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Key Challenges for Probabilistic Numerics

� speed up existing methods to be competitive with classic algorithms
� find killer applications of PN that goes beyod the functionality of classic methods
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Ordinary Differential Equations
� Problem setting: Initial value problem

ẏ(t) = f (y(t), t), t ∈ [tmin, tmax], y(tmin) = y0. (1)
Goal: Approximate the ODE solution ŷ ≈ y(t).

Code Example: SciPy

import numpy as np
from scipy.integrate import solve_ivp

def lotkavolterra(t, y):
y1 = 0.5 * y[0] - 0.05 * y[0] * y[1]
y2 = -0.5 * y[1] + 0.05 * y[0] * y[1]
return np.array([y1, y2])

tspan = [0.0, 20.0]
y0 = np.array([20, 20])
sol = solve_ivp(lotkavolterra, tspan, y0, method="RK45")
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ODEs come in various forms

(a) Lotka-Volterra (non-stiff)

(b) Van der Pol (stiff) (c) Henon-Heiles (second-order
and energy preserving)
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Solving ODEs in practice requires making choices

Algorithmic choices:
� Explicit or implicit solver? Runge–Kutta or multi-step? What

order?
� Step-size adaptation or fixed steps? What accuracy?
� Higher-order ODE? Symplectic solver?

More features:
� Output control: Time-series or final value only? Dense output?
� Number type: Float32 or Float64? Arbitrary precision?

Complex numbers?
� Taking derivatives: Discrete or continuous sensitivities?

Forward or backward-mode?

Existing software:
� SciPy
� MATLAB
� deSolve (R)
� Multiple Fortran

libraries
� torchdiffeq
� jax
� DifferentialEquations.jl
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Solving ODEs in practice requires making choices
Algorithmic choices:

� Explicit or implicit solver? Runge–Kutta or multi-step?
What order?

� Step-size adaptation or fixed steps? What accuracy?
[Bosch et al., 2021a]

� Higher-order ODE? Symplectic solver?
[Bosch et al., 2021b]

More features:
� Output control: Time-series or final value only? Dense

output?
� Number type: Float32 or Float64? Arbitrary precision?

Complex numbers?
� Taking derivatives: Discrete or continuous sensitivities?

Forward or backward-mode?

Existing software:
� SciPy
� MATLAB
� deSolve (R)
� Multiple Fortran

libraries
� torchdiffeq
� jax
� DifferentialEquations.jl
� ProbNumDiffEq.jl

6



What is Julia?
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Why DifferentialEquations.jl?
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Why DifferentialEquations.jl?

DifferentialEquations.jl [Rackauckas and Nie, 2017]:

� >50 (>150?) available solvers (non-stiff, stiff, secondorder, exponential, symplectic, . . . )
� ODEs, DAEs, SDEs, DDEs, BVPs, . . .
� Wide range of (continuous & discrete) sensitivity analysis options [Rackauckas et al., 2018]
� Interacts well with other parts of the Julia ecosystem:

� AD / Jacobians via ForwardDiff.jl, ReverseDiff.jl, Zygote.jl, Enzyme.jl, . . .
� NeuralODEs with Flux.jl
� Probabilistic programming with Turing.jl

� Modular implementation and easy to extend
� Core ODE solvers in OrdinaryDiffEq.jl
� Specific solver contributions e.g. in GeometricIntegrators.jl or TaylorIntegration.jl
� ODE Filters: ProbNumDiffEq.jl
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Solving ODEs in Julia with DifferentialEquations.jl

Demo time
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Benchmark (non-stiff)
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Benchmark (non-stiff)
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Benchmark (non-stiff)
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Benchmark (non-stiff)
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Benchmark (stiff)
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Second-order ODEs

Initial value problem

ÿ(t) = f (ẏ(t), y(t), t), t ∈ [tmin, tmax], ẏ(tmin) = ẏ0, y(tmin) = y0. (2)

ODE Filters in a nutshell:

� Prior: y ∼ Gauss-Markov
� Adjusted information operator:

Z[y](t) = ÿ(t)− f (ẏ(t), y(t), t) ≡ 0. (3)

� Discretize and infer (with an extended Kalman filter)

p
(
y(t) | {Z [y](ti) = 0}N

i=1

)
(4)

Second-order ODEs, energy preservation, additional derivatives, DAEs: [Bosch et al., 2021b]
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Solving second-order, energy-preserving ODEs

Demo time
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