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Key Challenges for Probabilistic Numerics

+ speed up existing methods to be competitive with classic algorithms
+ find killer applications of PN that goes beyod the functionality of classic methods
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Ordinary Differential Equations

+ Problem setting: Initial value problem

y(t) = f(y(t), t). t e [tminu tmax]v y(tmin) = Yo. (1)
Goal: Approximate the ODE solution § = y(t).
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+ Problem setting: Initial value problem
y(t) = f(y(t), t), t e [tminx tmax]r y(tmin) = Yo. (1)
Goal: Approximate the ODE solution § = y(t).

Code Example: SciPy

import numpy as np
from scipy.integrate import solve_ivp

def lotkavolterra(t, y):
yl = 0.5 = y[0] - 0.05 = y[0] * y[1]
y2 = -0.5 * y[1] + 0.05 * y[0] * y[1]
return np.array(Lyl, y21)

tspan = [0.0, 20.0]
y0 = np.array([20, 20])
sol = solve_ivp(lotkavolterra, tspan, y@, method="RK45")



ODEs come in various forms
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Solving ODEs in practice requires making choices

Algorithmic choices:
+ Explicit or implicit solver? Runge—Kutta or multi-step? What
order?
+ Step-size adaptation or fixed steps? What accuracy?

+ Higher-order ODE? Symplectic solver?
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Algorithmic choices:

+ Explicit or implicit solver? Runge—Kutta or multi-step?
What order?

+ Step-size adaptation or fixed steps? What accuracy?
[Bosch et al., 2021a]

+ Higher-order ODE? Symplectic solver?
[Bosch et al., 2021b]

More features:
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What is Julia?

Download

Documentation Blog

Community Learn

The Julia Programming Language

Documentation

Download

Fast

Julia was designed from the beginning for high
performance. Julia programs compile to efficient
native code for multiple platforms via LLVM.

Composable

Julia uses multiple dispatch as a paradigm,
making it easy to express many object-oriented
and functional programming patterns. The talk
on the Unreasonable Effectiveness of Multiple
Dispatch explains why it works so well.

Julia in a Nutshell

Dynamic

Juliais dynamically typed, feels like a scripting
language, and has good support for interactive
use.

General

Julia provides asynchronous 1/0,
metaprogramming, debugging, logging, profiling,
a package manager, and more. One can build
entire Applications and Microservices in Julia.

Research JSoC ¥ Sponsor

Reproducible

Reproducible environments make it possible to
recreate the same Julia environment every time,
across platforms, with pre-built binaries.

Open source

Julia is an open source project with over 1,000
contributors. It is made available under the MIT
license. The source code is available on GitHub.
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Why DifferentialEquations.jl? TUBINGEN

DifferentialEquations.jl [Rackauckas and Nie, 2017]:

+ >50 (>1507) available solvers (non-stiff, stiff, secondorder, exponential, symplectic, ...)
+ ODEs, DAEs, SDEs, DDEs, BVPs, ...

+ Wide range of (continuous & discrete) sensitivity analysis options [Rackauckas et al., 2018]
+ Interacts well with other parts of the Julia ecosystem:

+ AD / Jacobians via ForwardDiff.jl, ReverseDiff.jl, Zygote.jl, Enzyme.jl, ...
+ NeuralODEs with Flux.jl
+ Probabilistic programming with Turing.jl
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DifferentialEquations.jl [Rackauckas and Nie, 2017]:

+ >50 (>1507) available solvers (non-stiff, stiff, secondorder, exponential, symplectic, ...)
+ ODEs, DAEs, SDEs, DDEs, BVPs, ...
+ Wide range of (continuous & discrete) sensitivity analysis options [Rackauckas et al., 2018]
+ Interacts well with other parts of the Julia ecosystem:

+ AD / Jacobians via ForwardDiff.jl, ReverseDiff.jl, Zygote.jl, Enzyme.jl, ...

+ NeuralODEs with Flux.jl

+ Probabilistic programming with Turing.jl
+ Modular implementation and easy to extend

+ Core ODE solvers in OrdinaryDiffEq.jl
+ Specific solver contributions e.g. in Geometriclntegrators.jl or TaylorIntegration.jl|
+ ODE Filters: ProbNumDiffEq.jl



Solving ODEs in Julia with DifferentialEquations.jl

Demo time
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Second-order ODEs

Initial value problem
y(t) = f(y(t)r y(t)r t): te [tminy tmax]v :i/(tmin) = ?.JOI y(tmin) = %o- (2)
ODE Filters in a nutshell:

+ Prior: y ~ Gauss-Markov

+ Adjusted information operator:

Z[y)(t) = §(t) = f(§(1), (1), £) = 0. (3)
+ Discretize and infer (with an extended Kalman filter)
p (y(8) | {Z[y](t:) = 0}Ly) (4)

Second-order ODEs, energy preservation, additional derivatives, DAEs: [Bosch et al., 2021b]



Solving second-order, energy-preserving ODEs

Demo time
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