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Abstract
Global optimization is a very important research area due to its large range of ap-
plications in many real-world problems in science and engineering. In recent years,
evolutionary and swarm principles have been widely researched for intelligent optimiza-
tion algorithms. In this thesis we propose a new global optimization method based on
spatially inhomogeneous evolutionary games.

We review the corresponding theoretical results on well-posedness of the underlying
differential equations and present the required measure theoretic preliminaries. In
order to improve the application of the model to the problem of global optimization,
we propose to adapt the dynamics to reflect the objective value of each player. The
resulting ordinary differential equation is well-posed and we show the existence and
uniqueness of its Lagrangian solution under compactness assumptions on the initial
population.

Finally, we present the numerical results. Our optimization algorithm successfully
minimized different non-convex functions in a range of scenarios and even shows
exponential convergence. We discuss the observed behavior and analyze specific
situations. Finally, we compare our algorithm to another consensus-based optimization
method and explain the respective limits and strengths.

Zusammenfassung
Globale Optimierung ist ein überaus wichtiges Forschungsgebiet mit unzähligen An-
wendungsmöglichkeiten. In den letzten Jahren wurden in diesem Feld unter anderem
auch evolutionäre Prinzipien und Schwarmsimulationen genauer untersucht. Aufbauend
auf räumlich inhomogener Spieltheorie stellen wir in dieser Arbeit eine neue globale
Optimierungsmethode vor.

Wir wiederholen die theoretischen Ergebnisse zu den zugrundeliegenden Differential-
gleichungen und erklären die notwendigen Grundlagen aus der Maßtheorie. Um das
Modell besser auf globale Optimierungsprobleme anwenden zu können, schlagen wir
eine Änderung der Replikatorgleichungen vor. Das daraus hervorgehende Problem ist
gut gestellt. Mit Hilfe einer Kompaktheitsannahme an die Anfangsbevölkerung beweisen
wir daraufhin die Existenz und Eindeutigkeit der zugehörigen Langrange-Lösungen.

Anschließend zeigen wir unsere numerische Ergebnisse. Unser Optimierungsalgorith-
mus minimiert erfolgreich unterschiedliche nicht-konvexe Funktionen mit verschiedenen
Anfangswerten und zeigt eine exponentielle Konvergenz. Wir erörtern das beobachtete
Verhalten und analysieren spezifische Situationen. Zuletzt vergleichen wir unseren
Algorithmus mit einer anderen Optimierungsmethode, welche auch auf einer Konsen-
susbildung aufbaut, und wir bewerten die jeweiligen Stärken und Einschränkungen.
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Basic Terminology and Notation

Measure theory: Let (X,dX) be a metric space.
C(X) space of real continuous functions on X
M (X) Space of signed Borel measures on X with finite total variation
M+(X) Space of nonnegative measures on X
P(X) Space of probability measures on X
M0(X) Space of measures on X with zero mean
Lip(f) Lipschitz constant of a function f
Lipb(X) Space of bounded Lipschitz functions on X
f#µ Push-forward of µ through f , see Definition 2.1
Br Open ball of radius r around 0 in (X,dX)
W1(µ, ν) 1-Wasserstein distance between µ, ν ∈P(X), see Definition 2.3

and Theorem 2.4
∥·∥TV Total variation norm, see Definition 2.5
∥·∥Lip Lipschitz norm, see Definition 2.7
∥·∥BL Bounded Lipschitz norm, see Definition 2.8

Spatially inhomogeneous evolutionary games:
U Compact metric space of available strategies
S := Rd ×P(U) Playerspace in spatially inhomogeneous evolutionary games
J : (Rd × U)2 → R Payoff function
F (U) Aarens-Eells space, see Eq. (2.4.8)
Y := Rd × F (U) Image space of the interaction term f
f : S × S → Y Interaction term, see Eq. (2.5.4)
bΣ(t, y) Time dependent vector field used for the ODE, see Eq. (2.5.3)
YΣ(t, s, y) Induced flow map given the ODE, see Eq. (2.5.5)
A Space of possible evolutions of the initial population Σ̄, see

Eq. (2.5.22)

Spatially compact populations and weighted replicator dynamics:
S0, St Spatially compact playerspace, see Eqs. (4.1.5) and (4.1.6)
ωα

g : Rd → (0, 1] Weight function, see Eq. (3.4.1)
wΣ : S → (0, 1] Normalized weight function, see Eq. (3.4.2)
b̃Σ(t, y) Modified time dependent vector field, see Eq. (4.5.4)
ỸΣ(t, s, y) Modified flow map, induced by the ODE Eq. (4.5.5)
Ã Space of possible populations, see Eq. (4.1.7)



Global optimization algorithm parameters: See also Section 5.4 for more details.
h Step size
γ Parameter for the adaptive step size on the strategy update
M, smin, smax Parameters for the available set of strategies U
ϵ Parameter for the payoff function Jϵ, see Section 5.3
xmin, xmax Define the interval [xmin, xmax] from which we sample the initial

locations
I Maximum number of iterations
α Parameter used in the weight function wΣ, see Eq. (3.4.2)





Chapter 1

Introduction

Optimization problems arise in almost every field of science, engineering, and business.
The standard approach begins by designing an objective function that can model
the problem’s objectives while incorporating all the constraints. In most cases, the
objective function defines the optimization problem as a minimization task of the form

min
x∈Ω

g(x), Ω ⊂ Rd a domain. (1.0.1)

The function g is then also called the cost function, and can be very complicated and
highly non-convex. Because of this complexity it is often impossible to find a minimum
analytically, and consequently, these problems have to be addressed by numerical
algorithms.

Unfortunately, there is often no guarantee to reliably find a global minimum, as the
algorithm may be trapped in the local minima of the cost function. A notable example
with this behavior is the method of steepest descent, and gradient-based methods in
general are often prone to converge to a local minimum. But this issue is well-known,
and gradient descent is still commonly used in many tasks where the gradient is fast to
compute, as the speed of computation is sometimes more important than the quality
of the result. Still, finding the global minimum is always the preferred outcome. This
is the main focus in the field of global optimization.

There are many different approaches to the problem, leading to both deterministic
and stochastic global optimization methods. In recent years, metaheuristics play an
increasing role in this field. In general, they may be considered as high level concepts for
exploring search spaces by using different strategies, often designed in a way to ensure
a balance between exploration of the search space and exploitation of the accumulated
search experience [BR03]. Their name is due to the fact that a majority of these
methods lack a proper mathematical justification, as it is often not proven that a
given method is capable of finding an optimal solution when provided with sufficient
information. In many cases, metaheuristics exploit evolutionary principles and swarm
intelligence. Notable examples are Evolutionary Algorithms [BFM97; Ree16], the Ant
Colony Optimization, Genetic Algorithms, Particle Swarm Optimization and Simulated
Annealing [HS88; HKS89].
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Chapter 1 Introduction

In this thesis we propose a novel global optimization algorithm. Spatially inhomoge-
neous evolutionary games [Amb+18] describe the evolution of a population of players,
which compete with each other and change their location according to their own current
strategy. By modifying the underlying replicator dynamics and appropriately choosing
the payoff function, we were able to use this dynamic process to globally minimize
functions.

Chapter 2 begins with an introduction to classical evolutionary game theory and
presents variations of increasing complexity. By adding a spatial component we arrive at
a mathematical formulation of spatially inhomogeneous evolutionary games [Amb+18].
This model was recently proposed by Ambrosio et al. and the authors provide thorough
theoretical results on its well-posedness. We present parts of their results and provide
the necessary measure theoretic notions.

In Chapter 3 we discuss the application of this method to the problem of global opti-
mization, However, before we develop our method we formally define the mathematical
problem and present another consensus-based optimization method by Carrillo et al.
[Car+16]. We explain the underlying mechanism of their method and their notion
of solution, which provides a useful inspiration. We proceed and motivate the use of
evolutionary games for global optimization, and formulate the notion of convergence
to a global minimum. Finally, we argue that adaptations to the dynamics of our
evolutionary model could be very beneficial in order to successfully minimize a function
and we propose a modified replicator dynamics.

We then provide theoretical results on the well-posedness of this adapted model in
Chapter 4. We introduce some additional assumptions relating to compactness of the
support of the initial population, which leads to a compact support throughout the
finite time evolution. We infer boundedness and Lipschitz continuity on the interaction
term, the payoff function and the introduced weights. Finally, we retrace the proof as
done in Chapter 2 and formally prove the modified parts.

In order to apply the method numerically, we present the construction of discrete
time solutions for the continuous differential equation in Chapter 5. We provide a
numerically stable way to compute the weights and discuss further adaptations for
the practical use of the method. We explain our concrete choice of payoff function,
and present the final algorithm as it was used together with an explanation of all its
parameters.

Finally, in Chapter 6 we present numerical results. We evaluated our optimization
method on multiple non-convex functions with different properties and difficulties.
Additionally, we investigate the outcome for varying starting distributions and report
their influence. As a comparison, we show results on the performance of the optimization
method of Carrillo et al. We discuss the different properties of each algorithm and
conclude the thesis.
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Chapter 2

Spatially Inhomogeneous Evolutionary
Games

In [Amb+18] Ambrosio et al. introduce spatially inhomogeneous evolutionary games.
The authors provide general notions of evolutionary game theory and introduce a
model, in which each player consists not only of a strategy but also of a location.
Using tools from measure theory and calculus in Banach spaces, Ambrosio et al show
results on the well-posedness of the occurring ordinary differential equations and prove
existence and uniqueness for both Lagrangian and Eulerian solutions.

We start this chapter with a brief introduction to game theory and describe a simple
symmetric game, together with the occurring notions and aspects. We proceed and
introduce evolutionary games, gradually moving from individuals with pure strategies
towards players with locations and continuous mixed strategies. We then provide
necessary preliminary notions, in order to conclude this chapter with the formal proof
on existence and uniqueness of Lagrangian solutions.

2.1 A Brief Introduction to Game Theory

In classical, non-evolutionary game theory, we often consider symmetrical games. Each
player, I and II, has to chose one of n strategies, denoted by u1, . . . , un. If I choses ui

and II choses uj , then player I obtains a payoff Ji,j and player II obtains Jj,i. The goal
for each player in this game is to obtain the maximal payoff.

One example is the well-known game of Rock-Paper-Scissors. Each player choses
between three available strategies u1, u2, u3, and the payoff function is described by
the matrix  0 1 −1

−1 0 1
1 −1 0

 . (2.1.1)

If a player happens to know the strategy of the other player before playing the game,
he will adapt his strategy in order to win. Therefore, if both players knew the chosen
strategy of the other player it would create a vicious cycle of mutual outguessing.

3



Chapter 2 Spatially Inhomogeneous Evolutionary Games

In [Neu28], John von Neumann found a way to avoid this dead-end: By randomly
selecting one of the strategies, each with equal probability, it becomes impossible for
the co-player to adapt towards a winning strategy. If both players use this randomized
strategy, then no player has an incentive to deviate. We call these randomized strategies
mixed strategies. The stable situation in which no player deviates, even with full
knowledge of the strategy of the other player, is called a mixed Nash equilibrium, first
introduced in [VM47] (see also [Rou16] for an introduction to game theory, including
many notions of equilibria).

2.2 Evolutionary Game Theory

In evolutionary game theory [Sig10] we consider populations of players. These players
interact according to the classical notion of game theory, evaluating a payoff function
after choosing a strategy each. Instead of relating this payoff to a utility of each
individual, we relate it to the reproductive success of this player in the population.

Let us again consider the Rock-Paper-Scissors example: If one half of the population
uses the strategy “rock” and the other half plays “scissors”, then the fraction playing
“scissors” should decrease over time as the payoff of these players is generally lower
than the payoff of players playing “rock”.

With this Darwinian evolution concept we create a dynamic population in which the
occurrence of strategies changes over time, depending on their current success. In the
following sections we formalize the described idea. We introduce different examples and
models, starting with populations on a discrete set of strategies and then progressing
towards individuals with continuous mixed strategies.

2.2.1 Individuals with pure strategies

Let us consider a finite set of N available strategies u1, . . . , uN ∈ U . We denote the
fraction of the population using strategy ui by σi. As players only differ by their
strategy, we can describe the state of the whole population using only the vector
(σ1, . . . , σN ). The payoff of playing strategy ui against uj is described by the payoff
function J(ui, uj), with J : U × U → R.

Consider a player using strategy ui. In the next encounter the probability of meeting
a co-player using strategy uj is σj . The expected payoff for a random encounter is
therefore given by the term

N∑
j=1

J(ui, uj)σj .

To calculate the relative success of this player we need to compare his payoff to the
expected payoff of all players in the population. The average payoff in the population

4



2.2 Evolutionary Game Theory

can be similarly described by

N∑
i=1

σi

 N∑
j=1

J(ui, uj)σj

 ,
which leads to the relative success of strategy ui:

∆N (ui) :=
N∑

j=1
J(ui, uj)σj −

N∑
i=1

N∑
j=1

σiJ(ui, uj)σj . (2.2.1)

In the final step we describe the evolution of the population. As stated above, we
want to relate the relative success of ui to the reproductive success of the individual
playing ui. We therefore consider the (per capita) growth rate σ̇i/σi and relate it to
the relative success ∆N (ui) in the following differential equation:

σ̇i

σi
= ∆N (ui)

The evolution of the entire population can now be described by the following system of
ordinary differential equations:

σ̇i =

 N∑
j=1

J(ui, uj)σj −
N∑

i=1

N∑
j=1

σiJ(ui, uj)σj

σi, i = 1, . . . , N. (2.2.2)

This system is known as replicator dynamics in the literature of evolutionary games
(see [Sig10; HS98; HS83]). It is considered as one of the most popular dynamic game
models as its sets of accumulation points and its steady states are closely related to the
Nash equilibria of the game described by the payoff matrix A = (J(ui, uj))i,j [HS98,
Thm. 7.2.1].

2.2.2 Infinite or continuous strategies
In Section 2.2.1 we worked on a finite set of strategies U . We want to extend these
notions to infinite or continuous strategies, which is by now largely addressed in
literature [Bom90; Cre05; Des+08; Gal11; OHR07; Nor08; OR01; RR14]. It can be
viewed as a natural limit for N →∞ of the system

σN
t :=

N∑
j=1

σj,tδuj ∈P(U), (2.2.3)

where P(U) is the space of probability measures over U and δuj is the Dirac-delta,
which can be described heuristically as a probability measure having all its mass in the
point uj .

5



Chapter 2 Spatially Inhomogeneous Evolutionary Games

For any σ we denote

∆σ(u) :=
(∫

U
J(u, u′)dσ(u′)−

∫
U

∫
U
J(w, u′)dσ(w)dσ(u′)

)
.

We then define the evolution of the probability measure σN
t as

σ̇N
t = ∆σσ

N
t ,

or in weak form

d
dt

∫
U
φ(u)dσN

t (u) =
∫

U
φ(u)∆σN

t
(u)dσN

t (u), (2.2.4)

for any φ ∈ C(U). Note that ∆(σN )(ui) = ∆N (ui) for σN = ∑N
j=1 σjδuj , such that the

above definition coincides with Eq. (2.2.1) for finite N .
In order to analyze well-posedness of Eq. (2.2.4) for N → ∞, Ambrosio et al.

[Amb+18] assume that the initial conditions σN
0 ⇀ σ̄ for a given σ̄ ∈P(U), and then

deduce that σN
t ⇀ σt for any t, where σ is the solution to

d
dt

∫
U
φ(u)dσt(u) =

∫
U
φ(u)∆σt(u)dσt(u), σ(0) = σ̄.

Thus, we can view mixed strategies over a continuous set of strategies as the limits of
strategies of the form Eq. (2.2.3) for N →∞.

2.2.3 Individuals with mixed strategies

Building up on Section 2.2.1, we consider a population of individuals endowed with
some mixed strategy each, behaving as follows: Players meet randomly to play the
game, but instead of having a single pure strategy, players draw a strategy at random,
according to their respective mixed strategy.

Each player in this population is fully described by its mixed strategy σ ∈P(U) on
the set of pure strategies U . The space U is not restricted to the finite case anymore
(see Section 2.2.2), allowing for any compact metric space. To generalize further, we
can describe the whole population of possibly infinite players by a probability measure
on the space of mixed strategies, that is Σ ∈P(P(U)). For instance in the simplest
case, for a finite number N of players, this can be seen as Σ = 1

N

∑N
i=1 δσi , giving

one N -th of its mass to each player. Note that this definition does not distinguish
two players with the same mixed strategy, which is the desired behavior. The payoff
function is again given by some J : U × U → R.

In order to describe how the population should evolve we need to describe how each
individual has to adapt its mixed strategy. We first adopt the point of view of a fixed

6



2.3 Spatially Inhomogeneous Replicator Dynamics

individual in the population with mixed strategy σ. If this player meets a co-player,
who in turn uses the mixed strategy σ′, the expected payoff for choosing strategy u is

Eu′∼σ′
[
J(u, u′)

]
=
∫

U
J(u, u′)dσ′(u′). (2.2.5)

Therefore, the expected payoff for playing u in any random encounter, given the current
population Σ, is

Eσ′∼Σ
[
Eu′∼σ′

[
J(u, u′)

]]
=
∫

P(U)

(∫
U
J(u, u′)dσ′(u′)

)
dΣ(σ′). (2.2.6)

The average payoff for the mixed strategy σ of the player is the expected value of the
term Eq. (2.2.6) with respect to the probability distribution σ, that is

Ew∼σ
[
Eσ′∼Σ

[
Eu′∼σ′

[
J(w, u′)

]]]
=
∫

U

∫
P(U)

∫
U
J(w, u′)dσ′(u′)dΣ(σ′)dσ(w), (2.2.7)

which enables us to describe the relative success of picking strategy u, in relation to
the current mixed strategy σ, as

∆Σ,σ(u) :=
∫

P(U)

∫
U
J(u, u′)dσ′(u′)dΣ(σ′)−

∫
U

∫
P(U)

∫
U
J(w, u′)dσ′(u′)dΣ(σ′)dσ(w).

(2.2.8)
In order to describe the evolution of the population, we need to describe how

each individual has to adapt its mixed strategy. We follow the same principle as in
Section 2.2.1: The probability of successful strategies should increase. This is described
by

σ̇(u) = ∆Σ,σ(u)σ(u), u ∈ U, (2.2.9)

but with ∆Σ,σ as defined in Eq. (2.2.8).

2.3 Spatially Inhomogeneous Replicator Dynamics
The previous sections described spatially homogeneous dynamical games. In [Amb+18]
the authors add a spatial inhomogeneity, by assuming that players do not only consist
of a (mixed) strategy, but also of a position in space. The strategies are used in
order to play against other players and their evolution follows similar principles as in
Section 2.2.3, but additionally they are drawn randomly to evolve the positions of each
player.

With these definitions, the individuals of this population can be described as
y = (x, σ), where x ∈ Rd denotes the location and σ ∈P(U) denotes a mixed strat-
egy for some compact metric space U . We denote the space of these individuals by
S := Rd ×P(U), and the whole population can be described as in Section 2.2.3 by a

7



Chapter 2 Spatially Inhomogeneous Evolutionary Games

probability measure over this set, that is Σ ∈P(S). Again, we are interested in the
evolution of each individual in the population. Let y = (x, σ) ∈ S be such a player.

The player adjusts its location by randomly drawing a strategy u according to its
mixed strategy σ, and then changing its position using a suitable function e : Rd×U →
Rd. In the simplest case we could have e(x, u) = u with the set of strategies U ∈ Rd

describing possible directions of movement. As this process happens in continuous
time, the velocity of the player is obtained as the expected outcome of this random
process, namely

ẋ = Eu∼σ[e(x, u)] =
∫

U
e(x, u)dσ(u).

By defining the map a : S → Rd as

a(y) = a(x, σ) :=
∫

U
e(x, u)dσ(u) (2.3.1)

we can now conveniently write ẋ = a(y).
The strategy of the player evolves according to similar dynamics as in Section 2.2.3,

but taking the spatial dimension into account. The payoff function describing the
interactions of particles now depends on both the position and the chosen strategy. We
therefore consider a Lipschitz-continuous payoff function J : (Rd × U)2 → R, and then
define the relative success of strategy u, compared to the current mixed strategy σ,
given the population Σ, as

∆Σ,(x,σ)(u) :=
∫

S

∫
U
J(x, u, x′, u′)dσ′(u′)dΣ(x′, σ′)

−
∫

U

∫
S

∫
U
J(x,w, x′, u′)dσ′(u′)dΣ(x′, σ′)dσ(w).

Note that this definition corresponds directly to Eq. (2.2.8), adjusted by including the
spatial component. The evolution law for the mixed strategy σ of the player at x is
then given by a replicator dynamics, and can be written as

σ̇ = ∆Σ,(x,σ)σ. (2.3.2)

Together with Eq. (2.3.1) we compactly write the evolution for y as

ẏ = (ẋ, σ̇) =
(
a(x, σ),∆Σ,(x,σ)σ

)
:= bΣ(y). (2.3.3)

Using tools from measure theory and calculus in Banach spaces Ambrosio et al.
[Amb+18] studied the well-posedness of Eq. (2.3.3), together with the existence,
uniqueness, and stability of its solutions. Notably, their results cover two different
notions of solution: Lagrangian and Eulerian solutions.

8



2.4 Measure Theoretic Preliminaries

Our focus lies on the Lagrangian notion of solution, which we define in Definition 2.16.
In Section 2.5 we briefly retrace the corresponding parts of the proof of existence and
uniqueness of Lagrangian solutions, as done by Ambrosio et al., as we later follow their
procedure in order to show the same results on a modified replicator dynamics. The
proof requires multiple notions and definitions which we therefore introduce in the
following section.

2.4 Measure Theoretic Preliminaries
We closely follow [Amb+18, Section 2] and we use the same notation. As we do not
prove all of the results contained in [Amb+18] in detail we provide only the necessary
definitions.

2.4.1 Notation and distances in the space of measures

In the following let (X,dx) be a metric space. We denote by M (X) the space of signed
Borel measures in X with finite total variation and by P(X) its convex subset of
probability measures. Further we denote by M+(X) and M0(X) the subspaces of
positive measures and of measures with 0 mean, respectively.

Let f : X → R be a Lipschitz-continuous function. We denote its Lipschitz constant
by

Lip(f) := sup
x,y∈X

x ̸=y

f(x)− f(y)
dX(x, y) , (2.4.1)

and the space of bounded Lipschitz functions on X by Lipb(X).
Let µ ∈M+(X) a nonnegative Borel measure on X and f : X → Y a µ-measurable

function. We define the push-forward measure as done in [AFP00, Def. 1.70].

Definition 2.1 (Push-forward measure)
Let (X, E) and (Y,F) be measure spaces, and let f : X → Y be so that f−1(F ) ∈ E
for all F ∈ F . For any positive or real measure µ on (X, E) we define a measure f#µ
in (Y,F) by

f#µ(F ) := µ
(
f−1(F )

)
∀F ∈ F .

Further, the following change of variables formula holds for every f#µ-integrable Borel
function g : Y → R: ∫

Y
gdf#µ =

∫
X
g ◦ fdµ. (2.4.2)

Definition 2.2 (Probability measures with finite p-th moment)
Let (X,dX) be a complete separable metric space, and P(X) the set of probability
measures on X. We define the set of probability measures with finite p-th moment as

9



Chapter 2 Spatially Inhomogeneous Evolutionary Games

the subset

Pp(X) :=
{
µ ∈P(X) :

∫
X

dX(x, x̄)pdµ(x) < +∞ for some x̄ ∈ X
}
.

Given a complete and separable metric space (X,dX), the 1-Wasserstein distance
endows the space P1(X) with a distance. We define it as in [AGS05, Sec. 7.1].

Definition 2.3 (Wasserstein distance)
Let (X,dX) be a complete separable metric space. The 1-Wasserstein distance between
two probability measures µ, ν ∈P1(X) is defined by

W1(µ, ν) := min
{∫

X×X
dX(x, y)dΠ(x, y) : Π(A×X) = µ(A),Π(X ×B) = ν(B)

}
.

(2.4.3)
Thanks to the Kantorovich duality, the Wasserstein distance has another equivalent

representation which is often more practical to work with. This theorem and its proof
can be found in [AGS05, Thm. 6.1.1].

Theorem 2.4 (Duality formula)
The 1-Wasserstein distance, as defined above in Definition 2.3, can equivalently be
written in the following way:

W1(µ, ν) = sup
{∫

φd(µ− ν) : φ ∈ Lipb(X),Lip(φ) ≤ 1
}
. (2.4.4)

In [AGS05, Section 7.1] the authors further show that W1 does indeed define a distance
on P1(X), such that (P1(X),W1) is a metric space.

Given a compact metric space (U, d) we will now endow the spaces M (U), Lip(U)
and (Lip(U))′ with appropriate norms.

Definition 2.5 (Total variation norm)
Let σ ∈M (U) be a signed Borel measure on U . We define the total variation norm as

∥σ∥TV := sup
{∫

U
φdσ : φ ∈ C(U), |φ| ≤ 1

}
Remark 2.6
(M (U), ∥·∥TV) is a Banach space.

Definition 2.7 (Lipschitz-norm)
For any φ ∈ Lip(U) we define

∥φ∥Lip := sup
u∈U
|φ(u)|+ Lip(φ). (2.4.5)

10



2.4 Measure Theoretic Preliminaries

This induces the bounded Lipschitz norm (BL norm) on the space of measures. In
[Amb+18, Sec. 2.1] Ambrosio et al. introduce it more thoroughly as a norm on the
dual of Lip(U), together with the corresponding discussion about the relation of P(U)
and (Lip(U))′. We chose to not include this aspect as it is not of direct relevance
for this thesis, but we refer to [Amb+18, Sec. 2.1] for the stronger definition, as well
as to Riesz Theorem [AFP00, Thm. 1.54, Remark 1.57] for a thorough result on the
isometrical isomorphy of (M (U), ∥·∥TV) and (C(U))′.
Definition 2.8 (Bounded Lipschitz norm)
For any ν ∈ M (U) we define the bounded Lipschitz norm on the space of Borel
measures

∥ν∥BL := sup
{∫

φdν : φ ∈ Lip(U), ∥φ∥Lip ≤ 1
}
. (2.4.6)

Proposition 2.9
For any φ,ψ ∈ Lip(U) it holds

∥φψ∥Lip ≤ ∥φ∥Lip ∥ψ∥Lip . (2.4.7)

We provide the following proof, as it is not included in [Amb+18].
Proof. Using the fact that the Lipschitz constant is always positive, we can prove the
proposition with the following computation.

∥φψ∥Lip = sup
u∈U
|(φψ)(u)|+ Lip(φψ)

= sup
u∈U
|φ(u)||ψ(u)|+ sup

u,v∈u
u̸=v

φ(u)ψ(u)− φ(v)ψ(v)
dU (u, v)

= sup
u∈U
|φ(u)||ψ(u)|+ sup

u,v∈u
u̸=v

φ(u)ψ(u)− φ(v)ψ(u) + φ(v)ψ(u)− φ(v)ψ(v)
dU (u, v)

≤ sup
u∈U
|φ(u)||ψ(u)|+ sup

u,v∈u
u̸=v

φ(u)ψ(u)− φ(v)ψ(u)
dU (u, v) + sup

u,v∈u
u̸=v

φ(v)ψ(u)− φ(v)ψ(v)
dU (u, v)

≤ sup
u∈U
|φ(u)| · sup

u∈U
|ψ(u)|+ Lip(φ) sup

u∈U
|ψ(u)|+ Lip(ψ) sup

u∈U
|φ(u)|

≤
(

sup
u∈U
|φ(u)|+ Lip(φ)

)
·
(

sup
u∈U
|ψ(u)|+ Lip(ψ)

)
= ∥φ∥Lip ∥ψ∥Lip . 2

In [Amb+18] Ambrosio et al. need a linear structure in the space of probability
measures, which P(U) can not provide. They introduce a closed subspace of (Lip(U))′,
also known as the Arens-Eells space in the literature:

F (U) := span(P(U))∥·∥BL ⊂ (Lip(U))′. (2.4.8)

11



Chapter 2 Spatially Inhomogeneous Evolutionary Games

Note that M (U) ⊂ F (U).
In the last part of this section we show that for any measures µ1, µ2 ∈ P(U) the

distance induced by the bounded Lipschitz norm is equivalent to the 1-Wasserstein
distance:
Proposition 2.10
Given two probability measures µ1, µ2 ∈P(U) it holds

∥µ1 − µ2∥BL ≤W1(µ1, µ2) ≤ (1 +DU ) ∥µ1 − µ2∥BL , (2.4.9)

with
DU := min

x0∈U
max
x1∈U

d(x0, x1) ≤ diam(U),

where diam(U) := sup{dU (x, y)|x, y ∈ U} is the diameter.

We will prove this result in multiple parts.

Lemma 2.11
For any measure ν ∈M0(U) and every 1-Lipschitz function φ : U → R we have∫

U
φdν ≤ ∥ν∥BL · (DU + 1) .

Proof (Lemma 2.11). It is easy to show the influence of shifting and scaling on the
Lipschitz constant and the supremum, respectively. That is, for any a, b ∈ R it holds

Lip
(
φ(x)− a

b

)
= Lip(φ)

b
,

sup
x∈U

φ(x)− a
b

= supx∈U φ(x)− a
b

.

Choosing some x0 ∈ U , this leads to∥∥∥∥∥ φ(x)− φ(x0)
supx∈U d(x, x0) + 1

∥∥∥∥∥
Lip

= supx∈U φ(x)− φ(x0)
supx∈U d(x, x0) + 1 + Lip(φ)

supx∈U d(x, x0) + 1 .

As φ is Lipschitz, we know that

φ(x) ≤ φ(x0) + Lip(φ) · d(x, x0) ∀x ∈ U,

and therefore also

sup
x∈U

φ(x) ≤ φ(x0) + Lip(φ) · sup
x∈U

d(x, x0).
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2.4 Measure Theoretic Preliminaries

It follows∥∥∥∥∥ φ(x)− φ(x0)
supx∈U d(x, x0) + 1

∥∥∥∥∥
Lip
≤ φ(x0) + Lip(φ) · supx∈U d(x, x0)− φ(x0)

supx∈U d(x, x0) + 1

+ Lip(φ)
supx∈U d(x, x0) + 1

= Lip(φ) · (supx∈U d(x, x0) + 1)
supx∈U d(x, x0) + 1

= Lip(φ).

As ν has mean 0, the previous statement gives∫
U
φdν =

∫
U
φ(x)dν(x)−

∫
U
φ(x0)dν(x)

=
∫

U
(φ(x)− φ(x0))dν(x)

=
∫

U

(
φ(x)− φ(x0)

supz∈U d(z, x0) + 1

)
dν(x) ·

(
sup
x∈U

d(x, x0) + 1
)

≤ ∥ν∥BL ·
(

sup
x∈U

d(x, x0) + 1
)
.

We can conclude the proof by taking the minimum of x0, as the previous result holds
for any choice x0 ∈ U . ∫

U
φdν ≤ ∥ν∥BL · (DU + 1) .

2

Proposition 2.12
For any measure ν ∈M0(U) it holds

∥ν∥BL ≤ sup
{∫

φdµ : φ ∈ Lip(U),Lipφ ≤ 1
}
≤ ∥ν∥BL · (DU + 1) .

Proof (Proposition 2.12). As Lemma 2.11 holds for any 1-Lipschitz function
φ : U → R it follows

sup
{∫

φdµ : φ ∈ Lip(U),Lipφ ≤ 1
}
≤ ∥ν∥BL · (DU + 1) .

For the other inequality we remind of the definition of the bounded Lipschitz norm as

∥ν∥BL = sup
{∫

φdν : φ ∈ Lip(U), ∥φ∥Lip ≤ 1
}
.

13



Chapter 2 Spatially Inhomogeneous Evolutionary Games

Now as {
φ ∈ Lip(U) : ∥φ∥Lip = 1

}
⊂
{
φ ∈ Lip(U) : Lip(φ) = 1

}
,

we conclude the proof with

∥ν∥BL = sup
{∫

φdµ : φ ∈ Lip(U), ∥φ∥Lip ≤ 1
}

≤ sup
{∫

φdµ : φ ∈ Lip(U),Lipφ ≤ 1
}
. 2

We can now prove Proposition 2.10.

Proof (Proposition 2.10). Applying Proposition 2.12 to ν = µ1 − µ2, with µ1, µ2 ∈
P(U), leads to

∥µ1 − µ2∥BL ≤ sup
{∫

φd(µ1 − µ2) : φ ∈ Lip(U),Lipφ ≤ 1
}
≤ ∥µ1 − µ2∥BL·(DU + 1) .

In the final step we use the duality formula Theorem 2.4 and get

∥µ1 − µ2∥BL ≤W1(µ1, µ2) ≤ ∥µ1 − µ2∥BL · (DU + 1) . 2

2.4.2 Differentiable curves in the space of measures
When we introduced spatially inhomogeneous evolutionary games we presented a
differential equation, Eq. (2.3.2), describing the evolution of the population. As the
mixed strategy σ is a probability measure this differential equation lies in the space
of measures. Over the course of the following two sections we will discuss the well-
posedness of such differential curves, with respect to different properties of σ and for
varying norms.

In the following, we consider two curves t 7→ σt ∈ P(U) and t 7→ νt ∈ F (U), for
t ∈ [0, T ] and the Arens-Eells space F (U) (see Eq. (2.4.8)). We assume that both σ
and ν are continuous with respect to the BL norm. We want to give a meaning to the
differential equation

d
dtσt = νt, t ∈ [0, T ]. (2.4.10)

Lemma 2.13
The classical formulation of Eq. (2.4.10) as an ODE in the Banach space F(U) is
equivalent to the weak formulation of Eq. (2.4.10), written as∫

U
φdσt −

∫
U
φdσs =

∫ t

s
⟨ντ, φ⟩dτ, ∀φ ∈ Lip(U), s, t ∈ [0, T ]. (2.4.11)
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Remark 2.14
The notation ⟨ντ, φ⟩ used the embedding into the dual of Lip(U):

⟨ντ, φ⟩ =
∫

U
φdντ. (2.4.12)

Proof. Since ν is continuous, the map

t 7→ Nt =
∫ t

0
ντdτ

is continuously differentiable, and its derivative exists in the classical sense of

lim
h→∞

∥∥∥∥Nt+h −Nt

h
− νt

∥∥∥∥
BL

= 0 ∀t ∈ [0, T ].

With this and Eq. (2.4.12) it follows∫
U
φdσt =

∫
U
φdσ0 +

∫
U
φd
(∫ t

s
ντdτ

)
,

which implies
σt = σ0 +

∫ t

0
ντdτ ∀t ∈ [0, T ].

This concludes the proof. 2

In [Amb+18, Section 2.3], Ambrosio et al. proceed and state similar results in the
smaller space M (U) ⊂ F (U), assuming ν ∈M (U) with∫ T

0
∥νt∥TV dt < +∞.

Notably, they show absolute continuity of the curve t 7→ σt ∈M (U) with respect to
the TV norm. In particular, if ∥νt∥TV ∈ L∞(0, T ), then σt is Lipschitz continuous.
Further, if ν is continuous with respect to the TV norm, then t 7→ σt ∈M (U) is even
continuously differentiable, namely

lim
h→∞

∥∥∥∥σt+h − σt

h
− νt

∥∥∥∥
TV

= 0 ∀t ∈ [0, T ].

2.4.3 Ordinary differential equations in the space of measures
We want to generalize the results of the previous discussion further: Instead of a curve
νt as the right hand side in Eq. (2.4.10), let us now consider a time dependent family
of operators A : [0, T ] ×P(U) → F (U). We are considering the following ODE on
F (U):

d
dtσt = A(t, σt), t ∈ [0, T ]. (2.4.13)

We briefly restate results for this situation, corresponding to those in Section 2.4.2:

15



Chapter 2 Spatially Inhomogeneous Evolutionary Games

1. We assume that the map A : [0, T ]×P(U) → F (U) is continuous, when both
P(U) and F (U) are endowed with the BL topologies. Then t 7→ σt ∈ F (U) is
continuously differentiable, and therefore Eq. (2.4.13) holds in the classical sense,
that is

lim
h→∞

∥∥∥∥σt+h − σt

h
−A(t, σt)

∥∥∥∥
BL

= 0 ∀t ∈ [0, T ]. (2.4.14)

2. If A : [0, T ]×P(U)→M (U) and

sup
t∈[0,T ]

∥A(t, σt)∥TV < +∞,

then σt is a Lipschitz curve with respect to the total variation norm.

3. If A : [0, T ]×P(U)→M (U) is continuous with respect to the total variation
norm, then Eq. (2.4.14) improves to

lim
h→∞

∥∥∥∥σt+h − σt

h
−A(t, σt)

∥∥∥∥
TV

= 0 ∀t ∈ [0, T ]. (2.4.15)

2.5 Existence and Uniqueness of Lagrangian Solutions
In this section we proceed as in the original approach of Ambrosio et al. in [Amb+18].
We start by restating the formal setting, together with the ODE describing the dynamics
of the population. Then, we present the Lagrangian notion of solution and state the
main theorem on its existence and uniqueness. In order to prove this theorem we
include the multiple stability estimates on the different terms and functions which were
introduced, and then use these to conclude with a contraction argument. For more
details and proofs of the statements and results we refer to the original paper.

2.5.1 Problem statement
Ambrosio et al. introduce the formal problem and the different notions of solution for
the general continuous case in [Amb+18, Section 3.3].

In spatially inhomogeneous games, each player lies in the space S = Rd ×P(U),
which can be endowed with the distance

dC(y1, y2) := |x1 − x2|+ ∥σ1 − σ2∥BL , yi = (xi, σi), (2.5.1)

where ∥·∥BL is the bounded Lipschitz norm as defined in Definition 2.8. Let Σ̄ ∈P(S)
be an arbitrary initial distribution of players. The first component of S, Rd, is not
compact. Therefore, we assume that the first moment of the first marginal of Σ̄ is
finite: ∫

S
|x|dΣ̄(x, σ) = M0 < +∞. (2.5.2)
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Since U is compact, Eq. (2.5.2) holds if and only if Σ̄ ∈P1(S), where P1(S) is the set
of probability measures with finite first moment (see also Definition 2.2). For every
continuous curve t ∈ [0, T ] 7→ Σt ∈P1(S) we now define a time dependent vector field

bΣ(t, y) = bΣt(y) =
∫

S
f(y, y′)dΣt(y′), (2.5.3)

with f = (fx, fσ) defined as

fx(y, y′) = fx(x, σ, x′, σ′) := a(x, σ) =
∫
U

e(x, u)dσ(u)

fσ(y, y′) = fσ(x, σ, x′, σ′)

:=

∫
U

J(x, ·, x′, u′)dσ′(u′)−
∫
U

∫
U

J(x,w, x′, u′)dσ′(u′)dσ(w)

σ.
(2.5.4)

With the Arens-Eells space F (U) = span(P(U))∥·∥BL , the function f(y, ·) defines a
continuous function with S → Rd × F (U) =: Y . Notice that f(y, ·) has at most linear
growth by linearity of the integrals in Eq. (2.5.4) and the Lipschitz continuity of J . As
Σt ∈P1(S) we can interpret the integral in Eq. (2.5.3) as a Bochner integral.

Remark 2.15 (Bochner integration)
The Bochner integral [Boc33] extends the definition of the Lebesgue integral to functions
that take values in a Banach space, as the limit of integrals of simple functions.
The formal definition can also be found in [Amb+18, Appendix A.2], as well as the
integrability criterion which states that f is Σt-Bochner integrable. This holds as with
Σt ∈P1(S) we have ∫

S
∥f(y, y′)∥Y dΣt(y′) < +∞.

Let us now consider the following ODE in Y :

ẏt = bΣt(yt), ys = y. (2.5.5)

A solution to Eq. (2.5.5) satisfies

ẋt = a(xt, σt) =
∫
U

e(xt, u)dσt(u),

σ̇t =

∫
S

∫
U

J(x, ·, x′, u′)dσ′(u′)

−
∫
U

∫
U

J(x,w, x′, u′)dσ′(u′)dσ(w)

 dΣt(x′, σ′)

σ,
(2.5.6)
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Given the ODE in Eq. (2.5.5), we denote by YΣ(t, s, y) the induced flow map describing
the evolution of a player, that is YΣ(t, s, y) := yt. This can be interpreted as a map
which, given the state y ∈ S of a player at time s ∈ [0, t], returns the new state at time
t ∈ [0, T ]. As this can be applied to every y satisfying the ODE we can transport the
whole measure describing the population, such that

Σ̂t = YΣ(t, 0, ·)#Σ̄. (2.5.7)

Ambrosio et al. introduce two different notions of solution for this problem, La-
grangian and Eulerian. In this work we will only consider the Lagrangian solution,
which corresponds to the idea given above. The curve Σ, describing the population
over the whole time interval [0, T ], should be self-transported according to the flow
map induced by the ODE. The following definition is included in [Amb+18, Def. 3.1].

Definition 2.16 (Lagrangian solution)
Let Σ ∈ C0([0, T ]; (P1(S),W1)) and Σ̄ ∈ P1(S). We say that Σ is a Lagrangian
solution starting from Σ̄, if

Σt = YΣ(t, 0, ·)#Σ̄ for every t ∈ [0, T ], (2.5.8)

where YΣ(t, s, y) are the transition maps associated to the ODE Eq. (2.5.5).

The following theorem is contained in [Amb+18, Thm. 3.2], and states the main
result regarding existence and uniqueness of Lagrangian solutions.

Theorem 2.17 (Existence and uniqueness of Lagrangian solutions)
Suppose that J : (Rd × U)2 → R and e : Rd × U → R are Lipschitz maps and let
f : S × S → Y be defined as in Eq. (2.5.4). Then, for every initial distribution
Σ̄ ∈P1(S), there exists a unique Lagrangian solution Σ with flow map YΣ(t, s, y).

This theorem contains the main statements about existence and uniqueness of La-
grangian solutions. In the following we retrace the proof by Ambrosio et al. in order
to show that this theorem holds.

2.5.2 Structural properties of the interaction term f

The results contained in [Amb+18, Prop. 3.5] state that f is L-Lipschitz with L depend-
ing only on Le, LJ and diam(U). Additionally, f satisfies the following compatibility
condition

∀R > 0 ∃θ > 0 : y, y′ ∈ S ∩BR(0) ⇒ y + θf(y, y′) ∈ S. (2.5.9)

As f is L-Lipschitz, it also follows that for any arbitrary point y0 ∈ S it holds

∥f(y, y′)∥ ≤ ∥f(y0, y0)∥+ L(∥y − y0∥+ ∥y′ − y0∥). (2.5.10)
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2.5.3 Stability estimates on bt

Let Λ ∈ C([0, T ]; (P1(S),W1)) be a curve of measures, not necessarily describing a
valid evolution of a population. Using the properties from Section 2.5.2 we can show
stability estimates on the time dependent vector field bΛ(t, y) as defined in Eq. (2.5.3).
The following proposition corresponds to [Amb+18, Prop. 4.3].
Proposition 2.18 (Properties of bΛ)
Let Λ,Λ′ ∈ C([0, T ]; P1(S)) and let bΛ, bΛ′ be defined as in Eq. (2.5.3), with f : S×S →
Y as in Section 2.5.2. Then the following properties hold:

(i) ∥bΛ(t, y)∥ ≤ ∥f(y0, y0)∥+ L∥y − y0∥+ L
∫

S ∥y′ − y0∥dΛt(y′) for all y0 ∈ Y ;

(ii) ∥bΛ(t, y)− bΛ(t, z)∥ ≤ L∥y − z∥;

(iii) ∥bΛ(t, y)− bΛ(s, y)∥ ≤ LW1(Λt,Λs);

(iv) ∥bΛ(t, y)− bΛ′(t, y)∥ ≤ LW1(Λt,Λ′
t);

(v) If there exists R̄ > 0 such that Λt(S \BR̄(0) = 0 for every t ∈ [0, T ], then

∀R > 0 ∃θ > 0 : y ∈ S, ∥y∥ ≤ R, t ∈ [0, T ] ⇒ y+ θbΛ(t, y) ∈ S. (2.5.11)

2.5.4 Stability estimates on YΛ

Using these properties we can then apply Brezis’ Theorem [Bre73, Sec. I.3, Thm. 1.4,
Cor. 1.1] on the well-posedness of ODEs in Banach spaces. The following version is
also provided in [Amb+18, Appendix B] together with additional results.
Theorem 2.19 (Well-posedness of ODEs in Banach spaces)
Let (E, ∥ ·∥E) be a Banach space, C a closed convex subset of E and let A(t, ·) : C → E,
t ∈ [0, T ], be a family of operators satisfying the following properties:

(i) There exists a constant L ≥ 0 such that

∥A(t, c1)−A(t, c2)∥E ≤ L∥c1, c2∥E for every c1, c2 ∈ C and t ∈ [0, T ]
(2.5.12)

(ii) For every c ∈ C the map i 7→ A(t, c) is continuous in [0, T ];

(iii) For every R > 0 there exists θ > 0 such that

c ∈ C, ∥c∥E ≤ R ⇒ c+ θA(t, c) ∈ C. (2.5.13)

Then for every c̄ ∈ C there exists a unique curve c : [0, T ]→ C of class C1 satisfying
ct ∈ C for all t ∈ [0, T ] and

d
dtct = A(t, ct), c0 = c̄. (2.5.14)
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This theorem, together with the previously stated stability estimates on bΛ (Propo-
sition 2.18), guarantees the existence of a unique solution to the Cauchy problem

ẏr = bΛ(r, yr) ys = y, (2.5.15)

inducing a flow map YΛ(t, s, ·) : S → S. Ambrosio et al. provide this result in
[Amb+18, Cor. 4.4], including additional stability estimates on Y.

Corollary 2.20 (Properties of the flow maps YΛ)
Let Λ,Λi ∈ C([0, T ]; P1(S)) and bΛ as defined in Eq. (2.5.3), with f : S × S → Y
L-Lipschitz, and y0 ∈ Y . Then

(i) for every y ∈ S and s ∈ [0, T ] there exists a unique solution yt = YΛ(t, s, y) from
[s, T ] to S of class C1 of the Cauchy problem

ẏr = bΛ(r, yr) = bΛr (yr), ys = y; (2.5.16)

(ii) YΛ(t, 0, y) satisfies the estimate

∥YΛ(t, 0, y)− y0∥ ≤ (∥y − y0∥+ tB(Λ, t, y0)) eLt, (2.5.17)

where

B(Λ, t, y0) := ∥f(y0, y0)∥+ L max
s∈[0,t]

∫
S
∥y′ − y0∥dΛs(y′); (2.5.18)

(iii) YΛ(·, 0, y) satisfies the estimate

∥YΛ(t, 0, y)−YΛ(t′, 0, y)∥ ≤

|t− t′|
[
B(Λ, T, y0) + L (∥y − y0∥+ TB(Λ, T, y0)) eLT

]
;

(2.5.19)

(iv) YΛ(t, s, ·) satisfies the estimate

∥YΛ(t, s, y)−YΛ(t, s, y′)∥ ≤ eL(t−s)∥y − y′∥, 0 ≤ s ≤ t ≤ T ; (2.5.20)

(v) more generally, YΛ1 ,YΛ2 satisfy the estimate for 0 ≤ s ≤ t ≤ T :

∥YΛ1(t, s, y1)−YΛ2(t, s, y2)∥ ≤

eL(t−s)∥y1 − y2∥+ L

∫ t

s
eL(t−τ)W1(Λ1

τ,Λ2
τ)dτ.

(2.5.21)
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2.5 Existence and Uniqueness of Lagrangian Solutions

2.5.5 Proof by contractivity
Finally, in [Amb+18, Section 4.4], Ambrosio et al. conclude the proof using a contraction
argument. They define the complete metric space

A :=
{

Λ ∈ C([0, T ]; (P1(S),W1)) : Λ0 = Σ̄
}
, (2.5.22)

and a map T : A → A as
T [Λ]t := YΛ(t, 0, ·)#Σ̄, (2.5.23)

where YΛ(t, 0, ·) is the flow map associated to bΛ. Using the properties shown earlier,
notably Corollary 2.20, the authors were able to show that T is a contraction. The
unique existence of a fixed point then follows using Banach’s fixed-point theorem for
metric spaces, and as this fixed point corresponds exactly to a Lagrangian solution of
the original problem this concludes the proof of Theorem 2.17.
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Chapter 3

Global Function Minimization

We first introduce and define the problem of global function minimization. In [Car+16],
Carrillo et al. proposed a solution to this problem. We present their consensus-based
global optimization method, giving a brief overview on the main components, and
we summarize the results of their paper. We then proceed and discuss how to use
evolutionary games in order to solve global function minimization.

Using the previously provided introduction to spatially inhomogeneous evolutionary
games, we explain how the movement and evolution of players evolves over time and how
this can be influenced. Finally, we claim that the existing method lacks an important
aspect in order to be applicable to function minimization. In the original replicator
dynamics each player is equivalent, but we argue that players with a low function
value should be more influential in this dynamic process. Inspired by the optimization
method of Carrillo et al., we introduce a weight function and adapt the replicator
dynamics accordingly.

3.1 Problem Statement
We consider a multi-dimensional optimization problem of the form

min
x∈Ω

g(x) (3.1.1)

for a given cost function g ∈ C(Ω) on the compact domain Ω ⊂ Rd. Without loss of
generality, we may assume g to be positive and defined on the whole space Rd, by
extending it outside Ω without changing its global minimum. We will use the notation

x∗ := arg min g(x), g∗ := g(x∗). (3.1.2)

Further, we assume g to be locally Lipschitz. For a formal definition of local Lipschitz
continuity see Definition 4.6.
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Chapter 3 Global Function Minimization

3.2 The Optimization Method by Carrillo et al.
In [Car+16] Carrillo et al. propose a method to solve the problem of global optimization.
The authors use a particle- and consensus-based approach where the population is
described by a stochastic process. It does not directly relate to evolutionary game
theory, but we include it as a comparison. We present the main stochastic differential
equations which govern the evolution of the population and explain the resulting
algorithm. In Section 6.4 we also include numerical results for this method. Notably,
one mechanism in the approach of Carrillo et al. is particularly interesting to us, and
we will use it to improve our own optimization algorithm.

The authors consider a stochastic system of N ∈ N agents with position Xi
t ∈ Rd,

described by the stochastic differential equations

dXi
t = −λ

(
Xi

t −mt

)
dt+ σ

∣∣∣Xi
t −mt

∣∣∣ dW i
t , (3.2.1)

mt =
N∑

i=1
Xi

t

(
ωα

g (Xi
t)∑N

j=1 ω
α
g (Xj

t )

)
, (3.2.2)

with λ, σ > 0 and the weight function ωα
g (x) = e−αg(x) for some appropriately chosen

α > 0.
This stochastic system can be interpreted in the following way. The term mt

constitutes a weighted mean of the positions of all agents, with exponentially increasing
weight as the function value decreases. This implies that for α large enough this mean
is located very close to the agent with minimum location. Agents then move in average
towards this mean, with noise added proportional to the distance between an agent
and the weighted mean. This enables agents with a with a position differing a lot from
mt to explore a larger portion of the graph of g(x), while agents closer to mt diffuse
much less. Additionally, this allows for a stable consensus, as once all particles arrive
at the same location there is no added noise anymore and the particles stop moving.
The well-posedness of this system is discussed in [Car+16, Section 2].

Similarly to our procedure in Section 2.2.2 the authors move towards a continuous
setting by defining the empirical measure

ρN
t = 1

N

N∑
i=1

δXi
t
, (3.2.3)

and then taking the limit N →∞. The authors formally reformulate the process and
the dynamics, and show well-posedness in the continuous case in [Car+16, Section 3].

24



3.3 Global Optimization with Evolutionary Games

The main results are then shown in [Car+16, Section 4], proving the convergence to
a uniform consensus under mild assumptions on the objective function g, that is

ρt → δx̂ as t→∞, (3.2.4)

for some x̂ ∈ Rd possibly depending on the initial density ρ0. By choosing α ≫ 1
sufficiently large this point x̂ may be made arbitrarily close to the global minimum x∗.
Additionally, the convergence is shown to happen exponentially in time.

After further theoretical results on the pseudo-inverse distribution in [Car+16,
Section 5], the authors present numerical results, minimizing the Ackley function
[Ack87] (see also Eq. (6.2.1) and Fig. 6.9). They were able to confirm their results and
show exponential convergence to the global minimum.

3.3 Global Optimization with Evolutionary Games

In the following we motivate the application of evolutionary games to the problem of
global function minimization. We introduced the notion of players and populations in
Chapter 2 and presented the general process and the dynamics in Section 2.3. Notably,
in our method the population consists of players, each with its own strategy. This
level of individuality does not appear in the previously presented method from Carrillo
et al., where individuals are purely characterized by their location. We are therefore
required to think in a different way when discussing a potential minimization method,
always considering the individual players and the underlying game.

3.3.1 Motivation

In Section 2.3 we described the dynamics in the population, consisting of the location
update by randomly sampling a strategy and the mixed strategy update depending on
the relative success of each pure strategy. The ODEs in Eq. (2.5.6) then follow from
this general description. However, there are three objects that are considered as given,
which we could modify in order to influence the dynamics: The set of strategies U ,
the velocity field e : Rd × U → Rd, and the payoff function J : (Rd × U)2 → R. From
Theorem 2.17 it follows that for a specific U , e, and J , each initial population Σ̄ has
exactly one clear evolution, according to the dynamics Eq. (2.5.6).

In order to optimize a function, the idea is now to chose U , e and J in a way which
guarantees the occurrence of an equilibrium, located exactly in the global minimum
of the function. For example, a reasonable simplification which greatly increases the
intuitive understanding of the process is the choice U ⊂ Rd and e(x, u) = u, such that
U directly describes possible directions of movement. The exact choices as they were
used in our optimization algorithm will be presented in Section 5.4.
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Chapter 3 Global Function Minimization

3.3.2 Convergence and solution
Given the initial population Σ̄ ∈P(S) we denote by Σ : [0, T ]→P(S) the Lagrangian
solution as defined in Definition 2.16, which is the population that arises by following
the dynamics described in Eq. (2.5.6).

We say that the population reached a steady state if there exists some t̂ < T such
that

Σt = Σ̂ for t̂ ≤ t ≤ T, (3.3.1)
where Σ̂ ∈ P(S). This does not yet imply convergence towards a single location or
even convergence towards a global minimum, but it provides an important point of
view: In order to successfully develop our algorithm we have to assure the existence of
population states which do not change over time.

To successfully find the global minimum of a function we want to converge towards
a stable state of the form

Σ̂ = δŷ,

with the point of consensus ŷ = (x̂, σ̂) located very close to the global minimum
x∗ = arg min g(x), that is

∥x̂− x∗∥ ≤ ϵ for some ϵ > 0. (3.3.2)

3.4 Weighted Replicator Dynamics
The payoff function is the main component for the evolution of the mixed strategy of
each player, which in turn decides on its movement. Therefore, it plays a central role in
the dynamics of the population. At the same time, the payoff function defines a game
between two players, thus it does not contain any information on the general state of
the population but only describes 1-on-1 interactions. We argue that it is necessary to
implement an additional mechanism, as the interactions with players y = (x, σ) with a
low function value g(x) should have more influence on the population dynamics.

Motivated by the procedure of Carrillo et al. we give exponentially more weight to
players with low function values. Let ωα

g (x) : Rd → (0, 1] be defined as in [Car+16],
that is

ωα
g (x) := exp(−αg(x)). (3.4.1)

We introduce the weight function wΣt : S → (0, 1], defined for any distribution
Σt ∈P1(S) as

wΣt(y) = wΣt(x, σ) :=
ωα

g (x)∫
S ω

α
g (x′)dΣt(x′, σ′) . (3.4.2)

Note that with this choice, for any Σt ∈ P1(S) and any y ∈ S it directly follows
wΣt(y) ∈ (0, 1] and ∫

S
wΣt(y)dΣt(y) = 1. (3.4.3)
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3.4 Weighted Replicator Dynamics

We then modify the ODE describing the strategy evolution, as given in Eq. (2.5.6),
to the following ODE

σ̇t =
(∫

C
wΣt(x′, σ′)

(∫
U
J
(
x, ·, x′, u′) dσ′(u′)

−
∫

U

∫
U
J
(
x,w, x′, u′) dσ′(u′)dσ(w)

)
dΣt(x′, σ′)

)
σ.

(3.4.4)

The evolution in location does not depend on interactions with other players, so that
our alteration only influences the dynamics of how the mixed strategy of each individual
gets adjusted.
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Chapter 4

Spatially Compact Populations and
Weighted Replicator Dynamics

We have by now introduced spatially inhomogeneous evolutionary games and we argued
that it is possible to use this framework for global function minimization. In order to
do so, we introduced a weighted version of the replicator dynamics.

In this chapter we will retrace the proof as done by Ambrosio et al. in [Amb+18] for
our modified setting. In order to do so we introduce additional assumptions on the
initial distribution, notably compact support in its first component, and use it in order
to deduce bounds and Lipschitz properties of J , f , ω and w. Using these we can then
reformulate the proof following the lines of Section 2.5.

4.1 Spatially compact Initial Distributions
In the following we will show that given an initial distribution Σ̄ with compact support
in its spatial component, the resulting population Σt will also always be compactly
supported at any time t ∈ [0, T ], and additionally we can even calculate its boundary.

In order to simplify the discussion and notation we will start by making stronger
assumptions on the set of strategies U and the function e, but they can actually be
relaxed as we show in Remark 4.1 and an analogous discussion could still be done.

We consider the compact set of strategies U ⊂ Rd with

U ⊂ BRU
(4.1.1)

for some RU > 0, where Br := {x ∈ Rd : ∥x∥ ≤ r} is the closed ball of radius r > 0
around 0. We also consider the velocity field e(x, u) = u. This leads to the following
dynamic describing the change in location of some player y = (x, σ)

ẋ = a(y) = a(x, σ) =
∫

U
udσ(u). (4.1.2)

As U ⊂ BRU
it follows

|ẋ| ≤
∫

U
|u|dσ(u) ≤ RU . (4.1.3)
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Chapter 4 Spatially Compact Populations and Weighted Replicator Dynamics

Given some initial location x0 ∈ Rd this leads to

|xt| ≤ |x0|+ t ·Ru. (4.1.4)

Therefore, if the initial location of all particles is bounded, there exists a bound at any
time t > 0.

Let us consider an initial population Σ̄ ∈ P(S) with compact support in its first
marginal. This implies that there exists some R0 > 0 so that

supp(Σ̄) ⊂ BR0 ×P(U) =: S0 (4.1.5)

The flow map induced by a Lagrangian solution describing the evolution of a population,
as defined in Definition 2.16, has to satisfy the ODE given in Eq. (4.1.2). Using
Eq. (4.1.4) it follows that at any time t ∈ [0, T ] it holds

supp(Σt) ⊂ BRt ×P(U) =: St, (4.1.6)

where Rt = R0 + t ·RU . Note that S0 ⊂ St ⊂ ST holds.
Motivated by the previous discussion, we now define the space Ã ⊂ A as

Ã :=
{

Λ ∈ C([0, T ]; (P1(S),W1)) : Λ0 = Σ̄ and supp(Λt) ⊂ St for all t ∈ [0, T ]
}
,

(4.1.7)
with A as in Eq. (2.5.22). Any curve describing a valid population starting from Σ̄,
according to the dynamics in both location and strategy, has to be contained in Ã .

Remark 4.1
We can relax the assumptions on the velocity field e and on the exact structure of U , as
long as U is compact and e is Lipschitz continuous, as originally assumed in [Amb+18].
Indeed, we can still find a boundary on |ẋt| given the original ODE ẋ =

∫
U e(x, u)dσ(u),

by using the fact that e is Le-Lipschitz:

|ẋ| ≤
∫

U
|e(x, u)|dσ(u)

≤ sup
u∈U
|e(x, u)|

≤ sup
u∈U
|e(0, u)|+ Le · |x|,

leading to
|ẋ| ≤ e∗ + Le · |x|, (4.1.8)

with e∗ := supu∈U |e(0, u)|. It follows

|xt| ≤ |x0| · exp(t · Le) + t · e∗. (4.1.9)
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4.2 Local Bounds on the Payoff Function J

Using this we can define

RT := R0 · exp(t · Le) + t · e∗, (4.1.10)

which also leads to a bound at time t. For any dynamic process following a spatial
evolution as described in Eq. (2.5.6), the evolution of a spatially bounded initial
distribution will always stay spatially bounded.

4.2 Local Bounds on the Payoff Function J

As both the spatial component of the population and the set of strategies U are
compact, we can now deduce upper bounds on the payoff function J , using its Lipschitz
property.

Lemma 4.2 (Bound on J)
Let J : (Rd × U)2 → R be LJ -Lipschitz. Then, for any x, x′ ∈ BRT

and u, u′ ∈ BRU

for some RU , RT > 0 the following bound holds∣∣J(x, u, x′, u′)
∣∣ ≤ |J(0, 0, 0, 0)|+ 2LJ (RT +RU ) =: J̄ . (4.2.1)

Proof. As J is LJ -Lipschitz, it has to be LJ -Lipschitz in each variable. Thus for any
x, x′ ∈ BRT

and u, u′ ∈ BRU
we can conclude∣∣J(x, u, x′, u′)
∣∣ ≤ |J(0, 0, 0, 0)|+ LJ

(
|x|+ |u|+ |x′|+ |u′|

)
≤ |J(0, 0, 0, 0)|+ 2LJ (RT +RU ) =: J̄ . 2

4.3 Local Bounds on the Interaction Term f

Using the bound on the payoff function J we argue that there exist similar boundaries
on the interaction term f(y, y′), as long as the population is contained in ST .

Lemma 4.3 (Bound on f)
For any y, y′ ∈ ST , with ST as defined in Eq. (4.1.6) given some RU , R0 > 0, it holds∥∥f(y, y′)

∥∥ ≤ 2J̄ + LJ +RU . (4.3.1)

In order to prove this statement we will need the following estimate, which can also be
found in [Amb+18, Lemma. 3.4].

Lemma 4.4
Let σ ∈P(U) and z ∈ Lip(U). Then the following estimate holds

∥zσ∥BL ≤ ∥z∥Lip ∥σ∥BL . (4.3.2)
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Remark 4.5
Here zσ can be interpreted as a measure, in the sense of densities, according to
zσ(A) =

∫
A zdσ. For more information see the Radon-Nikodym theorem, presented

e.g. in [AFP00, Thm. 1.28].

We start with the proof of Lemma 4.4.

Proof (Lemma 4.4). The following computation proves the statement.

∥zσ∥BL = sup
{∫

U
φd(zσ) : φ ∈ Lip(U), ∥φ∥Lip ≤ 1

}
= sup

{∫
U
φ(u)z(u)dσ(u) : φ ∈ Lip(U), ∥φ∥Lip ≤ 1

}
≤
(

sup
u∈U

z(u)
)
· sup

{∫
U
φ(u)dσ(u) : φ ∈ Lip(U), ∥φ∥Lip ≤ 1

}

≤
(

sup
u∈U

z(u) + Lip(z)
)
· sup

{∫
U
φ(u)dσ(u) : φ ∈ Lip(U), ∥φ∥Lip ≤ 1

}
= ∥z∥Lip · ∥σ∥BL . 2

We can now proceed with the proof of Lemma 4.3

Proof (Lemma 4.3). Recall that we defined the norm on Y = Rd × F (U) such that
we have ∥∥f(y, y′)

∥∥
Y =

∥∥fx(y, y′)
∥∥+

∥∥fσ(y, y′)
∥∥

BL ,

with f = (fx, fσ) defined as in Eq. (2.5.4). In order to find a boundary on ∥fx(y, y′)∥,
we use the fact that U is compact:

∥∥fx(y, y′)
∥∥ =

∥∥fx
(
(x, σ), (x′, σ′)

)∥∥ =
∥∥∥∥∫

U
udσ(u)

∥∥∥∥ ≤ Ru.

Now for the second part, we use Lemma 4.4 as well as the LJ -Lipschitz property of
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4.4 Properties of the Weight Function w

the payoff function J and the boundary shown in Lemma 4.2. It follows∥∥fσ(y, y′)
∥∥ =

∥∥fσ
(
(x, σ), (x′, σ′)

)∥∥
BL

=
∥∥∥∥(∫

U
J(x, ·, x′, u′)dσ′(u′)−

∫
U×U

J(x,w, x′, u′)dσ′(u′)dσ(w)
)
σ

∥∥∥∥
BL

≤
∥∥∥∥∫

U
J(x, ·, x′, u′)dσ′(u′)−

∫
U×U

J(x,w, x′, u′)dσ′(u′)dσ(w)
∥∥∥∥

Lip
· ∥σ∥BL

=
(

sup
u∈U

∣∣∣∣∫
U
J(x, u, x′, u′)dσ′(u′)−

∫
U×U

J(x,w, x′, u′)dσ′(u′)dσ(w)
∣∣∣∣

+ Lip
(∫

U
J(x, ·, x′, u′)dσ′(u′)−

∫
U×U

J(x,w, x′, u′)dσ′(u′)dσ(w)
))
∥σ∥BL

≤ (2 sup {|J(x1, u1, x2, u2)| : x1, x2 ∈ BRT
, u1, u2 ∈ BRU

}+ LJ) · ∥σ∥BL

≤
(
2J̄ + LJ

)
· sup

φ∈Lip(U)
∥φ∥Lip≤1

∫
U
φ(u)dσ(u)

≤
(
2J̄ + LJ

)
· sup

φ∈Lip(U)
∥φ∥Lip≤1

sup
u∈U

φ(u)

≤ 2J̄ + LJ ,

as for any Lipschitz continuous function φ with ∥φ∥Lip ≤ 1 we also have that
supu∈U |φ(u)| ≤ 1. This concludes the proof and provides the following boundary
on the interaction term: ∥∥f(y, y′)

∥∥ ≤ 2J̄ + LJ +RU . (4.3.3)
2

4.4 Properties of the Weight Function w

Before we can retrace the proof as done in Section 2.5, we still need additional properties
on the weight function w, which we introduced in Eq. (3.4.2). In this section we will
show boundedness and Lipschitz continuity of both ωα

g and wΣt on the space ST , for
any Σ ∈ Ã and t ∈ [0, T ]. Additionally we will show stability estimates of wΣt with
respect to the measure Σt.

In the following parts of this chapter we extensively use the local Lipschitz continuity.
For completeness we include the following definition.

Definition 4.6 (Local Lipschitz continuity)
Given two metric spaces (X,dX) and (Y,dY ), where dX denotes the metric on the set
X and dY is the metric on set Y , a function f : X → Y is called locally Lipschitz
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continuous if for every x ∈ X there exists a neighborhood U of x such that f restricted
to U is Lipschitz continuous.

The following proposition makes the property more usable for our needs.

Proposition 4.7
If (X,dX) is a locally compact metric space, then f is locally Lipschitz if and only if it
is Lipschitz continuous on every compact subset of X.

Proof. The definition of a locally compact metric space implies that for every x ∈ X
there exists a compact neighborhood U ∋ x. Therefore, if f is Lipschitz continuous on
every compact subset of X it follows that f is Lipschitz on all compact neighborhoods
of any point x ∈ X, which proves second part of the proposition.

In order to prove the first part, we suppose that there exists some compact subset
C ⊂ X such that f is not Lipschitz continuous on C. Then the function

S(x, y) := dY (f(xn), f(yn))
dX(xn, yn)

has to be unbounded for x, y ∈ C, x ̸= y, and there exist two sequences xn, yn ∈ C such
that S(xn, yn)→∞ as n→∞. Since C is compact there exist convergent subsequences
xnk
→ x̄ and ynk

→ ȳ for k → ∞. As f is continuous it has to be bounded on the
compact set C, thus implying that x̄ = ȳ. Now by definition of f being locally Lipschitz,
there has to exist a neighborhood U around x̄ such that f |U is Lipschitz continuous,
leading to S(xnk

, ynk
) ≤ L for some finite L > 0. This contradiction concludes the

proof. 2

Lemma 4.8 (ωα
g is bounded and locally Lipschitz)

Let g be a positive locally Lipschitz continuous function and α > 0. Then the function
ωα

g , as defined in Eq. (3.4.1) is locally Lipschitz and there exists ω∗ > 0 so that for any
t ∈ [0, T ] and any y = (x, σ) ∈ St it holds

ωα
g (x) ≥ ω∗. (4.4.1)

Proof. We first prove the lower bound. For any t ∈ [0, T ] we have St ⊂ ST . It is
therefore sufficient to show that there exists ω∗ > 0 so that

ω∗ ≤ inf
(x,σ)∈ST

ωα
g (x) = inf

x∈BRT

ωα
g (x). (4.4.2)

As g is continuous its supremum on a compact set has to be finite. Therefore there
exists some g∗ ∈ R so that for any x ∈ BRT

it holds g∗ ≥ g(x). Using this we conclude
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the proof of the lower bound with

inf
x∈BRT

ωα
g (x) = inf

x∈BRT

exp (−αg(x))

= exp
(
−α

(
sup

x∈BRT

g(x)
))

≥ exp (−α (g∗))
=: ω∗.

In order to prove the local Lipschitz property of ωα
g we use the fact that g is locally

Lipschitz. As Rd is a locally compact metric space, g is Lg,C-Lipschitz continuous on
any compact subspace C ⊂ Rd. The exponential function is 1-Lipschitz on negative
numbers, thus ∣∣∣ωα

g (x1)− ωα
g (x2)

∣∣∣ = |exp (−αg(x1))− exp (−αg(x2))|

≤ |−α (g(x1)− g(x2))|
= α |g(x1)− g(x2)|
≤ αLg,C |x1 − x2| .

This concludes that ωα
g is Lipschitz on any compact space C ⊂ Rd, and it is therefore

locally Lipschitz. 2

Remark 4.9
The discussion in Section 4.1 was done in order to show, that it is enough to consider
the space ST , given some initial parameters RU , R0 > 0. As ωα

g is locally Lipschitz it
is notably Lipschitz on the space BRT

, and we denote its Lipschitz constant there with
Lω.

We will now show similar results on w.

Lemma 4.10 (w bounded and Lipschitz)
Let g be a positive and locally Lipschitz function and α > 0, let with St defined as in
Eq. (4.1.6) for some RU , R0 > 0. For any Σ ∈ Ã we define wΣt as in Eq. (3.4.2) for
any t ∈ [0, T ]. Then wΣt is Lipschitz on ST and it holds

|wΣt(y)| ≤ 1
ω∗
, (4.4.3)

for any y ∈ S, ω∗ as in Lemma 4.8.
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Proof. We first prove the bound. As Σt is a probability distribution with supp(Σt) ⊂
St ⊂ ST and 0 < ωα

g ≤ 1, it follows

|wΣt(y)| =
ωα

g (x)∫
S ω

α
g (x′)dΣt(x′, σ′)

≤ 1∫
S ω

α
g (x′)dΣt(x′, σ′)

= 1∫
ST
ωα

g (x′)dΣt(x′, σ′)

≤ 1
inf(x′,σ′)∈ST

ωα
g (x′)

≤ 1
ω∗
.

Next we show the Lipschitz property of wΣt on ST . As stated in Remark 4.9, the
function ωα

g is Lω-Lipschitz on the space BRT
. Using this together with the lower

bound ω∗ on ωα
g , it follows that for any y1, y2 ∈ ST we have

|wΣt(y1)− wΣt(y2)| = |wΣt(x1, σ1)− wΣt(x2, σ2)|

=
∣∣∣∣∣ ωα

g (x1)∫
S ω

α
g (x′)dΣt(x′, σ′) −

ωα
g (x2)∫

S ω
α
g (x′)dΣt(x′, σ′)

∣∣∣∣∣
≤

∣∣∣ωα
g (x1)− ωα

g (x2)
∣∣∣∫

S ω
α
g (x′)dΣt(x′, σ′)

≤ Lω |x1 − x2|
ω∗

≤ Lω

ω∗
(|x1 − x2|+ ∥σ1 − σ2∥BL)

= Lω

ω∗
dS(y1, y2).

This concludes the proof. 2

Remark 4.11
As S0 ⊂ St ⊂ ST it directly follows that wΣt is also Lipschitz on St for any t ∈ [0, T ].

Lemma 4.12 (Stability estimate on w)
Let Λ,Λ′ ∈ Ã and t, s ∈ [0, T ]. Let wΛt , wΛ′

s
be defined according to Eq. (3.4.2). Then

for any y ∈ S we have ∥∥∥wΛt(y)− wΛ′
s
(y)
∥∥∥ ≤ Lω

ω2
∗
·W1(Λt,Λ′

s). (4.4.4)
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Proof. As Λ,Λ′ ∈ Ã it follows that the support of both Λ and Λ′ is bounded by ST .
Using this, Lemma 4.8, and the Lipschitz-property of ωα

g on BRT
, we can conclude the

proof with the following computation:
∥∥∥wΛt(y′)− wΛ′

s
(y′)

∥∥∥ =
∥∥∥∥∥ ωα

g (x′)∫
S ω

α
g (z)dΛt(z, σ) −

ωα
g (x′)∫

S ω
α
g (z)dΛ′

s(z, σ)

∥∥∥∥∥
=

∥∥∥ωα
g (x′) ·

(∫
S ω

α
g (z)dΛ′

s(z, σ)−
∫

S ω
α
g (z)dΛt(z, σ)

)∥∥∥∥∥∥∫S ωα
g (z)dΛt(z, σ)

∥∥∥ · ∥∥∥∫S ωα
g (z)dΛ′

s(z, σ)
∥∥∥

≤

∥∥∥ωα
g (x′)

∥∥∥ · ∥∥∥∫S ωα
g (z)d(Λ′

s − Λt)(z, σ)
∥∥∥

ω2
∗

≤ 1
ω2

∗
·
∥∥∥∥∫

ST

ωα
g (z)d(Λ′

s − Λt)(z, σ)
∥∥∥∥

≤ 1
ω2

∗
LωW1(Λt,Λ′

s). 2

4.5 Existence and Uniqueness of Lagrangian Solutions
With these preliminary results we can now retrace the proof as done in Section 2.5.
Most notably we will prove the stability estimates on the modified vector field b̃Σ, but
most other parts can be proven exactly as done by Ambrosio et al. in [Amb+18] so
that we often refer to the original proofs. For completeness we provide all results and
statements, with the adapted notation where appropriate.

4.5.1 General problem and solution
We assume the initial distribution Σ̄ to have compact support, that is

supp(Σ̄) ⊂ S0, (4.5.1)

for some R0 > 0. For any compact set of strategies U we can then define St, Rt and Ã
as done in Remark 4.1 and Section 4.1.

Following [Amb+18, Section 3.3] we now define the problem and state the main
theorem regarding its solution. By endowing S with the distance

dS(y1, y2) := |x1 − x2|+ ∥σ1 − σ2∥BL yi = (xi, σi). (4.5.2)

it follows for the initial distribution that the first moment of the first marginal is finite:∫
S
|x|dΣ̄(x, σ) =

∫
S0
|x|dΣ̄(x, σ) ≤ sup

(x,σ)∈S0

|x| = R0 <∞. (4.5.3)
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Therefore Σ̄ ∈P1(S). For every continuous curve Σ ∈ C([0, T ]; P1(S)) we can then
define a time dependent vector field

b̃Σ(t, y) = b̃Σt(y) =
∫

S
wΣt(y′)f(y, y′)dΣt(y′), (4.5.4)

with the unchanged interaction term f = (fx, fσ) as defined in Eq. (2.5.4) and the
weight function wΣt : S → (0, 1] as defined in Eq. (3.4.2). The functions wΣt(·) and
f(y, ·) are both continuous. Note also that as the support of Σt is bounded and
both wΣt(·) and f(x, ·) are Lipschitz continuous, then their product on this bounded
space is also Lipschitz continuous, thus providing a growth at most linear. Therefore
wΣt(·)f(y, ·) is Bochner integrable and we can therefore interpret the integral above as
a Bochner integral (see Remark 2.15). We will now consider the following ODE in Y ,
using the modified vector field b̃Σ:

ẏt = b̃Σt(yt), ys = y. (4.5.5)

A solution to Eq. (4.5.5) then also satisfies

ẋt = a(xt, σt) =
∫
U

e(xt, u)dσt(u),

σ̇t =
(∫

C

wΣt(x′, σ′)
(∫

U

J(x, ·, x′, u′)dσ′(u′)

−
∫
U

∫
U

J(x,w, x′, u′)dσ′(u′)dσ(w)
)

dΣt(x′, σ′)
)
σ,

(4.5.6)

which is an adjusted version of the unweighted case (see Eq. (2.5.6)). We then denote
by ỸΣ(t, s, y) the flow map induced by Eq. (4.5.5).

With these adaptations we now want to show existence and uniqueness of a Lagrangian
solution, following its definition in Definition 2.16, but this time regarding the ODE
Eq. (4.5.5). This can be stated in the form of the following theorem.
Theorem 4.13 (Adapted: Existence and Uniqueness of Lagrangian solution)
Suppose that J : (Rd × U)2 → R and e : Rd × U → R are Lipschitz maps. Let
f : S × S → Y be defined as in Eq. (2.5.4), and wΣt : S → (0, 1] be defined as in
Eq. (3.4.2) for any Σt ∈P1(S). Then, for every initial distribution Σ̄ ∈P1(S) with
support in S0 there exists a unique Lagrangian solution Σ associated to the ODE
Eq. (4.5.5). That is, for b̃Σ as defined in Eq. (4.5.4) the associated flow map ỸΣ(t, s, ·)
satisfies

Σt = ỸΣ(t, 0, ·)#Σ̄ for every 0 ≤ t ≤ T. (4.5.7)
Moreover, there exists L̃ ≥ 0 such that for every pair of initial data Σ̄1, Σ̄2 ∈P1(S),
the corresponding solutions Σ1

t ,Σ2
t satisfy

W1(Σ1
t ,Σ2

t ) ≤ eL̃tW1(Σ̄1, Σ̄2) ∀t ∈ [0, T ]. (4.5.8)
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In order to prove this theorem we proceed as done in [Amb+18] (see also Section 2.5).
As we did not change the interaction term f the original results as stated in Section 2.5.2
still hold, and we can directly proceed by showing the stability estimates on b̃Σ and Ỹ.

4.5.2 Stability estimates

As we modified the time dependent vector field b̃Σ(t, ·) : S → Y , as defined in Eq. (4.5.4),
it is necessary to formally prove stability estimates similar to [Amb+18, Prop. 4.3] in
order to continue with the proof.

Proposition 4.14 (Properties of b̃t)
Let Λ,Λ′ ∈ Ã , let b̃Λ, b̃Λ′ be defined as in Eq. (4.5.4), with f as in Eq. (2.5.4) L-Lipschitz
and w as in Eq. (3.4.2). Then

(i)
∥∥∥b̃Λ(t, y)

∥∥∥ ≤ ∥f(y0, y0)∥+ L̃ ∥y − y0∥+ L̃
∫

S ∥y′ − y0∥ dΛ(y′) for all y0 ∈ Y ;

(ii)
∥∥∥b̃Λ(t, y)− b̃Λ(t, z)

∥∥∥ ≤ L̃ ∥y − z∥;
(iii) ∥b̃Λ(t, y)− b̃Λ(s, y)∥ ≤ L̃W1(Λt,Λs);

(iv) ∥b̃Λ(t, y)− b̃Λ′(t, y)∥ ≤ L̃W1(Λt,Λ′
t);

for some L̃ ≥ L, depending on the exact choice of weight function w, payoff function J
and strategy space U .

Remark 4.15
While the constant L̃ in this proposition is larger than in the original version, the
actual dependence on the outer factors does not change by much. Section 2.5.2 states
dependence of L on Le, LJ and diam(U), so that the only additional dependence we
introduced is on the weight function w.

Proof. As sup |wΛt(y′)| = 1, property (i) follows by applying Eq. (2.5.10):

∥b̃Λ(t, y)∥ =
∥∥∥∥∫

S
wΛt(y′)f(y, y′)dΛt(y′)

∥∥∥∥
≤
∫

S
|wΛt(y′)|

∥∥f(y, y′)
∥∥dΛt(y′)

≤ 1 ·
∫

S

(
∥f(y0, y0)∥+ L(∥y − y0∥+ ∥y′ − y0∥)

)
dΛt(y′)

= ∥f(y0, y0)∥+ L∥y − y0∥+ L

∫
S
∥y′ − y0∥dΛt(y′)

≤ ∥f(y0, y0)∥+ L̃∥y − y0∥+ L̃

∫
S
∥y′ − y0∥dΛt(y′).
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(ii) follows from the L-Lipschitz property of f in its first argument, together with Λt

being a probability measure and
∫

S wΛt(y)dΛt(y) = 1

∥b̃Λ(t, y)− b̃Λ(t, z)∥ =
∥∥∥∥∫

S
wΛt(y′)

(
f(y, y′)− f(z, y′)

)
dΛt(y′)

∥∥∥∥
≤
∫

S

∣∣wΛt(y′)
∣∣ ∥∥f(y, y′)− f(z, y′)

∥∥dΛt(y′)

≤
∫

S

∣∣wΛt(y′)
∣∣ (L ∥y − z∥) dΛt(y′)

≤
∫

S

∣∣wΛt(y′)
∣∣ dΛt(y′) · L ∥y − z∥

= L ∥y − z∥
≤ L̃ ∥y − z∥ .

As the weight function depends on the used measure, the proof for (iii) can not be done
in the same way as in the original paper. We first separate this term into two parts.

∥b̃Λ(t, y)− b̃Λ(s, y)∥ =
∥∥∥∥∫

S
wΛt(y′)f(y, y′)dΛt(y′)−

∫
S
wΛs(y′)f(y, y′)dΛs(y′)

∥∥∥∥
≤
∥∥∥∥∫

S
wΛt(y′)f(y, y′)dΛt(y′)−

∫
S
wΛt(y′)f(y, y′)dΛs(y′)

∥∥∥∥
+
∥∥∥∥∫

S
wΛt(y′)f(y, y′)dΛs(y′)−

∫
S
wΛs(y′)f(y, y′)dΛs(y′)

∥∥∥∥
=
∥∥∥∥∫

S
wΛt(y′)f(y, y′)d(Λt − Λs)(y′)

∥∥∥∥
+
∥∥∥∥∫

S
(wΛt(y′)− wΛs(y′))f(y, y′)dΛs(y′)

∥∥∥∥
≤
∥∥∥∥∫

S
wΛt(y′)f(y, y′)d(Λt − Λs)(y′)

∥∥∥∥
+
∫

S

∥∥(wΛt(y′)− wΛs(y′))
∥∥ ∥∥f(y, y′)

∥∥dΛs(y′)

=: I + II.

We will start with the first part I. Note that supp(Λt − Λs) ⊂ ST . Using the Lipschitz
properties of f and wΛt on ST , together with the bound shown in Lemma 4.3, we can
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show that (wΛt(·)f(y, ·)) is Lipschitz on ST by doing the following computation:

∥∥wΛt(y′
1)f(y, y′

1)− wΛt(y′
2)f(y, y′

2)
∥∥ ≤ ∥∥(wΛt(y′

1)− wΛt(y′
2)
)
f(y, y′

1)
∥∥

+
∥∥wΛt(y′

1)
(
f(y, y′

1)− f(y, y′
2)
)∥∥

≤ sup
y′∈ST

f(y, y′)
∥∥wΛt(y′

1)− wΛt(y′
2)
∥∥

+ sup
y′∈ST

wΛt(y′)
∥∥f(y, y′

1)− f(y, y′
2)
∥∥

≤
(
2J̄ + LJ +RU

)
· Lw

∥∥y′
1 − y′

2
∥∥+ 1 · L

∥∥y′
1 − y′

2
∥∥

=
((

2J̄ + LJ +RU

)
Lw + L

) ∥∥y′
1 − y′

2
∥∥

= Lf,w

∥∥y′
1 − y′

2
∥∥ ,

with Lf,w :=
((

2J̄ + LJ +RU

)
Lw + L

)
.

Now, using the dual definition of the 1-Wasserstein norm (see Theorem 2.4) and the
fact that wΛt

(·)f(y,·)
Lf,w

is 1-Lipschitz, we have

I =
∥∥∥∥∫

S
wΛt(y′)f(y, y′)d(Λt − Λs)(y′)

∥∥∥∥
= Lf,w ·

∥∥∥∥∥
∫

S

wΛt(y′)f(y, y′)
Lf,w

d(Λt − Λs)(y′)
∥∥∥∥∥

≤ Lf,w · sup
φ∈Lipb(X)
Lip(φ)≤1

∥∥∥∥∫
S
φ(y′)d(Λt − Λs)(y′)

∥∥∥∥
= Lf,w ·W1(Λt,Λs).

The bound on II follows from Lemma 4.12 and Lemma 4.3, as

II =
∫

S

∥∥(wΛt(y′)− wΛs(y′))
∥∥ ∥∥f(y, y′)

∥∥dΛs(y′)

≤ sup
y′∈ST

∥∥wΛt(y′)− wΛs(y′)
∥∥ · sup

y,y′∈ST

∥∥f(y, y′)
∥∥

≤ 1
ω2

∗
LωW1(Λt,Λs) ·

(
2J̄ + LJ +RU

)
.
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We can now conclude the proof of (iii):

∥b̃Λ(t, y)− b̃Λ(s, y)∥ ≤ I + II

≤ Lf,w ·W1(Λt,Λs) + 1
ω2

∗
LωW1(Λt,Λs) · (2J̄ + LJ +RU )

=
(
Lf,w + 1

ω2
∗
Lω · (2J̄ + LJ +RU )

)
W1(Λt,Λs)

=: L̃W1(Λt,Λs),

with L̃ ≥ L. The proof of (iv) is analogous.
Finally, we will show the last statement (v). For any R > 0 we can find a θ > 0 so that
Eq. (2.5.9) holds, that is

y + θf(y, y′) ∈ S ∀y, y′ ∈ S ∩BR.

As for any Λt ∈P(S) and any y′ ∈ S we have wΛt(y′) ∈ (0, 1]. Now, as S is convex, it
holds

y + θwΛt(y′)f(y, y′) ∈ S ∀y, y′ ∈ S ∩BR,∀Λt ∈P(S).

The proof then follows exactly as the original proof in [Amb+18]:

y + θb̃Λ(t, y) =
∫

S

(
y + θwΛt(y′)f(y, y′)

)
dΛt(y′) ∈ S,

as S is convex and closed and Λt is a probability measure. 2

We now effectively have similarly strong stability estimates on b̃Λ as we had on bΛ
(see Proposition 2.18). We can now state the corresponding properties on ỸΛ, but the
actual content does not differ from Corollary 2.20. The proof can be done in the same
way as done by Ambrosio et al. for [Amb+18, Cor. 4.4].

Corollary 4.16 (Properties of Ỹ)
Let Λ,Λi ∈ Ã and let b̃Λ, b̃Λi be defined as in Eq. (4.5.4). Then

(i) for every y ∈ S and s ∈ [0, T ] there exists a unique solution yt = ỸΛ(t, s, y) from
[s, T ] to S of class C1 of the Cauchy problem

ẏr = b̃Λ(r, yr) = b̃Λr (yr), ys = y; (4.5.9)

(ii) ỸΛ(t, 0, y) satisfies the estimate

∥ỸΛ(t, 0, y)− y0∥ ≤
(
∥y − y0∥+ tB̃(Λ, t, y0)

)
eL̃t, (4.5.10)

where

B̃(Λ, t, y0) := ∥f(y0, y0)∥+ L̃ max
s∈[0,t]

∫
S
∥y′ − y0∥dΛs(y′); (4.5.11)
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(iii) ỸΛ(·, 0, y) satisfies the estimate

∥ỸΛ(t, 0, y)−ỸΛ(t′, 0, y)∥ ≤ |t−t′|
[
B̃(Λ, T, y0) + L̃

(
∥y − y0∥+ TB̃(Λ, T, y0)

)
eL̃T

]
;

(4.5.12)

(iv) ỸΛ(t, s, ·) satisfies the estimate

∥ỸΛ(t, s, y)− ỸΛ(t, s, y′)∥ ≤ eL̃(t−s)∥y − y′∥, 0 ≤ s ≤ t ≤ T ; (4.5.13)

(v) more generally, ỸΛ1 , ỸΛ2 satisfy the estimate for 0 ≤ s ≤ t ≤ T :

∥ỸΛ1(t, s, y1)− ỸΛ2(t, s, y2)∥ ≤ eL̃(t−s)∥y1 − y2∥+ L̃

∫ t

s
eL̃(t−τ)W1(Λ1

τ,Λ2
τ)dτ.

(4.5.14)

4.5.3 Proof by contractivity
We still consider the initial population Σ̄ ∈P1(S) with compact support in S0, with
S0 as in Section 4.1 for some R0 > 0. Recall the definition of the space of possible
valid populations (see Eq. (4.1.7)) as

Ã =
{

Λ ∈ C([0, T ]; (P1(S),W1)) : Λ0 = Σ̄ and supp(Λt) ⊂ St for any t ∈ [0, T ]
}
,

with St as introduced in Section 4.1, but we remind the reader of Remark 4.1 so that St

and Rt do not depend on our specific assumptions on U or e, as long as U is compact
and e is Lipschitz.

This metric space is complete when endowed with the distance

dsup(Λ1,Λ2) := sup
t∈[0,T ]

W1(Λ1
t ,Λ2

t ). (4.5.15)

Indeed, as (P1(S),W1) is complete it follows that

(A ,dsup) ⊂ (C([0, T ]; (P1(S),W1)); dsup)

is a complete metric space. Then, as Ã ⊂ A is a closed subspace it also has to be
complete.

While Ã differs from the space A , as introduced in Eq. (2.5.22), we also define
the map T̃ : S → S with the same procedure as in Eq. (2.5.23): given Λ ∈ Ã we
first compute the flow map ỸΛ(t, s, ·) associated to b̃Λ and then we define the curve
T̃ [Λ] : [0, T ]→P1(S) by

T̃ [Λ]t := ỸΛ(t, 0, ·)#Σ̄. (4.5.16)

In the original paper the authors state that T̃ maps Ã to Ã . While this still holds
in our case, we still include the according proof.
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Proposition 4.17
T̃ maps Ã to Ã .

Proof. For any Λ ∈ Ã it is clear that ỸΛ(t, 0, ·)#Σ̄ is a probability measure. Addi-
tionally, it holds

ỸΛ(0, 0, ·)#Σ̄ = Σ̄.

It is left to show, that supp
(
ỸΛ(t, 0, ·)#Σ̄

)
⊂ St.

Indeed, as ỸΛ(t, 0, ·) has to satisfy the ODEs Eq. (4.5.6) we can deduce from the
discussion done in Section 4.1 that given some y0 = (x0, σ0) ∈ S0 we also have a bound
on the spatial component of yt := ỸΛ(t, 0, y0). Notably, it has to hold YΛ(t, 0, y0) ∈ St,
which concludes that supp

(
ỸΛ(t, 0, ·)#Σ̄

)
∈ St. 2

Now we have the same properties on Ã and T̃ as Ambrosio et al. showed originally
on A and T : Ã is a complete metric space and T̃ : Ã → Ã . Thanks to Corollary 4.16
we also have the same stability estimates as in Corollary 2.20, while taking the modified
constant L̃ ≥ L into account. We can therefore proceed exactly as originally done by
Ambrosio et al. All the results can be proven identically as they do not depend on the
exact choice of L, but only require some constant L > 0 such that we can replace it
with the modified constant L̃ > 0. We therefore chose to omit the proofs of the two
remaining results and refer to [Amb+18].

Lemma 4.18
For every Λ,Λ1,Λ2 ∈ Ã we have

W1(T̃ [Λ]t, T̃ [Λ]s) ≤ |t− s|
[
B̃(Λ, T, y0) + L̃

(∫
S
∥y − y0∥dΣ̄(y) + TB̃(Λ, T, y0)

)
eLT

]
,

(4.5.17)

W1(T̃ [Λ1]t, T̃ [Λ2]t) ≤ L̃
∫ t

0
eL̃(t−τ)W1(Λ1

τ,Λ2
τ)dτ, (4.5.18)

where the constant B̃(Λ, T, y0) is defined in Corollary 4.16(ii) for t = T .

Corollary 4.19
The map T̃ admits a unique fixed point, which provides the unique solution Σ in
Theorem 4.13.
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Chapter 5

Implementation

In the previous chapter we concluded the proof of existence and uniqueness of La-
grangian solutions for the proposed weighted replicator dynamics. With these results
on well-posedness we are now able use this modified model on the problem of global
function minimization. Chapter 3 gave a first overview on the problem statement and
we argued that by choosing the payoff function J carefully, together with the weighting
function w, the population should be able to converge to the global minimizer.

In this chapter we will present how a population, following the dynamics of spatially
inhomogeneous evolutionary game theory, can be simulated numerically. After providing
discrete time solutions for the differential equations describing the population, we
introduce further numerical adaptations which were made in order to make the resulting
algorithm more usable. We present and explain our concrete choice of payoff function
J , and conclude the chapter with the final minimization algorithm we used in our
numerical results.

5.1 Discrete Time Solutions

In [Amb+18, Section 1.5] Ambrosio et al. introduce discrete time solutions to the
dynamics we described in Section 2.3. The authors are able to show that the family
of discrete solutions has limit points for decreasing step-sizes. These correspond to
solutions of the continuous initial value problem. In order to numerically solve the
continuous differential equation we will therefore construct a discrete time solution,
which can be arbitrarily close to the continuous solution by choosing the step size small
enough. In the following we present this construction.

Let [0, T ] be a time interval and h > 0 a positive step size. For each time step
t ∈ {0, h, 2h, . . . , T} we iteratively build a population, which follows the dynamics as
induced by the ODEs Eq. (4.5.6), by calculating the subsequent location and strategy
of each individual y = (x, σ) in the following way:

σt+h ←
(
1 + h∆Σt,(xt,σt)

)
σt,

xt+h ← xt + h · ũ, where ũ ∼ σt+h,
(5.1.1)
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with

∆Σt,(xt,σt) :=
∫

S
wΣt(x′, σ′)

(∫
U
J(xt, ·, x′, u′)dσ′(u′)

−
∫

U

∫
U
J(xt, w, x

′, u′)dσ′(u′)dσt(w)
)

dΣt(x′, σ′).
(5.1.2)

We chose to denote the assignment with “←”, as in this chapter we adopt a more
computational and algorithmic point of view: Given the particle at time t, we compute
its state for time t+h. By iterating this process T/h times we build a discrete solution
on the time interval [0, T ]. Thus the computations in Eq. (5.1.1) define the update-step
in our optimization algorithm.
Remark 5.1
Note that the σ-update corresponds to the standard forward Euler method: Using the
finite difference formula for the derivative, we have for any function y,

y′(t) ≈ y(t+ h)− y(t)
h

for h > 0 small,

which then leads to

y(t+ h) ≈ y(t) + h(y′(t)) for h > 0 small.

Now by applying this formula to the function σ we get

σi,t+h ≈ σi,t + hσ̇i,t = σi,t + h∆Σt,(xi,t,σi,t)σi,t,

for some small step size h > 0 and σ̇i,t as in Eq. (4.5.6).

5.2 Numerical Adaptations
In this section we consider different aspects of the algorithm from a more practical point
of view. In order to efficiently compute the time discrete solutions it is necessary to work
with finite populations and a finite set of strategies. Further, we make observations on
stability and instability of different parts of the computation and we propose further
adaptations in order to make the algorithm more usable.

5.2.1 Finite populations and strategies
In our implementation we consider a finite set of strategies U = {ui}NU

i=1 ⊂ BRU
together

with the velocity field e(x, u) = u. We further assume the payoff function J to be
independent of the strategy chosen by the co-player, that is J(x, u, x′, u′) does not
depend on u′, and we will therefore only write J(x, u, x′).

46



5.2 Numerical Adaptations

We consider discrete populations consisting of N players. We can then formally
write the discrete initial distribution Σ̄ in the following way:

Σ̄ = 1
N

N∑
i=1

δyi,0 ∈P1(S), (5.2.1)

where we still assume that Σ̄ has bounded support, that is for any i ∈ {1, . . . , N} we
have yi,0 ∈ S0 with S0 as defined in Eq. (4.1.5). The evolution of a discrete population
has to be discrete, and at any point in time t ∈ [0, T ] for some T > 0 we have

Σt = 1
N

N∑
i=1

δyi,t with yi,t ∈ St. (5.2.2)

In order to simplify the notation, we describe the population at time t with the set
{yi,t}Ni=1.

Using the weighted version of the replicator dynamics as introduced in Chapter 4, we
can then write the resulting ODEs with discrete populations and strategies describing
the evolution of some player yi = (xi, σi) as

ẋi =
∑
u∈U

udσi(u)

σ̇i =

 N∑
j=1

wΣ(xj , σj)
(
J(xi, ·, xj)−

∑
w∈U

J(xi, w, xj)σi(w)
)σi,

(5.2.3)

with the weight function wΣt as defined in Eq. (3.4.2).
Following the lines of Section 5.1 this leads to the following discrete time solution

for all yi = (xi, σi) and all t ∈ {0, h, 2h, . . . , T}:

σi,t+h ←
(
1 + h∆Σt,(xi,t,σi,t)

)
σi,t,

xi,t+h ← xi,t + h · ũ, where ũ ∼ σi,t+1,
(5.2.4)

with

∆Σt,(xi,t,σi,t) =
N∑

j=1
wΣt(xj,t, σj,t)

(
J(xi,t, ·, xj,t)−

∑
w∈U

J(xi,t, w, xj,t)σi,t(w)
)
. (5.2.5)

5.2.2 Numerically stable weight computation
The weight function wΣt(x, σ), introduced in Eq. (3.4.2), leads to numerical problems
in its computation. In order to get good results we need to chose α≫ 0 large, but this
leads to very small positive values ωα

g (x) ≪ 1. Therefore, the sum of those weights
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is close to zero and in the computation of wΣt(x, σ) = ωα
g (x)∑N

i=1 ωα
g (xi)

the division is
numerically unstable.

We circumvent this problem using the following numerical trick:

wΣt(x, σ) = wΣt(x, σ) · exp (−αg(xmin))
exp (−αg(xmin))

= exp (αg(x))∑N
i=1 exp (αg(xi))

· exp (−αg(xmin))
exp (−αg(xmin))

= exp (α (g(x)− g(xmin)))∑N
i=1 exp (α (g(xi)− g(xmin)))

where
xmin := arg min

(x,σ)∈{yi,t}N
i=1

g(x)

is the location of the player with the minimal function value in the current population.
This ensures that for at least one player yj = (xj , σj), with location xj = xmin, we

have g(xj)− g(xmin) = 0 and therefore exp (α (g(xj)− g(xmin))) = 1. For the sum this
leads to ∑N

i=1 exp (α (g(xi)− g(xmin))) ≥ 1, such that the division does not induce a
numerical problem.

In the numerical simulations we will always compute the weights in the presented
manner, but as we did not change the actual value of wΣt(x, σ) all results from Chapter 4
still hold.

5.2.3 Different step sizes for strategy and location
In order to have a better control over the simulation it appears to be reasonable to
use different step sizes for the location update and the strategy update, such that we
are able to tune them independently. With this argumentation we might therefore
introduce two independent step sizes hx, hσ > 0, one for the location update and one
for the strategy update. On the other hand, when working with the algorithm it might
not seem intuitive to have to modify two parameters instead of one in order to adapt
the general step size.

Therefore, instead of introducing two independent step sizes hx, hσ, we chose to
use a main step size h and a scaling factor θ, which effectively leads to hx := h and
hσ := h · θ.

With ∆Σt,(xi,t,σi,t) as in Eq. (5.2.5) the resulting update step is given as

σi,t+h ←
(
1 + hθ∆Σt,(xi,t,σi,t)

)
σi,t,

xi,t+h ← xi,t + h · ũ, where ũ ∼ σi,t+1.
(5.2.6)
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By introducing the additional parameter θ we are able to tune the step size used in the
strategy update, independently of the location update, while still being able to change
the overall resolution of the simulation in the single parameter h.

Remark 5.2
This adaptation complies with the theory we introduced so far. Indeed, we have

θ∆Σt,(xi,t,σi,t) = θ

 N∑
j=1

wΣt(xj,t, σj,t) ·
(
J(xi,t, ·, xj,t)−

∑
w∈U

J(xi,t, w, xj,t)σi,t(w)
)

=
N∑

j=1
wΣt(xj,t, σj,t) ·

(
θJ(xi,t, ·, xj,t)−

∑
w∈U

θJ(xi,t, w, xj,t)σi,t(w)
)

=
N∑

j=1
wΣt(xj,t, σj,t) ·

(
J̃(xi,t, ·, xj,t)−

∑
w∈U

J̃(xi,t, w, xj,t)σi,t(w)
)
,

with J̃ := θJ . Now, as J is LJ -Lipschitz then J̃ is (θLJ)-Lipschitz and all requirements
for the theory, both in [Amb+18] and Chapter 4, are still fulfilled.

5.2.4 Parametrized adaptive step size

We begin this section with a discussion of the numerical stability and instability of
the update step in regards to the chosen step size, and introduce an adaptive step
size for the strategy update. The discrete time solutions (see Section 5.1) are shown
to converge to the continuous solution for step sizes h→ 0. We are therefore always
encouraged to chose the step size as small as possible. On the other hand, from a
practical point of view there is always an incentive in choosing a large step size in order
to obtain results in a short time. In the following we will discuss an upper bound for
the step size and introduce a parametrized adaptive step size.

Recall the strategy update

σi,t+h ←
(
1 + hθ∆Σt,(xi,t,σi,t)

)
σi,t.

For player i, at time step t, σi,t is a probability distribution. Therefore, for all u ∈ U
it holds σi,t(u) ≥ 0 and ∑u∈U σi,t(u) = 1. At time t + h the second property surely
still holds, regardless of the step size h, as ∆Σt,(xi,t,σi,t) has mean 0. However, the
first property might not be conserved in the update step. Indeed, for any u ∈ U with
negative ∆Σt,(xi,t,σi,t)(u) we can find some h, θ > 0 with

(
1 + h∆Σt,(xi,t,σi,t)(u)

)
< 0,

and therefore
σi,t+h(u) =

(
1 + hθ∆Σt,(xi,t,σi,t)(u)

)
σi,t(u) < 0.
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Thus, σi,t+h would not be a probability distribution anymore. In order to prevent this,
h and θ have to be chosen such that the following holds:(

1 + hθmin
u∈U

(
∆Σt,(xi,t,σi,t)(u)

))
> 0.

Noting that minu∈U ∆Σt,(xi,t,σi,t)(u) < 0 we deduce the upper bound

hθ <
1

−minu∈U ∆Σt,(xi,t,σi,t)(u) . (5.2.7)

By introducing a new parameter γ < 1
h we can then define

θ := γ
1

−minu∈U ∆Σt,(xi,t,σi,t)(u) ,

such that Eq. (5.2.7) always holds and σi,t+h is non-negative. While we could have
replaced both h and θ at once, we chose this procedure in order to keep control over
the resulting step size, while also keeping the advantages of having different step sizes
in location and strategy.

The strategy update step, using a parametrized adaptive step size γ < 1
h for the

strategy update, is then for all (xi,t, σi,t) ∈ {yi,t}Ni=1:

σi,t+h ←
(

1 + hγ
∆Σt,(xi,t,σi,t)

−minw∈U ∆Σt,(xi,t,σi,t)(w)

)
σi,t,

xi,t+h ← xi + h · ũ, where ũ ∼ σi,t+h.

(5.2.8)

5.3 The Payoff Function J

Before concluding this chapter with a presentation of the resulting algorithm, we
explain our choice of payoff function and discuss its properties. For any ϵ > 0 we chose
the payoff function Jϵ : R3 → [0, 1] defined as follows:

Jϵ(x, u, x′) = exp
(
−(u− tanh+ (3(g(x)− g(x′))) · (x′ − x))2

2|x′ − x|2 + ϵ

)
, (5.3.1)

where tanh+(z) := max{0, tanh(z)}. Note that by choosing ϵ > 0 we bound the
derivative of the payoff function, therefore it is Lipschitz continuous.

In order to understand this function we analyze it part by part. Figure 5.1a shows
the function graph of x 7→ tanh+(bx). With increasing b it effectively constitutes a
b-Lipschitz-continuous approximation of the function

x 7→
{

1 if x > 0
0 else,
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(a) Graph of tanh+(bx) for b ∈ {1, 3, 5, 7}.
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(b) Modified Gaussian distribution f(x|µ, σ2) =
exp
(

− (x−µ)2

2σ2

)
with µ = 2 and σ = 2. The

dotted lines indicate the [µ−σ, µ+σ] interval,
containing 68% of its mass.

Figure 5.1: Illustrations of the different components of the proposed payoff function J .

which is basically an if-else-statement. Thus, we reinterpret Jϵ as:

Jϵ(x, u, x′) ≈

exp
(
− (u−(x′−x))2

2|x′−x|2+ϵ

)
if g(x′) < g(x)

exp
(
− u2

2|x′−x|2+ϵ

)
if g(x′) ≥ g(x).

(5.3.2)

Next, we consider Jϵ as a function Jϵ(x, ·, x′) : U → [0, 1], and compare it to the
function

f(x|µ, σ2) = exp
(
−(x− µ)2

2σ2

)
.

This function f corresponds almost to a Gaussian distribution, but it lacks the rescaling
factor 1√

2πσ2 and always attains its maximum function value 1, at x = µ. Figure 5.1b
shows an example of its function graph with µ = 2 and σ = 1. Disregarding the term
ϵ > 0, it becomes clear that the payoff function Jϵ relates to this function f in the
following way:

Jϵ(x, u, x′) ≈
{
f(u|x′ − x, |x′ − x|2) if g(x′) < g(x)
f(u|0, |x′ − x|2) if g(x′) ≥ g(x).

(5.3.3)

Using this representation we understand Jϵ even better: If the co-player x′ has a lower
function value than the player x, then the highest payoff is given for the strategy
ū := (x′ − x), which lets x move towards x′, and the payoff decreases as strategies are
farther away from ū. On the other hand, if the co-player x′ has a higher function value
the best strategy is to stay at the current location.

In order to interpret the meaning of the variance |x′− x|2 we refer again to Fig. 5.1b.
Assume g(x′)≪ g(x). We introduced the set of strategies as a subset of some interval
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Figure 5.2: Visualization of the payoff function Jϵ(x1, ·, x′) with ϵ = 10−3 and U ⊂ [−1, 1]. We
present the point of view of some player x1, evaluating the payoff function against
himself and two other co-players x2, x3. We assume here that the co-players x2, x3
have a significantly lower function value than x1, leading to tanh+(3(g(x1) −
g(x2))) = tanh+(3(g(x1) − g(x3))) = 1. The dashed continuation is added in
order to understand the payoff function; With U ⊂ [−1, 1] only the solid line is
actually computed.

[−smax, smax] ⊃ U . Now, if the strategy with the highest payoff ū = (x′ − x) would be
too far outside this interval, i.e. |ū| ≫ smax, then most of the mass of the function
could also be outside of [−smax, smax] and all available strategies u ∈ U might get a
payoff very close to 0. By choosing the variance σ2 = |x′ − x|2 we make sure that the
boundary of the 68% interval (see Fig. 5.1b) lies exactly in 0, as

|µ| − σ = |x′ − x| − |x′ − x| = 0.

Therefore there is always enough mass reaching the set of strategies U . We now consider
the payoff function Jϵ in its entirety, as visualized in Fig. 5.2.

After our previous discussion, the shape of the Gaussian distribution becomes clear.
It is always broad enough to reach the interval U , which is chosen here as U ⊂ [−1, 1].
Additionally, we included the function graph of Jϵ(x1, u, x1) in blue, which is relevant
notably when the player with location x1 has the lowest function value in the population.
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5.4 Global Minimization Algorithm
With the proposed adaptations and the resulting update step (see Eq. (5.2.8)) we
construct an algorithm, described in Algorithm 1, which iteratively computes these
new locations and strategies for each player.

Algorithm 1 Global Minimization Algorithm
Input: Parameters h, γ, α ∈ R+, N,M ∈ N; Set of strategies U ; Payoff function J ;

Initial distribution {(xi, σi)}Ni=1.
1: for k = 1, . . . ,M do

Compute Delta:
2: for i = 1, . . . , N do
3: for u ∈ U do
4: ∆i(u)←

(∑N
j=1wΣi(xj , σj) · (J(xi, u, xj)−∑w∈U J(xi, w, xj)σi(w))

)
σi(u)

5: end for
6: end for

Update strategy:
7: for i = 1, . . . , N do
8: ∆imin ← minw∈U ∆i(w)
9: for u ∈ U do

10: σi(u)←
(
1 + hγ ∆i(u)

−∆imin

)
· σi(u)

11: end for
12: end for

Update location:
13: for i = 1, . . . , N do
14: Sample ũ ∼ σi

15: xi ← xi + hũ
16: end for
17: if converged (see also Remark 5.4) then
18: BREAK
19: end if
20: end for

Remark 5.3 (Efficient computation of the algorithm)
The multiple sequential loops on i and u in Algorithm 1 might seem inefficient at first.
These loops do not directly appear in our implementation, as we carefully represent
∆, σ and x as matrices or tensors, containing all information about all players. With
linear algebra libraries such as NumPy1 we use vectorized operations in order to perform
the computations of these objects in a highly efficient and optimized manner.

1https://www.numpy.org/
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We chose to represent the steps in Algorithm 1 in this way as it visualizes the
three-step procedure of sequentially computing ∆, σ and x instead of iterating over
each player. Our complete code can be found in [Bos18].
Remark 5.4 (Early stopping)
In Section 3.3.2 we discussed the general notion of convergence, and described it as
convergence of the population towards some single state y∗. For practical use in
numerical simulations we therefore propose the following stopping criterion: If every
player has a mixed strategy very close to δ0 we interrupt the simulation. By choosing
some λ > 0, e.g. λ = 10−10, we then stop the computations once σi(0) > 1− λ for all
i ∈ {1, . . . , N}.

In the following we clarify the meaning of each parameter, while specifying our exact
choices where appropriate:

• h: The step size, introduced in Section 5.1.

• γ: The parameter for the adaptive step size on the strategy update, see Sec-
tion 5.2.4

• J : The payoff function. We chose J = Jϵ as specified in Section 5.3 with ϵ = 10−3,
but other valid choices might also be possible.

• U : The set of available strategies. Given a pair number of strategies M and two
parameters smin, smax we first create a linear grid in V ∈ [√smin,

√
smax] with

M/2 elements:

V :=
{
√
smin,

√
smin +

√
smax − smin
M/2 ,

√
smin + 2

√
smax − smin
M/2 , . . . ,

√
smax

}
.

(5.4.1)
Then we chose U as follows:

U :=
{
±v2 : v ∈ V

}
∪ {0} . (5.4.2)

With U chosen in this way we have U ⊂ [−smax, smax] symmetric around 0 with
a higher resolution close to 0 and a lower resolution for strategies with large
values. Additionally it holds minu∈U |u| = smin. In Remark 5.5 we provide further
explanations for this choice. Common choices for the parameters were M = 40,
smin = 5 · 10−3 and smax ∈ {1, 100}.

• (xi, σi)N
i=1: The initial distribution. We chose the locations in the following way:

After deciding on an interval [xmin, xmax] we uniformly sample N locations (xi)N
i=1

of this interval. The initial mixed strategies of each player are then chosen as

σi(u) := e
− 1

1−u2∑
w∈U e

− 1
1−w2

∀i ∈ {1, . . . , N} . (5.4.3)
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• I: The maximum number of iterations. Choosing this together with the step size
h is equivalent to fixing a time interval [0, T ] and a time step h. We generally
chose some I very large, e.g. I = 1000000, and stop the simulation early once it
converged.

• α: Parameter used in the weight function wΣ (see Eq. (3.4.2)). We use α = 1000,
unless specified differently.

Remark 5.5 (About the set of strategies U)
Our initial choice for the set of strategies was an equi-spaced grid

U = [−smax, smax] ∩ κZ, (5.4.4)

with smax > 0 and κ > 0 chosen such that the resulting number of strategies is
reasonable. This choice already provided positive results in our early evaluations.
But during the process of working with the algorithm and testing it on more difficult
functions we made some realizations:

i) u∗ := arg maxu∈U |u| large is beneficial for the initial exploration of the function
graph;

ii) u∗ := arg minu∈U |u| has to be small for the population to converge, as it presents
the minimal spatial step a player can make;

iii) On the other hand, u∗ too small leads to a very slow convergence as it takes longer
for particles to stop moving;

iv) The total number of strategies has a significant impact on the computational cost.

This leads to the following general idea: By squaring the equi-spaced grid (Eq. (5.4.4))
we get a higher resolution of small strategies and a sparser selection of large strategies,
thus increasing the range of movement without increasing the number of strategies.
The additional parameter smin was introduced in order to address the issues regarding
small values of u∗ and to improve the usability of the algorithm.
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Numerical Results

In this chapter we present numerical results of our global minimization algorithm
applied to multiple different functions with varying initial distributions. In Section 5.4
we explained our minimization algorithm, together with all available parameters. While
some of the parameters were already specified, the choices for the remaining parameters
will always clearly be stated.

We visualize the minimization by presenting snapshots of the simulation. For each
of the chosen iterations we shows the function graph in blue and the players as circles
positioned on this function graph. We can then see the movement of the players and
the evolution of the population. We also visualized a selection of the mixed strategies
of players, as well as the rate of convergence in function value.

6.1 Minimizing a Non-Convex Function
The first function on which we test our minimization algorithm is the following:

g1(x) := x2 − 5 cos(10x) + 5. (6.1.1)

It is a very simple example of a non-convex function, with a clear global minimum at
x = 0. Note that it’s asymptotic behavior resembles x2, leading to a clear slope on a
larger scale and even to monotonicity in [c,∞) for some c large enough as the function
becomes very steep. Its graph, both on a smaller and a larger scale, can be seen in
Fig. 6.1.

6.1.1 Symmetrically distributed starting locations
We simulated 20 particles with starting locations uniformly distributed in the interval
[−10, 10]. Further, we use the payoff function Jϵ described in Section 5.3 with ϵ = 10−4

and the set of strategies U ⊂ [−1, 1] as in Eq. (5.4.2) with M = 50, smin = 5 · 10−3

and smax = 1. Finally, we chose the step sizes h = 0.05 and γ = 0.05. For additional
explanation about parameters we refer to Section 5.4.

Figure 6.2 shows some of the iterations of the simulation. While a picture can not
describe all details of the dynamic process it still gives a good impression of the general
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Figure 6.1: Graph of g1(x) (see Eq. (6.1.1)). On the left the non-convexity of the function can
clearly be seen, while the larger scale on the right clearly reveals the asymptotic
behavior of x 7→ x2.

progress and evolution in the population. Each circle corresponds to the location of
one player. The colored circles represent a selection of 5 of these 20 players for which
we also included plots of their respective mixed strategy at each of the represented
iterations, shown in Fig. 6.3.

Observations

Overall, the simulation behaves as expected. Players start moving around and quickly
adapt their mixed strategy in order to favor movement towards the player with the
lowest function value. On the other hand, the player with the most favorable position
adapts a strategy which strongly favors to stay at the current location.

To better understand the dynamics we look at one of the players in more detail,
namely player y2 in yellow. The player starts far on the left of the interval, such
that its mixed strategy adapts in order to favor positive movement, as can be seen in
Fig. 6.3, row 2 column 2. The player therefore gains momentum towards the right.
In iteration 1500 we can see that it moved past the global minimum. During the
remaining simulation it oscillates around the global minimum, and we see that the
mixed strategy adapts depending on the side the player is on, until it joins the majority
of the population in the global minimum. One notable observation is the emergence
of a sharp peak in its mixed strategy, which can first be seen in iteration 1500. This
peak occurred precisely when the player passed the global minimum as during this
time it was the player with the lowest function value, which strongly promotes the
strategy u = 0 due to our choice of Jϵ. Therefore, once a player gets sufficiently close
to being the player with the lowest function value of all players, it loses a significant
amount of momentum. Over the course of many tests and simulations, we made the
observation that this behavior is very important for the population to converge in
reasonable time. On the other hand, a too extreme loss of momentum prevents the
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Figure 6.2: Example animation with 20 players. All points represent a player, both the larger
colored circles and the smaller black circles. The colors match those in Fig. 6.3
in order to show the mixed strategy of each of those 5 players at each pictured
iteration.
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Figure 6.3: Mixed strategies corresponding to Fig. 6.2. Each row corresponds to one of the
shown iterations, and each column to one of the colored players.
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players from overshooting the player with lowest function value, which is crucial in
order not to get stuck in a local minimum. We will discuss this property further in
Section 6.1.2.

Rate of convergence

Finally, Fig. 6.4 shows the mean function value of the population in each iteration.
Given the population {(xi,t, σi,t)}Nt=1 at each time step t ∈ {0, . . . , Imax}, with Imax the
maximum iteration of the simulation, this corresponds to the value of the function
F : {0, . . . , Imax} → R+ defined as

F1(t) = 1
N

N∑
i=1

g1(xi,t). (6.1.2)

In the presented plot the y-axis uses a logarithmic scale, which highlights the mostly
exponential convergence. Note that between iteration 20000 and 40000 there appears
an oscillation, due to the single last player to converge. While this player is constantly
attracted by the rest of the population in the global minimum, its momentum decreases
only slowly so that the player shoots past the global minimum multiple times. Once
the momentum has sufficiently decreased the player joins the rest of the population
and converges to the global minimum.
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Figure 6.4: Mean function value of the simulation for each iteration, corresponding to the
graph of the function F1 as described in Eq. (6.1.2).
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6.1.2 One-sided starting locations
The previous section showed very positive results, and with the chosen parameters
we always achieved convergence to the global minimum. However, we always started
with initial locations distributed over the interval [−10, 10], which contains the global
minimum at x = 0. The probability of having a player very close to the minimum is
high, and as the other players then move towards this player in a continuous manner
the global minimum will get discovered by someone, who then in turn attracts the
rest of the population. We will therefore investigate the behavior when we start in an
interval which does not contain the global minimum.

We worked again with 20 particles, but this time with starting locations uniformly
in [5, 10]. All other parameters are chosen as before (see Section 6.1.1). The results
can be seen in Figs. 6.5 and 6.6, where we again highlighted 5 particles in order to
show the evolution of their mixed strategies. We tested this simulation multiple times
and with the chosen parameters we always obtained positive results and successfully
found the global minimum. The mean function-value can be seen in Fig. 6.7.

Observations

The simulation seems to behave similarly as the simulation before. However, there is
one detail which is much more relevant in this example than in the symmetric situation
of the previous section: If the players adapt their mixed strategy too quickly, the
population can get stuck in a local minimum. Indeed, we can force this to happen
by choosing γ too large, e.g. γ = 10 = 1

2h , which can be seen in Fig. 6.8. Once a
player yi = (xi, σi) is the lowest in the population its mixed strategy adapts and σi(0)
gets very large, leading to very rare movement of the player. All other players move
towards this player yi, and in turn either become the lowest player and stop moving,
or due to an upwards slope after a local minimum they change their direction as the
lowest player is then to their right. Therefore, in order to successfully find the global
minimum it is crucial that players do not lose too much momentum, which can be
achieved by choosing a lower step size γ so that players do not adapt their strategy as
quickly.

While this general property of γ does hold in any scenario, it would not necessarily
lead to convergence to a local minimum in the case of initial locations uniformly in
[−10, 10], as players start on both sides of the global minimum. In order to converge
to a single location players are forced to move through it and at some point in time
the global minimum gets discovered by a player, who then might stop moving and wait
until all other players converge towards it. Still, our results were generally better when
choosing γ not too large.
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Figure 6.5: Example animation with 20 players, similar to the one shown in Fig. 6.2, where
again each point represents a player in the population. The main difference is the
one-sided initial distribution of the players in the interval [5, 10].
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Figure 6.6: Mixed strategies corresponding to Fig. 6.5, with each row corresponding to one of
the shown iterations and each column to one of the colored players.
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Figure 6.7: Mean function value of the simulation with one-sided initial locations.
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Figure 6.8: Unsuccessful minimization of g1 due to γ being chosen too large.

65



Chapter 6 Numerical Results

6.2 Ackley Benchmark

We will now consider the Ackley function gAckley defined as

gAckley(x) := −20 exp
(
−0.2 ·

√
0.5x2

)
− exp

(cos(2πx) + 1
2

)
+ e+ 20. (6.2.1)

This is a well known benchmark for global optimization problems [AJ13], introduced
by David Ackley in [Ack87] and also used by Carrillo et al. in [Car+16]. It is a
highly non-convex function and has its global minimum at x = 0, with gAckley(0) = 0.
Compared to g1 as defined in Eq. (6.1.1), the main difference and difficulty lies in the
asymptotic behavior, as can be seen in Fig. 6.9: There is no noticeable slope, therefore
with starting locations far away from the well around x = 0 this task is even more
difficult to solve. Additionally, for the function g1 it holds g1(x) ≥ x2 for all x ∈ R.
Conversely for gAckley the only convex function g̃ with gAckley ≥ g̃ is g̃(x) = 0.
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Figure 6.9: Graph of the Ackley function. It is highly non-convex, but a major difference to
g1 lies in its asymptotic behavior (see Fig. 6.1). As |x| becomes large the Ackley
function just oscillates between 20 and 20 + 2e, with no noticeable general slope
indicating some direction of descend.

We again include both a symmetric distribution around the global minimum at x = 0
and a one-sided distribution. In order to make the different asymptotic behavior more
relevant, we also chose to work on a larger scale. The 50 locations for the symmetric
initial distribution have been chosen uniformly in [−100, 100], and the locations for
the one-sided scenario uniformly in [200, 500]. In both scenarios, the other parameters
were chosen as follows: We use the payoff function Jϵ as in Section 5.3 with ϵ = 10−4,
and the step sizes h = 0.5 and γ = 0.05. The set of strategies U is again chosen as
in Eq. (5.4.2), but this time with M = 40, smin = 5 · 10−3 and smax = 100, such that
U ⊂ [−100, 100]. We chose U in this way in order to enable farther movement.
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Observations

With the chosen set of parameters, both simulations appeared very stable and always
converged during our testing. The evolution of the population can be seen in Figs. 6.10
and 6.12, but we did not include a visualization of some individual mixed strategies, as
they behave very similarly to those shown in Figs. 6.3 and 6.6. Again, the convergence
of the mean function value seems exponential, as can be seen in Fig. 6.11.

In the first scenario, with the initial locations uniformly in [−100, 100], the probability
of one player having a lower function value than 20 is rather high. This player quickly
attracts the rest of the population. In Fig. 6.10 we see for example the yellow player in
iteration 0 with a very favorable position.

On the other hand, with starting locations in [200, 500] this does not happen. The
reason for success in this scenario lies in the fact that players during early iterations
players explore, as their initial mixed strategy is does not have a clear shape yet. With
large movements U ⊂ [−100, 100] they are then able to discover the well surrounding
the global minimum, which then attracts all other players. While we only had positive
results during testing for this situation, it is not difficult to create a situation in
which the population might fail to find the global minimum. Indeed, with starting
locations even further away, in [1000, 4000] the population failed and converged to a
local minimum, which can be seen in Fig. 6.13. Of course it might be possible to adapt
some of the parameters, e.g. to decrease γ to enable further exploration, or to chose
smax >> 100, but the main purpose of the example was merely to describe such a
situation and to explain the reasons for this behavior.
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Figure 6.10: Ackley benchmark with a balanced starting distribution.
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Figure 6.11: Mean function value during the minimization of the Ackley function with a
balanced starting distribution.
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Figure 6.12: Successful minimization of the Ackley function given initial locations in [200, 500].
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Figure 6.13: Unsuccessful minimization of the Ackley function gAckley with initial locations
in [1000, 4000].
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6.3 Modified Ackley Function
As a final benchmark, we modified the Ackley function in the following way:

g2(x) := 2gAckley(x) + gAckley(x− 200)− gAckley(−200)
2 . (6.3.1)

While this function also has its global minimum at x = 0, together with the same
asymptotic behavior as the original Ackley function, it has another additional region
around x = 200 with lower function values. We wanted to test if the algorithm, given
starting locations > 200, correctly finds the global minimum or if it converges too
quickly once a player found the second well. Figure 6.14 shows the corresponding
function graph.
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Figure 6.14: Modified Ackley function with two wells, see Eq. (6.3.1).

Figure 6.15 shows results with initial locations in [300, 500]. Similarly to the results
on the Ackley function with one-sided initial locations, the crucial part are again the
initial iterations. As the parameters were chose as before in (see Section 6.2), the
players in the population start by randomly exploring the function graph. While in
iteration 50 it can be seen that there is a player inside the well around 200, the players
to the left kept their momentum long enough to discover the global minimum. The
population was then attracted towards this location and proceeded to converge towards
the global minimum.
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Figure 6.15: Successful minimization of the modified Ackley function (see Eq. (6.3.1)), given
initial locations in [300, 500].
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6.4 The Global Optimization Method by Carrillo et al.

We will now compare both the results and the behavior of our algorithm with the
consensus-based global optimization method proposed by Carrillo et al. in [Car+16].
In Section 3.2 we already presented the method briefly and explained the general
functioning of the algorithm.

6.4.1 Results

We used the same parameters as described in [Car+16, Section 5.5]. Overall, the
minimization algorithm had very convincing results on all of the test functions we chose
and achieved fast convergence. It successfully minimized every function, even with
starting points chosen very far away from the global minimum. Figure 6.16 shows one
such example. The initial locations of the 5000 particles were all in the small interval
[999, 1000]. Due to the functioning of the algorithm particles still started to explore
the function graph, quickly reaching locations far away from the group. This behavior
can be seen in iterations 100, 200 and 300. Then, once a particle found the region
around the global minimum the weighted mean-location mt, as defined in Eq. (3.2.2),
lies inside this region, thus attracting all of the particles. Iteration 400 first shows this
attraction of the population, and over the remaining iterations all particles converge
towards the global minimum at x = 0.

In Fig. 6.17 we included another result. The starting locations were again all in
the small interval [999, 1000], but this time we applied the optimization method to
the modified Ackley function introduced in Eq. (6.3.1). Note how in iteration 1500
the population found the second minimum at 200, which directly attracted the whole
population. Then, at some point between iteration 1500 and 2000, a particle found
an even lower location around 0, and from iteration 2000 onwards we see a similar
convergence behavior as before, where the global minimum slowly pulls the whole
population in.

6.4.2 Comparison with our method

Both our algorithm and the optimization method by Carrillo et al. use a particle-based
approach, but the underlying theory differs vastly.

In the algorithm by Carrillo et al., the population consists of agents which are defined
by a position. Then, during a single step, each agent moves towards the weighted
mean location mt, which is exponentially closer to agents with a low function value.
Finally, a Gaussian noise proportional to the distance to mt is added to the position of
the player. Due to this stochastic process agents jump around a lot, and change their
location on the function graph in a non-continuous manner, almost resembling a gas
which moves over the graph. This behavior enables them to discover a large part of the
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Figure 6.16: Results of the optimization method from Carrillo et al. on the Ackley benchmark,
with 5000 initial locations in [999, 1000].
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Figure 6.17: Results of the optimization method from Carrillo et al. on the modified Ackley
function, with 10000 initial locations in [999, 1000].
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graph very quickly. Further, the exponentially weighted mean location is comparatively
fast to compute. With a population of N players it requires O(N) evaluations of the
objective function, and the new location of each player can then directly be calculated
in a single step.

In our approach based on evolutionary game theory the population consists of players,
each with location and strategy. The mechanism to update the locations of each player
are, except for the reweighting, solely based on one-on-one interactions of the players.
The computational costs are higher as these interactions have to be computed for
each combination of player, strategy and co-player. With N players and M strategies
this induces O(MN2) evaluations of the payoff function J for each update of the
population, on top of the O(N) evaluations of the objective function to calculate the
weights. Further, the available options of movement for each player are limited as U is
chosen before the minimization starts as a finite and bounded set. The velocity of the
players is therefore bounded, and their capabilities of exploration and convergence are
limited.

In this direct comparison, the optimization method of Carrillo et al. shows faster
convergence at a lower computational complexity, due to the very different nature of
both algorithms.

6.4.3 Functions with infinitely many minima
As a final result we applied both algorithms to the function

g(x) = cos(2πx) + 1. (6.4.1)

This example might seem unusual as the cosine does not have a unique global minimum,
but the different behavior of each algorithm becomes very clear.

In Fig. 6.18 we show the locations of actors in the optimization method from Carrillo
et al. We started with a population of 10000 points in the interval [−5, 5]. In the
iterations 200 and 400 most mass still seems to be concentrated around the initial
locations, but the number of particles which move away in order to explore the function
graph increases over time. Iterations 600, 800 and 1000 clearly show the gas-like
behavior of the population, spreading over the function graph. This behavior carries
on indefinitely.

In comparison, our optimization method behaved very differently, as can be seen
in Fig. 6.19. We started with a population of 50 particles with locations uniformly
distributed in [−20, 20], and the set of strategies U chosen with smax = 1. The other
parameters were chosen as in Section 6.2. Quickly after the start of the simulation
the players seem to group together. Between iteration 250 and 1000 the whole group
has moved towards the right, without any clear point of attraction, so we assume
this is purely due to randomness. Then, over the course of the remaining simulation,
the population converges to a stable state. This is already very different to the
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consensus-based optimization method by Carrillo et al., which never converged. Even
in this ill-posed situation the population evolved in order to reach an equilibrium.
Additionally, this example shows a behavior which did not appear in previous examples:
The population does not converge towards a single location, but instead finds an
equilibrium with players in two different global minima. In practice, the likelihood
of the occurrence of such situations can be decreased by modifying parameters, such
as α or the number of particles N . However, even with different parameters, a state
consisting of a split population with each part lying in a different global minimum,
with mixed strategies sufficiently close to σ = δ0, is a stable state. This is due to the
behavior of the payoff function Jϵ(x, ·, x′) when g(x) = g(x′), as the highest payoff in
this situation is to the strategyu = 0. Each player then adapts its mixed strategy and
increase the preference for u = 0, therefore further decreasing the movement in the
population. Thus, the concentration in multiple global minima represents a state of
equilibrium.
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Figure 6.18: Visualization of the consensus-based optimization method of Carrillo et al.,
applied to the function g(x) = cos(2πx) + 1. The agents quickly start exploring
and gradually distribute over the whole visible function graph, without ever
converging.
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Figure 6.19: Visualization of our EGT-based optimization method, applied to the function
g(x) = cos(2πx) + 1. Note how the population converged towards two different
global minima.
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Conclusion

The presented numerical results show a successful application of our minimization
algorithm to the problem of global optimization. Our method was able to minimize
highly non-convex functions with different starting positions, and we observed exponen-
tial convergence. However, we learned that players tend to lose momentum over time,
which can be a disadvantage. Initial populations located very far away from the global
minimum showed unsuccessful minimizations of the Ackley function as the population
converged towards a local minimum. Still, from the point of view of evolutionary games
the tendency to converge is a positive result by itself. The population successfully
adapts and evolves until an equilibrium is reached.

During the development of the minimization method, we modified the underlying
replicator dynamics of spatially inhomogeneous evolutionary games, in order to include
considerations on each player’s function value. We provided results on the well-
posedness of the weighted replicator dynamics and proved the existence and uniqueness
of Lagrangian solutions. After further numerical adjustments we proposed a suitable
payoff function. The results show that by careful design of the game we are able to
influence the behavior of each individual in the desired way. In our tests we generally
converge towards a state of equilibrium, in which players are located at the global
minimum. Nevertheless, various aspects of our global optimization algorithm could
be further investigated. We made multiple simplifications in order to develop our
algorithm, but their relaxation might be beneficial. Most notably, the proposed payoff
function does not take the chosen strategy of the co-player into account. With its
inclusion it might be possible to anticipate the planned direction of movement of the
co-player and use it improve the results or to accelerate convergence. Finally, the
results on higher-dimensional problems are still unclear and further research could be
done in order to asses the performance of our algorithm.

We included the consensus-based optimization method of Carrillo et al. [Car+16],
both as an inspiration for the development of our method and as a comparison for the
numerical results. The presented behavior of this algorithm differs from ours, which we
showed clearly in the attempted minimization of the cosine. The optimization method
of Carrillo et al. explored the function graph indefinitely. On the other hand, in our
algorithm the population reaches an equilibrium and finds two of the global minima.
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This is both an advantage and a disadvantage: Our algorithm is robust to functions
with infinitely many global minima and provides a result. However, during our tests
on functions with a unique global minimum the tendency to explore showed more
consistent convergences to the global minimum.

Finally, we investigated the complexity of our algorithm. For each iteration, our
method requires more computations than the algorithm of Carrillo et al. But this
computational disadvantage is directly tied to the very nature of evolutionary game
theory: Each player is more than just a location. The population is made of individuals,
which do not necessarily act in order to reach the best state of the population, but
instead try to maximize their own personal payoff. The resulting dynamics are
independent of the problem of global function minimization; spatially inhomogeneous
evolutionary games were not developed with the goal of solving optimization problems.
We presented a successful application of this model to global optimization, but the
potential range of applications is much larger. Classical evolutionary games were often
used to describe and explain the observed behavior of animals, as the dynamics capture
their egoistic behavior and the notion of Darwinian fitness. With the inclusion of a
spatial component the model could describe a much broader range of populations, and
it might be well-suited in order to simulate groups of individuals in the real world.
In future work, it would be interesting to see other fields of application for spatially
inhomogeneous evolutionary games.
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