ProbNumDiffEq.jl: Fast and Practical ODE Filters in Julia

or “Building a PN library on existing non-PN code”

Nathanael Bosch
26.10.2021

Max Planck Institute for

: ’7 " Intelligent Systems
= 1imprs-is

EBERHARD KARLS

UNIVERSITAT
TUBINGEN

C some of the presented work is supported
by the European Research Council.

Key Challenges for Probabilistic Numerics

+ speed up existing methods to be competitive with classic algorithms
+ find killer applications of PN that goes beyod the functionality of classic methods

Key Challenges for Probabilistic Numerics

+ speed up existing methods to be competitive with classic algorithms
+ find killer applications of PN that goes beyod the functionality of classic methods

Key Challenges for Probabilistic Numerics

+ be competitive with classic algorithms
+ speed
+ features
+ convenience

+ find killer applications of PN that goes beyod the functionality of classic methods

Ordinary Differential Equations

+ Problem setting: Initial value problem

y(t) = f(y(t), t). t e [tminu tmax]v y(tmin) = Yo. (1)
Goal: Approximate the ODE solution § = y(t).

Ordinary Differential Equations

+ Problem setting: Initial value problem
y(t) = f(y(t), t), t e [tminx tmax]r y(tmin) = Yo. (1)
Goal: Approximate the ODE solution § = y(t).

Code Example: SciPy

import numpy as np
from scipy.integrate import solve_ivp

def lotkavolterra(t, y):
yl = 0.5 = y[0] - 0.05 = y[0] * y[1]
y2 = -0.5 * y[1] + 0.05 * y[0] * y[1]
return np.array(Lyl, y21)

tspan = [0.0, 20.0]
y0 = np.array([20, 20])
sol = solve_ivp(lotkavolterra, tspan, y@, method="RK45")

ODEs come in various forms

N
N
,
t

(a) Lotka-Volterra (non-stiff)

ODEs come in various forms

A\

A / .
[\ / \
% \
A\ \\\X<
t t

(b) Van der Pol (stiff)

(a) Lotka-Volterra (non-stiff)

ODEs come in various forms

\ N
,”‘ \ n”’ |
F ol N
. s‘\ \ / M .
| % \
AN \\\l<
(a) Lotka-Volterra (non-stiff) (b) Van der Pol (stiff) (c) Henon-Heiles (second-order

and energy preserving)

Solving ODEs in practice requires making choices

Algorithmic choices:
+ Explicit or implicit solver? Runge—Kutta or multi-step? What
order?
+ Step-size adaptation or fixed steps? What accuracy?

+ Higher-order ODE? Symplectic solver?

Solving ODEs in practice requires making choices TUBINGEN

Algorithmic choices:

+ Explicit or implicit solver? Runge—Kutta or multi-step? What
order?

+ Step-size adaptation or fixed steps? What accuracy?
+ Higher-order ODE? Symplectic solver?

More features:
+ Output control: Time-series or final value only? Dense output?

+ Number type: Float32 or Float64? Arbitrary precision?
Complex numbers?

+ Taking derivatives: Discrete or continuous sensitivities?
Forward or backward-mode?

Solving ODEs in practice requires making choices TUBINGEN

Algorithmic choices:

+ Explicit or implicit solver? Runge—Kutta or multi-step? What

Existing software:
order? g

+ SciPy
MATLAB
deSolve (R)

+ Step-size adaptation or fixed steps? What accuracy?

+

+ Higher-order ODE? Symplectic solver?

+

+ Multiple Fortran
More features: libraries
+ Output control: Time-series or final value only? Dense output? + torchdiffeq
+ Number type: Float32 or Float64? Arbitrary precision? + jax

Complex numbers?

+

DifferentialEquations.jl
+ Taking derivatives: Discrete or continuous sensitivities?
Forward or backward-mode?

Solving ODEs in practice requires making choices

Algorithmic choices:

+ Explicit or implicit solver? Runge—Kutta or multi-step?
What order?

+ Step-size adaptation or fixed steps? What accuracy?
[Bosch et al., 2021a]

+ Higher-order ODE? Symplectic solver?
[Bosch et al., 2021b]

More features:

+ Output control: Time-series or final value only? Dense
output?

+ Number type: Float32 or Float64? Arbitrary precision?
Complex numbers?

+ Taking derivatives: Discrete or continuous sensitivities?
Forward or backward-mode?

Existing software:

+

+

+

+

+

+

+

SciPy
MATLAB
deSolve (R)

Multiple Fortran
libraries

torchdiffeq

jax
DifferentialEquations.jl
ProbNumDiffEq.jl

What is Julia?

Download

Documentation Blog

Community Learn

The Julia Programming Language

Documentation

Download

Fast

Julia was designed from the beginning for high
performance. Julia programs compile to efficient
native code for multiple platforms via LLVM.

Composable

Julia uses multiple dispatch as a paradigm,
making it easy to express many object-oriented
and functional programming patterns. The talk
on the Unreasonable Effectiveness of Multiple
Dispatch explains why it works so well.

Julia in a Nutshell

Dynamic

Juliais dynamically typed, feels like a scripting
language, and has good support for interactive
use.

General

Julia provides asynchronous 1/0,
metaprogramming, debugging, logging, profiling,
a package manager, and more. One can build
entire Applications and Microservices in Julia.

Research JSoC ¥ Sponsor

Reproducible

Reproducible environments make it possible to
recreate the same Julia environment every time,
across platforms, with pre-built binaries.

Open source

Julia is an open source project with over 1,000
contributors. It is made available under the MIT
license. The source code is available on GitHub.

Why Differentia

EBERHARD KARLS
UNIVERSIT,

|IEquations.jl? TOBINGEN

Comparison Of Differential Equation Solver Software

Subject/tem
tanguoge

Salection of Methods for
s

Eficency’
Twecicabiity

Event Handing
Symbolc Calculafion of
Jecobions and
‘Autoditterentaion
Complex Numbers
arbircey Pracision
Numbers

Conol Over
Linece/Nonlinscr Soivers
Buitin Parclsism
Difiere k- Algebraic.
Equation (DAE) Sohvers
Impiicity-Defined DAE
Sotvers

Constori-Lag Delay
Difiere ol Equation

(DDE) Salvers
Stete-Dependent DDE
Sowers

Stochastc Dierenicl
Equation (SDE) Solvers
Speciclized Methods for
Order ODEs and
Hamiltonians (and
Symplectic Integrator:)
Boundary Value Poblem
(8VP) Soivers
GPU Compatiy
Anolysis Addons
(Sensivy Anaiysi.
afion,
eic)

s sy detove Ofecemokmctonsl i e AN ot o mawope ex o0 Mathamatca Mople
wss hen f o [P o hon Pben teen c e Mathamatca Mople
o Yoo o ro roor o rour o o o

[ood

Yor ona o

- -

Good

Why DifferentialEquations.jl? TUBINGEN

DifferentialEquations.jl [Rackauckas and Nie, 2017]:

+ >50 (>1507) available solvers (non-stiff, stiff, secondorder, exponential, symplectic, ...)
+ ODEs, DAEs, SDEs, DDEs, BVPs, ...

+ Wide range of (continuous & discrete) sensitivity analysis options [Rackauckas et al., 2018]
+ Interacts well with other parts of the Julia ecosystem:

+ AD / Jacobians via ForwardDiff.jl, ReverseDiff.jl, Zygote.jl, Enzyme.jl, ...
+ NeuralODEs with Flux.jl
+ Probabilistic programming with Turing.jl

Why DifferentialEquations.jl? TUBINGEN

DifferentialEquations.jl [Rackauckas and Nie, 2017]:

+ >50 (>1507) available solvers (non-stiff, stiff, secondorder, exponential, symplectic, ...)
+ ODEs, DAEs, SDEs, DDEs, BVPs, ...
+ Wide range of (continuous & discrete) sensitivity analysis options [Rackauckas et al., 2018]
+ Interacts well with other parts of the Julia ecosystem:

+ AD / Jacobians via ForwardDiff.jl, ReverseDiff.jl, Zygote.jl, Enzyme.jl, ...

+ NeuralODEs with Flux.jl

+ Probabilistic programming with Turing.jl
+ Modular implementation and easy to extend

+ Core ODE solvers in OrdinaryDiffEq.jl
+ Specific solver contributions e.g. in Geometriclntegrators.jl or TaylorIntegration.jl|
+ ODE Filters: ProbNumDiffEq.jl

Solving ODEs in Julia with DifferentialEquations.jl

Demo time

EBERHARD KARLS
UNIVERSIT,
TUBINGEN

Benchmark (non-stiff)

Lotka-Volterra (non-stiff)

2
10 ‘ Julia: Tsits
Julia: Vern9
e Julia: RadaulIA5
—4@— Hairer: dopri5

——@— Hairer: rodas
—— MATLAB: ode45

+ MATLAB: odel13
S 5

<4 liblsoda: LSODA
Q PNDE.jl: EK0(5)
© PNDE,jl: EK1(5)

T'ime (s)

107“1

Error

EBERHARD KARLS
UNIVERSIT,
TUBINGEN

Benchmark (non-stiff)

Lotka-Volterra (non-stiff)

—2
10 i Julia: Tsit5
Julia: Vern9
Yo Julia: RadaullA5
1F Hairer: dopri5
> —@ — Hairer: rodas
z ——F— MATLAB: ode45
o ——>¢— MATLAB: odel13
g —A— S K45
= —‘— SODA
= —— : Adams
~—<— liblsoda: LSODA
© PNDE.jl: EK0(5)
\ © PNDE,jl: EK1(5)
. \\

Error

EBERHARD KARLS

UNIVERSI
TUBINGEN

Benchmark (non-stiff)

T'ime (s)

Lotka-Volterra (non-stiff)

Julia: Tsits

Julia: Vern9

Julia: RadaulTA5
Hairer: dopris
Hairer: rodas
MATLAB: oded5
MATLAB: odell3
SciPy: RK45

PNDE,jl: EK1(5)

Error

Benchmark (non-stiff)

T'ime (s)

Lotka-Volterra (non-stiff)

EBERHARD KARLS
UNIVERSI
TUBINGEN

| dos

Q
O

<
»— Hairer:
F Hairer: rodas

%

H

Julia: Tsits

Julia: Vern9
Julia: RadaulTA5
dopri5

MATLAB: ode5
MATLAB: odel13
SciPy: RK45

Sundials: Adams

P!
PNDE,jl: EK1(5)

Error

EBERHARD

UNIVER

Benchmark (stiff) TUBINGEN

Van-der-Pol (stiff)

10t

N\

=

Julia: RadaulIA5
Julia: Rodas5
Julia: QNDF
Hairer: rodas
Hairer: radau
MATLAB: odel5s
SciPy: LSODA
SciPy: BDF
Sundials: CVODE
liblsoda: LSODA
PNDEjl: EK1(5)
PNDE.jl: EK1(7)

10

lime (S)

o

107

Second-order ODEs

Initial value problem
y(t) = f(y(t)r y(t)r t): te [tminy tmax]v :i/(tmin) = ?.JOI y(tmin) = %o- (2)
ODE Filters in a nutshell:

+ Prior: y ~ Gauss-Markov

+ Adjusted information operator:

Z[y)(t) = §(t) = f(§(1), (1), £) = 0. (3)
+ Discretize and infer (with an extended Kalman filter)
p (y(8) | {Z[y](t:) = 0}Ly) (4)

Second-order ODEs, energy preservation, additional derivatives, DAEs: [Bosch et al., 2021b]

Solving second-order, energy-preserving ODEs

Demo time

Acknowledgments

Thanks to all my collaborators:

+

Philipp Hennig

+

Filip Tronarp

+

Nicholas Kramer
Jonathan Schmidt

+

Bibliography |

» Bosch, N., Hennig, P., and Tronarp, F. (2021a).
Calibrated adaptive probabilistic ode solvers.
In Banerjee, A. and Fukumizu, K., editors, Proceedings of The 24th International Conference
on Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine Learning
Research, pages 3466-3474. PMLR.

» Bosch, N., Tronarp, F., and Hennig, P. (2021b).
Pick-and-mix information operators for probabilistic ode solvers.
CoRR.

» Rackauckas, C., Ma, Y., Dixit, V., Guo, X., Innes, M., Revels, J., Nyberg, J., and lvaturi, V.
(2018).
A comparison of automatic differentiation and continuous sensitivity analysis for derivatives of
differential equation solutions.
CoRR.

Bibliography Il

» Rackauckas, C. and Nie, Q. (2017).
DifferentialEquations.jl a performant and feature-rich ecosystem for solving differential

equations in julia.
Journal of Open Research Software, 5(1).

20

21

	anm0:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

