capability of learning low dimensional representations for the high-

1The original PILCO implementation can be found at http://mlg.eng.cam.ac.uk/pilco/.
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dimensional observations. One of our motivations in this experiment is to validate
the chosen network structure regarding its capabilities of inferring meaningful states
from observations as well as in generating meaningful observations from these states.
Additionally we are interested in the learned structure in the latent space and in its
relation to the true physical state space.

Data

Since we do not consider a dynamics model in this task there is no notion of time for the
model. We can combine the observations of the collected sequences into a single dataset
of observations: D = {oi}N ·Ti=1 with oi ∈ R64×64×6. We considered N = 100 rollouts
of length T = 75 on both the Pendulum and CartPole environment for training, and
N = 50 additional rollouts of the same length for validation and testing, respectively.

Model Architecture

We closely followed a model architecture proposed by Ha and Schmidhuber (2018),
shown in Fig. 5.3. In its original work this convolutional neural network was used
to infer latent states from RGB images of size 64× 64 which would then be used by
an internal model of the environment in order to simulate future rollouts or to best
interact with the real environment. Since we consider observations consisting of two
images we modified the input and output layers accordingly.

We further chose the dimension of the bottleneck layer depending on the true physical
dimension of the system. The pendulum environment can be described by the angle
and angular velocity of the pendulum. Due to the common encoding of angles as its sine
and cosine, in order to provide a continuous state space, we chose a three-dimensional
bottleneck layer for the Pendulum environment. Similarly, we chose five dimensions for
the CartPole data, the state of which consists of the position and velocity of the cart,
together with the angle and angular velocity.

We explored different variations of this model, including β-VAEs (see Section 3.2.7)
with varying β (β = [0, 0.1, 1, 10, 100]). Additionally, we compared the VAE to a
standard non-variational deterministic auto-encoder with the same model architecture
but where we omitted the sampling step z ∼ N (µ, σ), and instead chose the mean
z = µ.

Training

For both AEs and VAEs we use the binary cross-entropy (see Eq. (3.2.5)) as recon-
struction loss. For VAEs we include the KL-divergence to the standard Gaussian prior
as an additional loss term, and we scaled it by a factor β to compare β-VAEs (see
Section 3.2.7).
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Figure 5.3: VAE architecture. For the deterministic (that is non-variational) auto-encoder
we omit the sampling step and use z = µ. Original figure by Ha and Schmidhuber
(2018).

We used Adam (Kingma and Ba, 2014) as our optimization algorithm with a learning
rate of η = 10−3. We trained in batches consisting of 1024 observations and stopped the
training after 2000 epochs. With our train/validation/test split of 100/50/50 rollouts
we chose the models according to the lowest loss on the validation data. The presented
results were then obtained by evaluating the models on the held-out test set.

Evaluation and Results

Tables 5.1 and 5.2 show metrics on the reconstruction of observations and regression
from latent codes to the true physical states for the different variants (see Section 5.3).
We further show visualizations of the learned three-dimensional latent space for the
pendulum environment in Fig. 5.4 and Fig. 5.5 for an AE and a VAE, respectively.
Note that these images represent only a single experiment, and that in other ex-

periments the learned representations differ, due to randomness such as a different
parameter initialization or the batch sampling. However the images present char-
acteristic features which we observed in all experiments: Comparing the learned
representations in Fig. 5.4 and the true state space shown in Fig. 5.2 we see that
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the model is able to recover the general structure of the original state manifold but
fails to recover the meaning of the different axes, such that the result is a distorted
version of the original open cylinder. In comparison, the states learned by a VAE
shown in Fig. 5.4 also show signs of this distorted open cylinder, but located and folded
in a way around the origin. This location is likely due to the additional objective
of minimizing the KL-divergence with respect to a standard Gaussian distribution.
Between these two learned representations we opine that for a human observer the
former state representations exhibit a clearer structure. The quantitative results shown
in Table 5.1 suggest that the latent representations learned by AEs allow for better
regression of the true physical states, compared to the representations learned by VAEs.
On the other hand, for the CartPole environment we can not visually inspect the

learned embeddings in the same way and we therefore have to rely more on the
quantitative metrics. The results shown in Table 5.2 differ from those on the Pendulum
environment: VAEs lead to a slightly better regression to the true physical states, but
overall the values are very similar for the AE and for β-VAEs with values β ∈ {1, 0.1, 0}.
However, large values of β lead to both worse reconstructions and worse regressions to
the true physical states.

Method Reconstruction Error Regression Error
VAE 22.43 ± 0.06 0.54 ± 0.13
β-VAE, β=10 26.59 ± 0.32 0.62 ± 0.10
β-VAE, β=100 79.01 ± 0.01 1.17 ± 0.10
β-VAE, β=0.1 22.57 ± 0.28 0.35 ± 0.02
β-VAE, β=0 22.52 ± 0.30 0.39 ± 0.04
AE 22.00 ± 0.1 0.29 ± 0.05

Table 5.1: Test results on the Pendulum environment. “Reconstruction error” refers to a mean-
squared error in image space between the true observations and reconstructions. The
“regression error” is the error between the true physical states and the attempted
regression of these, obtained by a support-vector regression.

Conclusion

We trained both auto-encoders and variational auto-encoders on a standard representa-
tion learning task, given visual observations. The chosen architectures for encoder and
decoder were able to learn latent representations which allow for very good reconstruc-
tions of the observations on the test data. Further, the visualizations of the learned
latent embeddings seem structured and we argue that they can be interpreted from a
human perspective.

For the pendulum environment our experiments show better results for AEs compared
to VAEs, not only on reconstruction of observations but in particular also regarding the
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(a) Epoch 500
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(b) Epoch 3000
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(c) Epoch 9000

Figure 5.4: Learned representations of an auto-encoder for the Pendulum environment, during
different stages of the training. Each point corresponds to the latent representation
of a observation. Note how the angular velocity is not yet well separated at epoch
500, but is easily distinguishable at epoch 3000.
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(b) Epoch 3000
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(c) Epoch 9000

Figure 5.5: Learned representations of a variational auto-encoder for the Pendulum environ-
ment, during different stages of the training. Each point corresponds to the latent
representation of a observation. As in Fig. 5.4 the angular velocity is hard to infer
at epoch 500, whereas epoch 3000 shows it more clearly.
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Method Reconstruction Error Regression Error
VAE 6.12 ± 0.19 0.52 ± 0.02
β-VAE, β=10 10.79 ± 0.33 0.63 ± 0.02
β-VAE, β=100 60.5 ± 0.86 0.75 ± 0.01
β-VAE, β=0.1 5.30 ± 0.47 0.53 ± 0.02
β-VAE, β=0 4.56 ± 0.33 0.54 ± 0.04
AE 4.21 ± 0.40 0.53 ± 0.01

Table 5.2: Test results on the CartPole environment. “Reconstruction error” refers to a mean-
squared error in image space between the true observations and reconstructions. The
“regression error” is the error between the true physical states and the attempted
regression of these, obtained by a support-vector regression.

structure of the learned state representations: In a supervised support-vector regression
(SVR) from the learned state representations to the true physical states we achieve
much lower errors with the representations of standard AEs than with VAEs. We
did not expect this outcome and instead assumed that VAEs would generally provide
better state representations, since general consensus on AEs seems to be that they
tend to produce unstructured latent state representations, whereas VAEs tend to learn
a more structured and coherent latent space. We suspect that this result is due to the
simplicity of the chosen environments, and indeed we do not observe this behavior on
the CartPole environment. Instead, the regression error behaves similar for both AEs
and β-VAEs with small β ≤ 1. We suspect that for even more difficult environments,
with more complex state spaces and more realistic images, VAEs would outperform
AEs.

Overall, unsupervised representation learning seems to work very well for the chosen
environments, and the models are able to recover the general structure of the state
space.

5.6 GP dynamics models on fully observed physical states
In this section we present results of learning dynamics models with Gaussian processes
given the exact physical states of the observed dynamical system. For a thorough
description of the approach and its theoretic foundations we refer to Section 4.2.

Data

The method corresponds to a supervised Gaussian process regression with inputs
(st, at) and targets st+1. We collect the training data by randomly interacting with
the environment, as described in Section 5.2, for N = 15 interaction episodes of length
T = 75, for both the Pendulum and CartPole environment.
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(a) Original images of the
Pendulum environment.

(b) Reconstructions of the
images shown in (a).

(c) Differences between the
original (a) and the
reconstructions (b).

(d) Original images of the
CartPole environment.

(e) Reconstructions of the
images shown in (d).

(f) Differences between the
original (c) and the
reconstructions (d).

Figure 5.6: Visualization of the learned image reconstruction capabilities on both the Pendu-
lum and CartPole environments. We show the original images to be reconstructed
on the left, the reconstruction of the corresponding encoder/decoder pair inthe
middle, and the differences between these two images on the right.

Model

We model each target dimension as an independent Gaussian process, with its covariance
function defined by an RBF kernel with automatic relevance determination. As proposed
in Section 4.2 we chose the identity function as the mean function. Since each target
dimension i is modeled by a separate GP fi this mean is implemented as the projection
along this respective dimension i. Additionally, we used a σf ∼ Γ(1, 5) prior (see
Eq. (3.3.17)) on the outputscales and a li ∼ Γ(2, 0.5) prior on the lengthscales of the RBF
kernel. The resulting model consists of D Gaussian processes fi ∼ GP

(
proji, k

(i)
RBF

)
for dimensions i ∈ {1, . . . , D}, with D = 3 on the pendulum data and D = 5 on the
CartPole data.

Training

We train all hyperparameters of the model with gradient descent using the Adam
optimizer (Kingma and Ba, 2014) and a learning rate of η = 0.1, maximizing the
marginal log-likelihood on the training data set. Additionally we consider the signal-
to-noise penalty term as introduced in Section 5.4. Figure 5.7 shows the evolution of
the training process. Both the marginal log-likelihood as well as the RMSE of the
maximum-likelihood prediction of the next latent state converge quickly, reaching a
plateau after around 150 iterations.

Additionally, Fig. 5.8 shows the evolution of the different GP hyperparameters over
the course of the training. While we should rely on the values of the lengthscales
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in order to rank the importance of different features (Paananen et al., 2017) we can
interpret their convergence or divergence to state if the feature is considered at all.
For both “GP-1” and “GP-2”, which output the cosine and sine of the next angle,
respectively, the cosine and sine of the current angle seem very important. However,
the cosine of the current angle does not seem important in order to predict the next
angular velocity. This corresponds to the true physical setting, gravity influences the
velocity only by the sine of the current angle. Further, the action seems only to be of
importance for the next velocity (“GP-3”) while not influencing the next angle (“GP-1”
and “GP-2”). This is again plausible in the true dynamical system, since the torque
modifies the future velocity while the influence to the change in angle is very small. The
noise converges to the defined lower bound of 10−4 which is expected since we consider
noise-less data. Finally, the outputscale also converges to small values σf ∈ (0.01, 0.1).
However this is due to the signal-to-noise penalty (Eq. (5.4.1)). Indeed, without this
penalty the GPs adopted higher outputscales, but this also lead to numerical issues
during training.
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(b) Means of the prediction losses in latent space
over the specified time horizon.

Figure 5.7: Visualization of the training process of GP dynamics models on the true physical
states of the Pendulum environment.

Results

We evaluate the quality of the resulting model by simulating episodes in the learned
dynamics model. We present the results both qualitatively and quantitatively: Using
the rendering engines of the corresponding OpenAI gym environments (Pendulum-v0
and CartPole-v0) we can visualize the proposed sequences and compare them to the
ground truth, as shown in Fig. 5.10 and Fig. 5.11. We further quantify the losses in
both latent space and image space over the prediction horizon on a test-set of true
sequences, shown in Fig. 5.9. Finally, we provide values on the MLL during training as
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well as on the RMSE on the predicted latent states in Table 5.3.

MLL on train data RMSE on test data
Pendulum 3.43 ± 0.0024 0.007 ± 0.0001
CartPole 3.54 ± 0.0021 0.0013 ± 0.0001

Table 5.3: Results for GP dynamics models trained on true physical states. The MLL
shown is obtained during training, and the RMSE meansures errors for single-step
predictions in latent space on held-out test data.

Conclusion

We learned a Gaussian process dynamics model from 15 sequences of interactions with
a fully observable dynamical system. Both the training and validation losses converge
quickly to a plateau, thus the model seems to generalize well and does not show signs
of over fitting. The mean-square errors of the maximum likelihood predictions in both
latent space and image space decrease as the marginal log-likelihood increases. Visually,
the rendered simulated rollouts seem close to the ground truth, even for prediction
horizons of up to 20 or 30 steps, on CartPole or Pendulum, respectively. For examples
in which the prediction deviates from the ground truth the predicted trajectory still
seems physically reasonable. The model is sample efficient, converges fast, and provides
accurate predicitons.

57



Chapter 5 Experiments

0 100 200 300

Iteration

0

5

10

15

(a) Lengthscales on cos(θ).

0 100 200 300

Iteration

1

2

3

(b) Lengthscales on sin(θ).

0 100 200 300

Iteration

2.5

5.0

7.5

(c) Lengthscales on θ̇.

0 100 200 300

Iteration

5

10

(d) Lengthscales on the ac-
tion.

0 100 200 300

Iteration

0.0

0.2

0.4

0.6

(e) Outputscales.

0 100 200 300

Iteration

0.0

0.2

0.4

0.6 GP-1

GP-2

GP-3

(f) Noise.

Figure 5.8: Hyperparameter evolution of GP dynamics models trained on the true physical
states of the Pendulum environment. The colors denote the different Gaussian
processes for each output dimension, respectively, as declared in the legend shown
in Fig. 5.8f.
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Figure 5.9: Errors of predicted latent states and observations over the prediction horizon.
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Figure 5.10: Example rollouts from a GP dynamics model in the Pendulum environment.
The GP dynamics model recieves the initial physical state at time t = 0 together
with a sequence of actions a0:29 and generates a sequencec of states s1:30. We
then decode these predicted true physical states using the true original renderer
of the OpenAI gym environment.
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Figure 5.11: Example rollouts from a GP dynamics model in the CartPole environment. We
proceed as in Fig. 5.10 and predict future states from an initial state and an
action sequence with the learned GP dynamics model. The shown observations
are generated with the true renderer of the CartPole environment.
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5.7 Learning System Dynamics from Visual Input

In the following we present the main results of this thesis: We learn latent GP dynamics
models from visual observations. We start with the simplified approach of first learning
state representations with AEs or VAEs, unaware of a transition model, on which we
then fit a GP dynamics model. We then jointly learn the latent representations and
the latent transition model, as proposed in Section 4.3. We compare the results to the
previous models and discuss benefits and shortcomings of the proposed method.

5.7.1 GP dynamics models on pre-trained dynamics-unaware embeddings

We follow the two-stage training approach as described in Section 4.5.

First stage: Learning state representations

In the first stage we learn state representations in an unsupervised way with an
auto-encoder. This corresponds exactly to the setting we investigated in Section 5.5.
We therefore reuse the presented models and results, choosing a deterministic auto-
encoder for the Pendulum environment and a variational auto-encoder for the CartPole
environment, respectively.
The models are trained on N = 100 rollouts of length T = 75, minimizing the

respective training objective using the Adam optimizer (Kingma and Ba, 2014) with a
learning rate of η = 0.001. For more details, such as regarding the architecture, the
exact training objectives, or model selection, we refer to Section 5.5.

Second stage: Learning latent GP dynamics

In the second stage we learn a Gaussian process dynamics on the learned, but fixed,
state representations. This step essentially corresponds to learning a Gaussian process
dynamics model on physical states, as introduced in Section 4.2. In order to learn
this dynamics model we can proceed as in Section 5.6 while considering learned state
representations ŝt = g−1(ot) instead of the true physical states st given by the fixed
encoder g−1.
The model specifications follow those in Section 5.6. We use N = 15 randomly

selected rollouts of length T = 75 to learn the hyperparameters of the GP dynamics
model, by minimizing the marginal log-likelihood of the transitions in latent space
using the Adam algorithm (Kingma and Ba, 2014) with a learning rate of η = 0.1.

We trained the GP dynamics model for 500 epochs. Figure 5.12 shows the evolution
of the GP training process. Both the marginal log-likelihood on the training data as
well as the RMSE between the maximum-likelihood prediction and the true latent
transition on the validation set converge after ~100 iterations. Since the validation loss
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does not increase during this extended training period the model does not seem to
overfit.
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Figure 5.12: Evolution of errors during the training process. The left plot (a) shows the
MLL over both the training and validation set which both converge after ∼ 100
iterations and show no sign of overfitting. On the right plot (b) we present
RMSEs of the latent predictions of the dynamics model against the true latent
states, for different prediction horizons.

Evaluation and results

The learned state representations correspond to those presented and evaluated in
Section 5.5. Further, since these representations are fixed for this experiment, we can
evaluate the GP dynamics model very similarly to our evaluation of the GP dynamics
models on true physical inputs in Section 5.6.
We evaluate the learned dynamics model both qualitatively and quantitatively in

latent and image space, using the fixed decoder to generate images from latent states.
Figures 5.13 and 5.14, show example sequences generated from the learned dynamics
model, for the Pendulum and CartPole environment, respecitvely. Figure 5.15 visualizes
errors in latent space and image space over the prediction horizon. We remind the
reader that the errors in state space can not directly be compared, since the latent
representations are learned by the model and their scale might be very different to
the true physical states. The losses in image space on the other hand can be directly
compared.
The GP dynamics model on true physical states seems to provide smaller errors in

the predicted observations. This difference can to some degree be attributed to the fact
that the model uses a decoder for image generation, instead of having access to the
true renderer, but we believe that a large part of this difference is due to the transition
model. Looking specifically at the loss curves for CartPole, we see that both methods
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start with a similar error, thus indicating near-perfect decoding since for a single-step
prediction the changes in state space are minimal. With increasing prediction horizon
the inaccuracies increase much more rapidly for the GP dynamics model on learned
state representations, indicating a less exact transition model.
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Ground Truth

Model

Figure 5.13: Simulated sequences on the Pendulum environment, predicted from the GP
dynamics model trained on dynamics-unaware latent state embeddings. In all
three examples the model has only access to the initial observation at timestep
t = 0. We infer a latent state with the learned encoder and, given a random set
of actions, generate a sequence of latent states. We can then use the learned
decoder to infer observations from these latent states for each time step t which
we can then compare to the ground-truth observations.
In the first example we show very accurate predictions which coincide well with
the ground truth even for larger time horizons. Both the second and third
example show more inaccuracies, after around 20 and 10 steps, respectively.
Afterwards the predicted observations deviate from the ground truth, but the
predicted trajectory still seems physically plausible.

Conclusion

We trained a Gaussian process dynamics model on learned, but fixed, latent state
representations. The training loss converges quickly while the validation loss does not
increase, indicating that the model does not overfit. The decoded simulated rollouts
appear to be physically reasonable for both the Pendulum and CartPole environment,
but they seem to become less accurate for larger prediction horizons in comparison
to GP dynamics models on the true physical states (as presented in Section 5.6). We
confirm this difference quantitatively (Fig. 5.15) and we argue that a large part of this
difference should not be attributed to the imperfect decoder but to inaccuracies in the
transition model itself.
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Figure 5.14: As in Fig. 5.13 we infer an initial latent state from the initial observation with the
decoder, and then generate sequences of states withgiven actions and the learned
dynamics model. We present both the ground-truth observations together with
the decoded predicted states.
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Figure 5.15: Errors of predicted latent states and visual observations over the prediction
horizon. The continuous line shows the obtained results with the GP dynamics
model on dynamics-unaware emebddings and the dashed line shows the previous
results of a GP dynamics model on the true physical states, as presented in
Fig. 5.9. We show results for both the Pendulum environment in blue and
CartPole in orange.
Note that the learned dynamics-unaware latent states and the true physical
states do not live in the same space or scale. The left plot should therefore not
be overly interpreted in order to judge model quality, but serves to compare the
performance of a single model over different time horizons, as well as to relate
the errors in latent space to the errors in the predicted observations.
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We highlight that both transition models use the same approach, modeling system
dynamics with a separate Gaussian process for each dimension, and both models are
trained with the same training procedure on a comparable amount of training data.
The differences in performance should therefore be attributed to the learned state
representations, which seem to be less beneficial for GP dynamics models, compared
to the true physical states. This realization motivates the proposed method and the
next experiments: A joint training schedule might enforce a more helpful structure in
the latent representation.

5.7.2 Joint training of GP dynamics models and latent state embeddings
We present latent GP dynamics models, jointly trained with the encoder and decoder
on the MLL-based training objective which we derived in Section 4.4.2. For a thorough
motivation and definition of the method we refer to Section 4.3.

Model Architecture

The encoder/decoder pair follows the previous architecture as specified in Section 5.5,
consisting of a convolutional neural network for the encoder and a deconvolutional
network to generate images from latent states. See also Fig. 5.3 for an illustration of the
architecture. We again chose the latent space to be three-dimensional on the Pendulum
environment and five-dimensional on CartPole. For both the Pendulum environment
and the CartPole environment we chose a regular deterministic auto-encoder.
Similarly, the Gaussian process dynamics model is as previously specified in Sec-

tions 4.2 and 5.6. We model each dimension of the predicted latent state with an
independent Gaussian process, using an an RBF kernel with automatic relevance
determination. We chose σf ∼ Γ(1, 5) (see Eq. (3.3.17)) as the prior distribution of the
outputscales and li ∼ Γ(2, 0.5) for the lengthscales.

Data

During our development and experimentation we explored a vast number of config-
urations regarding the used training data. The O(n3) scaling of Gaussian processes
with the number of inputs sets an upper bound on the amount of training data we can
use for full-batch training. The proposed mini-batch training approach (Section 4.4.2)
circumvents this issue and enables us to include larger amounts of data to increase the
diversity of visual observations for the encoder and decoder, while keeping a smaller
amount of data in the GP evidence. We generally observed that using a larger dataset
together with the mini-batch training lead to increased performance of the resulting
model. This was especially notable in the more complex CartPole environment. The
final results we report were obtained with a training dataset consisting of 500 sequences,
each with 30 transitions, for both the Pendulum and CartPole environment. We
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additionally used 50 sequences for validation, as well as 50 sequences as held-out test
data.

We also considered an additional hyperparameter which is common in reinforcement
learning: Action repeat. Explained with an example, an action repeat value of 5 means
that we apply the chosen action 5 times before collecting the next observation, while
summing all intermediate rewards. This effectively corresponds to downsampling the
temporal dimension and the resolution of the collected data gets more coarse. An
increased action repeat reduces the planning horizon of the transition model and makes
long-term predictions easier, while at the same time increasing the influence of the
chosen action on the resulting transition and trajectory, which supports model learning
(Mnih et al., 2016, 2015). During our exploration phase we found action repeat to be
influential for the resulting model, regarding the training, the learned embeddings, and
overall performance. Notably, Hafner et al. (2019) report action repeat as an important
hyperparameter in PlaNet. On the Pendulum environment we achieved good results
with the default action repeat of 1, but we chose an action repeat of 3 on CartPole.

Training

We jointly train encoder, decoder, and the hyperparameters of the GP dynamics model
on the MLL-based training objective as derived in Section 4.4.2. We apply the proposed
mini-batch training scheme as motivated in Section 4.4.2, allowing the encoder/decoder
pair to experience a larger variety of observations while keeping a constant complexity
for the GP. We fixed the number of data points in the GP evidence to 2000 transitions,
and we chose batch sizes of 512 and 2000 for the Pendulum and CartPole, respectively.

We optimize the training objective with the Adam algorithm (Kingma and Ba, 2014).
We chose a learning rate of η = 10−3 for the encoder/decoder pair, and we use a
learning rate schedule for the GP dynamics model to smoothly transition from a low
initial learning rate of η0 = 10−5 to a high goal learning rate of η∗ = 0.05. In the
following we motivate such a learning rate schedule and we define the chosen function.
During early iterations of the training the latent codes are not yet very structured and
they might resemble noise. However, we do not want the GP to fit its hyperparameters
in a way to explain everything with the learned noise, since we might not be able to
get out of this local optimum in later stages when latents are more structured. On the
other hand, earlier experiments have shown that GP dynamics models can be learned
with relatively high learning rates, such as η = 0.1, and we observed that smaller
choices significantly increase the required time for convergence. We therefore chose a
learning rate schedule to transition from a very low initial learning rate η0 = 10−5 to a
high goal learning rate η∗ = 0.05. In order to get an almost exponential initial growth,
together with a smooth transition to the goal learning rate, we chose to model this
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transition with a logistic function of the form

η(t) = η∗ · η0
η0 + (η∗ − η0) · e−η∗kt , (5.7.1)

where k is defined such that we can set the turning point in the logistic function to a
chosen epoch E, which leads to k := log( S

a−1 )
E∗S . With this choice we achieve a learning

rate of η(E) = η∗−η0
2 ≈ η∗

2 at the chosen turning epoch E, and we have η(2E) ≈ η∗.
Figure 5.16 shows this learning-rate schedule for η0 = 10−5, η∗ = 0.05 and E = 1000
both on a standard and logarithmic scale.
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Figure 5.16: Learning rate schedule, shown both with a normal y-axis on the left and with a
logarithmic y-axis on the right to show the early exponential growth.

Finally, we trained the model for 3000 and 5000 epochs, on Pendulum and CartPole,
respectively. The models for which we report the results were chosen as the models
with lowest loss on the validation data.

Evaluation and Results

We start by evaluating the results on the Pendulum environment. Figure 5.17 shows
the learned latent space. Comparing these representations with the true physical
state space shown in Fig. 5.2 the model seems to recover the original structure of the
state space very well. In contrast with previously learned latent space manifolds (see
Section 5.5) there do not seem to be large distortions, folds, or twists, and instead it
can be clearly seen as a rotated and scaled version of the original open cylinder.
To better visualize the training process we visualize the GP hyperparameters in

Fig. 5.18. We can not directly interpret the shown values, or even the separate GPs
for the different output dimensions, since the latent state is not interpretable. By
the rotation of the state manifold the different coordinates are entangled, and each
dimension contains, to some degree, information on the sine and cosine of the pole
angle and on the angular velocity. However, looking at the latent space more precisely
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Figure 5.17: Learned representations on the Pendulum environment. This looks very similar
compared to the true physical state space, shown in Fig. 5.2. The model seems
to recover the original structure of the latent space up to rotation and scaling.

it seems that for example the second dimension z2 correlates more strongly with the
angular velocity. Additionally, the final value of the action lengthscales (Fig. 5.18d) is
lowest for “GP-2”, which predicts z2, and higher for the other dimensions. We already
observed a similar behavior for GP dynamics models on true physical states (Fig. 5.8).
Finally, no observed lengthscale value seems to diverge during the training.
We show example sequences generated from the learned dynamics model, for the

Pendulum environment, in Fig. 5.19. Figure 5.20 shows a quantitative evaluation of
the losses in both latent and image space and includes a comparison to GP dynamics
models on physical states (see Section 5.6) and on pre-trained dynamics-unaware states
(see Section 5.7.1). We remind the reader that the errors in state space can not directly
be compared, since the latent representations are learned by the model and their scale
might be very different to the true physical states. The losses in image space on the
other hand can be directly compared.

We see large improvements for the Pendulum environments, for both short-term and
long-term predictions. The initial predictions almost matches those of the physical
dynamics model, and we are able to predict up to 10 steps before reaching the single-step
error of the GP on dynamics-unaware embeddings. This generally shows a very large
improvement over the previous results. However, the difference to the true physical
states still seems significant, especially for larger prediction horizons. We were not
able to produce similar results on CartPole. The rollouts shown in Fig. 5.21 seem
physically plausible, but the quantitative evaluation (Fig. 5.20) shows that we could not
significantly outperform the previously presented GP dynamics model on pre-trained
dynamics-unaware embeddings.
During our development and experimentation we tried many different settings,

regarding the data, training schedule, and even the model, but we found it very difficult
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to obtain good results for CartPole. These findings motivate both a more exhaustive
experimentation, as well as changes and improvements to the proposed method, which
could be an interesting topic for future work. We discuss some ideas for modifications
of the training schedule and objective in the context of control following section.

Training Stability

Another shortcoming we discovered is the instability of the training, and we found it
difficult to recreate results. To better visualize this statement we refer to Fig. 5.22,
which shows the mean-squared error of one-step predictions in image space over the
training iterations, for 8 different training runs. The plot contains very stable runs with
low errors, such as those shown in brown, green, and orange, but also runs that oscillate
around a mean error which is an order of magnitude higher. Then, we chose the
training iteration with the lowest validation loss for each of those runs and computed
their loss for different training horizons. Figure 5.23 shows the aggregation of these
losses after applying a logarithmic scaling, and includes comparisons to GP dynamics
models on both fixed pre-trained latent states, as well as on physical states. The “min”
line roughly corresponds to the presented main results, outperforming the separately
trained model. However, if we consider the mean over these 8 runs we match the
predictive performance in image space of the separate model after already 5 steps.

Conclusion

The proposed method shows a very strong performance on the pendulum environment.
It recovered the structure of the true physical state space up to scaling and rotation
and and significantly outperforms the separately trained model. However, we were not
able to extend these results to the CartPole environment. While the added complexity
in image and state space seem to be difficult to learn, the issue could also be linked
to a general instability of the method. We found it difficult to recreate results and
observed a large variance when training multiple runs with the same settings. These
issues might provide interesting starting points for future research.
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Figure 5.18: Hyperparameter evolution during the training. The colors denote the different
Gaussian processes for each output dimension, respectively, as declared in the
legend shown in Fig. 5.18f.
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Figure 5.19: Simulated sequences on the Pendulum environment, predicted with jointly
trained model. In all three examples the model has only access to the initial
observation at timestep t = 0. We infer a latent state with the learned encoder
and, given a random set of actions, generate a sequence of latent states. We can
then use the learned decoder to infer observations from these latent states for
each time step t which we can then compare to the ground-truth observations.
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Figure 5.20: Errors of predicted latent states and visual observations over the prediction
horizon. The continuous lines show the obtained results with the jointly trained
latent GP dynamics model. The dash-dotted line shows the previous results of
a GP dynamics model on dynamics-unaware emebddings and the dashed line
shows results of a GP dynamics model on the true physical states. We show
results for both the Pendulum environment in blue and CartPole in orange.
Note that the learned dynamics-unaware latent states and the true physical
states do not live in the same space or scale. The left plot should therefore not
be overly interpreted in order to judge model quality, but serves to compare the
performance of a single model over different time horizons, as well as to relate
the errors in latent space to the errors in the predicted observations.
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Figure 5.21: Simulated sequences on the CartPole environment, predicted with jointly trained
model. Note that the model was trained with an action repeat of 3. The shown
30-step predictions thus effectively correspond to 10 recursive predictions of the
learned dynamics model.
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Figure 5.22: Mean-squared errors of 1-step prediction in image space over the course of the
training for 8 separate runs with the same specifications. The plot contains very
stable runs with low errors, such as those shown in brown, green, and orange,
but also runs that oscillate around a mean error which is higher by an order of
magnitude. This visualizes an unstable training and low reproducibility.
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Figure 5.23: Errors of predicted latent states and visual observations over the prediction
horizon. This plot is very similar to Fig. 5.20 but includes the variance of
multiple training runs with the same specification, visualized with mean and
standard deviation, as well as by the minimum and maximum values. Note that
the standard deviation was computed and visualized in logarithmic scale.
The dashed line corresponding to the minimum value roughly corresponds to the
presented main results, outperforming the separately trained model. However,
the mean matches the predictive performance in image space of the separate
model after already 5 steps.
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5.8 Control

We apply the previously trained models to specific tasks in the considered environments,
notably a swing-up task in the Pendulum environment and a pole balancing task in
the CartPole environment. For more information on the environments or the tasks see
Section 5.1.
Actions are chosen by planning in the learned latent space with the cross-entropy

method as described in Section 4.7, while using the learned GP dynamics model to
generate state sequences given an initial observation and a sequence of actions. In order
to evaluate the proposed trajectories we learn a reward-model p(rt|st, at), parametrized
by a neural network. We train the network on a set of training data, consisting of
sequences of observations, actions, and rewards. Latent states are inferred using the
trained encoder. We visualize the planning and show successful results in the Pendulum
environment, confirming that the learned dynamics models can serve for planning in
latent space.

Reward model

We consider collected episodes D =
{{

(oit, ait, rit)
}T
t=1

}N
i=1

, including the true rewards rit.
We want to learn a reward model r ∼ p(r|s, a), where the latent state s is inferred by
the fixed encoder p(s|o). We model the reward function with a standard feed forward
neural network, with states and actions as inputs and the estimated scalar reward as
output. Since we consider a fixed encoder this corresponds to a standard supervised
regression task and we train the neural network to minimize the mean-squared error
between the predicted reward and the true reward.

The chosen architecture consists of two fully connected layers of size 100 with ReLU
activations, as well as a fully connected layer to the single scalar output without
activation function. We use 20% of the available data as validation data and stop
the training once the validation loss increases for 5 subsequent epochs. Finally, we
choose Adam (Kingma and Ba, 2014) as the optimization algorithm. The resulting
reward landscape for the pendulum task can be seen in Fig. 5.24. Figure 5.25 shows the
equivalent visualization for the CartPole environment, but due to the 5-dimensional
latent space we can only visualize projections to a selection of three of the dimensions.

Planning

For planning we use the CEM (see Section 4.7) with a planning horizon of H = 20,
I = 10 optimization iterations, J = 10000 candidate samples, and we refit the belief to
the best K = 100 candidates.
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Figure 5.24: Rewards in the learned latent space for the pendulum task, using the learned
model from Section 5.7.2. The differences (plot to the right) are visualized in
logarithmic scale and are bounded below by 10−4.

Results

Both learned reward models as shown in Fig. 5.24 and Fig. 5.25 seem reasonable. They
show the same general structure as the true rewards, and the visualized differences
show low values and do not reveal any structure in the residuals.

We were able to solve the swing-up task in the Pendulum environment. Figure 5.26b
visualizes the resulting sequence. Note that the two preparatory swings which the
agent performs are necessary in order to solve the task, since it first needs to gain
sufficient momentum before being able to do the full swing-up movement. It is also not
possible to achieve a swing-up with a lower number of preparatory swings. Figure 5.26a
shows the latent state representations with both the candidates proposed by the CEM
planner, as well as the actual traversed trajectory. The planned trajectory seems to
correspond closely to the actual trajectory. Note that it is necessary in the pendulum
environment to perform at least two preparatory swings in order to gain momentum
before being able to do the full swing-up movement. Table 5.4 shows collected reward
values over a sequence of 100 steps. We include a comparison to an agent which has
access to the true physical states and who is given the same amount of evidence data.
This agent is able to slightly outperform our proposed method.

Method Reward
GP dynamics on visual observations -348.91
GP dynamics on physical states -335.68

Table 5.4: Collected return for the swing-up task in the Pendulum environment, over 100
steps.

We were not able to produce successful results for the CartPole environment. This
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Figure 5.25: Visualization of the learned reward model for the CartPole task. The latent
representations are learned as specified in Section 5.7.2, the model corresponds
to the selected model for which we reported the results. Each row corresponds
to a different projection to a selection of three of the five dimensions. From
top to bottom we have (1, 2, 3), (2, 3, 4), and (3, 4, 5). The left column shows
the true rewards obtained by interacting with the environment. The middle
column shows the reward values predicted by the learned reward model. We
present differences between these two values in the right column, visualized in
logarithmic scale and bounded below by 10−4.
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might be due to a number of factors. The reward model shown in Fig. 5.25 seems to
show higher errors in comparison with the Pendulum reward model (see Fig. 5.24), but
since it still captures the general structure of the reward distribution we suspect that
this is not the driving factor for the failure. On the other hand, the corresponding
dynamics model as presented in Section 5.7.2 did not show as good predictions as
we were able to obtain on the Pendulum, thus the learned model is likely to be less
accurate. Another consideration is in the balancing task itself. In order to solve the
task it would already be sufficient to only have accurate dynamics around the starting
state, with the cart close to the middle position and an upright pole, together with a
sufficiently exact reward model which guides the agent towards the optimal state. This
however is a very different requirement to the general goal of learning system dynamics
which we considered during the training of the model. The provided dataset might
not be fine-grained enough around the optimal state to allow for concise control. This
effect might be increased by our choice to apply action repeat. The more diverse data
and stronger influence of the chosen action seemed to be beneficial to learn a general
dynamics model, but the resulting data might badly reflect the balancing task. A good
balancing trajectory would show only very little movement between each time step. It
might therefore be beneficial, or even necessary, to train the full model directly in a
way to solve the specified task, for example in a similar training scheme as done in
PILCO (Deisenroth and Rasmussen, 2011) or PlaNet (Hafner et al., 2019).

Conclusion

We have shown successful results on the Pendulum environment, confirming that the
proposed state representations and dynamics model allow for good reward models
and accurate planning in latent space. The agent was able to find a close to optimal
trajectory, using the minimal number of preparatory swings the environment allows,
before performing the swing-up.
We were not able to extend these results to the CartPole environment. This might

be due to an inferior reward model, dynamics model, or encoder, but we suspect
that the proposed training approach might also not be beneficial for good balancing
performance. A different training scheme which includes the considered task, such
as the schemes used in PILCO (Deisenroth and Rasmussen, 2011) or PlaNet (Hafner
et al., 2019), might alleviate or solve even this issue. This would be an interesting topic
for future work.
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(a) Planning visualization with a planning horizon of 20 steps. For the corresponding pendulum
states see Fig. 5.26b.

(b) Rollout corresponding to Fig. 5.26a, at time steps t ∈ {0, 2, . . . , 78}.

Figure 5.26
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(a) Planning and trajectory in latent space, showing only dimensions 3, 4, 5. The planned
trajectories are barely visible, which is expected for the balancing task since the state is
not supposed to change much in order to maximize reward. However, the model fails to
balance the pole and the actual trajectory shown as the line in black moves away from the
high-reward region. For the corresponding cartpole observations see Fig. 5.27b.

(b) Rollout corresponding to Fig. 5.27a, at time steps t ∈ {1, 4, . . . , 97}.
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5.9 Transfer to previously unseen physical properties

Gaussian processes dynamics models have been shown to be very data efficient (Deisen-
roth and Rasmussen, 2011). We were so far not able to extend this data efficiency
to the proposed model, since the neural networks of the encoder and decoder benefit
from large training data. However, we found interesting settings in which we can make
use of the data-efficiency of Gaussian processes: We can transfer to modified system
dynamics while requiring only very little additional training data. In such scenarios the
visual properties of the observed environment do not change, thus we can continue to
use the encoder for state inference, but the transitions could be very different to those
on which the model was originally trained. We found that by using a small number of
rollouts collected in the modified environment as new evidence in the GP dynamics
model we obtain accurate predictions, allowing for accurate planning in the modified
environment.
Examples for changes of physical properties could be the addition of a friction

coefficient, or modifications of masses. We present examples for a modified Pendulum
environment in which we decreased the pole mass from 1 to 0.2. The environment thus
effectively becomes easier and it can be solved directly without any preparatory swings
to the sides to gather momentum. Figure 5.28 shows the plan and actual trajectory
of an agent with an unchanged dynamics model, trained on the original Pendulum
environment with default mass. The shown plan accurately corresponds to actual
trajectories in the original environment (see Fig. 5.26a), but it deviates strongly from
the actual trajectory. The actual trajectory is still very efficient and the agent lifted
the Pendulum without any swings, but this is largely due to MPC. By re-planning at
every time step it continues to apply a large torque in order to gather more momentum,
until it eventually suffices in order to reach the upright position. It can still be seen
that the environment is unfamiliar to the agent and the sharp spikes in the trajectory
show overly large applied actions.

On the other hand, Fig. 5.28 shows the plan and actual trajectory of an agent with a
modified dynamics model. This model has access to 30 rollouts in the new environment,
each of length 30, collected by randomly interacting with the environment in the same
way as in previous experiments (see also Section 5.2). Encoder, decoder and GP of
this model were trained on the original Pendulum environment, corresponding to the
results presented in Section 5.7.2, but the evidence in the GP dynamics model now
contains the transitions in the new environment. The updated dynamics model seems
to accurately predict transitions since the shown plan matches the actual trajectory
much more closely. It also does not show the previously observed spikes and the
applied torques are smaller, indicating a better understanding of the physics of the
environment.

The chosen example allows for successful solutions of the task for both the original
and the updated model, but it visualized the differences of both dynamics models well.
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Another simple modification would be an inversion of the applied torque, by a simple
change in the sign of the action. This completely prevents the original model from
solving the task, and results in always applying the wrong action, such that the pole
points downwards with small oscillations. The modified dynamics model learns the
dynamics with inverted action and has no added difficulty for solving the task.

There are many possibilities to come up with other modifications of mass and friction
which might prevent agents with the original dynamics model from solving the task
while leading to solutions with updated dynamics, but all of these examples come down
to exploiting a certain inaccuracy in the planned trajectories. We believe that the
presented data-efficiency with regards to dynamics shows an interesting property of the
proposed latent GP dynamics model, and it demonstrates an advantage over models
consisting purely of neural networks.
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(a) Planned trajectory for a 50 step planning horizon of a model trained on the original
Pendulum environment with standard pole mass. The larger planning horizon is
motivated purely by visualization purposes in order to show the learned dynamics,
and the planned trajectory is in line with the observed trajectories in Section 5.8.
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(b) Actual trajectory after 50 steps. The planning and control is done as described in
Sections 4.7 and 5.8, but the environment is modified with a decreased pole mass.

Figure 5.28: Visualization of the planning of a model trained on the standard Pendulum
environment as specified in Section 5.1. The planned trajectory differs vastly
from the actual trajectory. The agent still manages to find an efficient trajectory
in order to solve the task, but this is largely due to the MPC algorithm which
allows the agent to plan again after each applied action. The sharp corners in
the actual trajectory show that the agent applies overly large torques, showing
that it overestimates the mass of the pole.
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(a) Planned trajectory for a 20 step planning horizon of a model trained on the modified
Pendulum environment with decreased pole mass.
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(b) Actual trajectory after 50 steps, with planning and control as described in Sections 4.7
and 5.8.

Figure 5.29: Visualization of the planning of a model trained on the modified Pendulum
environment with decreased pole width, together with the actual resulting
trajectory after 50 steps. The planned trajectory is accurate and clearly shows
how the learned dynamics differ from those in the default Pendulum environment,
which can be seen in Fig. 5.28a. In comparison, the trajectory does not show
sharp corners since the applied actions are much smaller, showing more accurate
control over the pendulum and a better estimation of the effect of the chosen
actions.
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Conclusion

We learn latent Gaussian process dynamics models from visual observations. The
underlying physical states of the observed dynamical system might be concise and
low-dimensional, but in our considered problem setting we do not have access to these
states and instead only obtain high-dimensional observations, such as images. Our
proposed model combines neural networks with Gaussian processes to model system
dynamics in a learned low-dimensional latent space. The novelty of the proposed
approach does not lie in the individual components: Gaussian process dynamics models
are known to allow for very data-efficient learning of dynamical systems and show
desirable properties such as accurate uncertainty estimation, and both auto-encoders
and variational auto-encoders have been used for state representation learning. However,
to the best of our knowledge, Gaussian processes have not previously been combined
with neural networks to learn state representations and latent dynamics models.

We derive a lower bound on the likelihood of transitions in image space to train all
parts of the proposed model jointly on this objective. We also motivate a subset-of-data
approximation for the marginal log-likelihood of the Gaussian process. This allows us
to provide more training data to the neural network while keeping the computational
cost for the Gaussian process constant. In addition to our proposed model, we present
a simplified version in which state representations are learned independently from
the system dynamics. We evaluate both approaches on two environments of different
complexity, Pendulum and CartPole, and compare our results to a Gaussian process
dynamics model on the true physical states.
The separately trained model is able to produce seemingly physically reasonable

predictions in both environments. For larger prediction horizons we observe inaccuracies
and the model is outperformed by the physical Gaussian process dynamics model. A
difference in performance is generally to be expected, since the decoder performs worse
than the true rendering engine, but we argue that the difference is also due to the
learned dynamics model. However, the Gaussian processes themselves are trained with
exactly the same specifications, with the same training scheme and on the same amount
of data. The different performance is therefore to be attributed in large parts to the
latent state representations, and it seems that the learned representation is inferior
to the true physical states for learning GP dynamics models. This provides further
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motivation for a joint training of both the dynamics and the state representations.
Our proposed method, trained jointly on the derived training objective, is able to

outperform the simplified model on the Pendulum environment. The predicted obser-
vations show much smaller errors over larger prediction horizons. 10-step predictions
of the joint model are more accurate than 1-step predictions of the separately trained
model. The auto-encoder even recovers the structure of the true physical state space,
up to scaling and rotation. However, we find the training to be very unstable and
we had difficulties to reproduce results during experimentation and development. We
also did not manage to outperform the separately trained model on CartPole and only
achieved to match the previous performance.

Finally, we use the trained model for planning and control. We train a reward model
on the learned state representations and use it together with the transition model to
plan in the low-dimensional latent space. This allows for accurate planning in the
Pendulum environment and the agent is able to find a close to optimal trajectory for the
swing-up task. We were again not able to extend these results to a pole balancing task in
the CartPole environment. However, we can leverage the data-efficiency of the Gaussian
process dynamics model in order to plan accurately in environments with modified
physical properties, such as modified masses or frictions, without additional training
and with only little additional experience collection. We compare the model with
updated experience to an unchanged model, trained on the original system dynamics,
in a modified Pendulum environment with reduced pole mass. While the unchanged
model predicts trajectories according to the original physical properties, the planned
trajectories of the updated model correspond more closely to the actual sequence,
obtained during execution.
The different performance on Pendulum and CartPole, both for learning system

dynamics and for control, shows limitations of our proposed method. CartPole is a
more complex dynamical system with a higher state dimensionality, and we therefore
require significantly more data to obtain similar information about the dynamical
system as in the Pendulum environment. To enable larger datasets we propose a
subset-of-data approximation, but we believe that this aspect of our method can be
further improved. Scaling Gaussian processes to big data is an active field of research
and there are a variety of approaches, many of which include sparse approximations
of the kernel matrix. We believe that approaches which combine Gaussian process
approximations with stochastic variational inference could be especially interesting for
future improvements. Such approaches allow for optimization with stochastic gradient
descent, which is commonly considered to be beneficial for neural networks.

Instead of increasing the amount of data, we believe that control performance could
also be improved with an active learning approach. By following the current best
policy for data collection the model receives trajectories which are likely to be of more
interest than randomly selected trajectories. For example, the pole-balancing task on
CartPole requires very fine-grained control and the optimal trajectory does not show
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much movement, but a random policy will lead to very different trajectories with lots
of movement and cover states which are far away from the optimal state. Notably,
related methods such as PILCO and PlaNet both use training schemes in which data
is collected during training according to the current policy. Additionally, training
the reward model jointly with the rest of the dynamics model provides an additional
learning signal and might lead to better state representations.

Finally, we believe that we could further improve our method by making better use of
the uncertainty of the Gaussian process dynamics model. Sensible uncertainty estimates
are indeed a large advantage of Gaussian processes over neural networks, and approaches
to Gaussian process dynamics models, such as PILCO, often use moment-matching to
propagate uncertainties through the recursive multi-step predictions. However, due to
computational limitations we were not able to apply moment matching and instead
propagated only the predicted mean, leading to overconfident uncertainty estimates of
the transitions. One approach to overcome this issue might be to propagate uncertainties
through Monte-Carlo sampling. Alternatively, sparse Gaussian process approximations
might lead to different computational requirements for moment-matching and could
therefore be of additional interest. Together with improved uncertainty estimates, a
final suggestion for future research might be the inclusion of multi-step predictions
into the training objective. Previous results in literature have shown benefits of such
approaches for both neural networks and Gaussian process models.
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