
ProbNumDiffEq.jl: Fast and Practical ODE Filters in Julia
or “Building a PN library on existing non-PN code”

Nathanael Bosch
26.10.2021

some of the presented work is supported
by the European Research Council.



Key Challenges for Probabilistic Numerics

� speed up existing methods to be competitive with classic algorithms
� find killer applications of PN that goes beyod the functionality of classic methods

1



Key Challenges for Probabilistic Numerics

� speed up existing methods to be competitive with classic algorithms
� find killer applications of PN that goes beyod the functionality of classic methods

1



Key Challenges for Probabilistic Numerics

� be competitive with classic algorithms
� speed
� features
� convenience

� find killer applications of PN that goes beyod the functionality of classic methods

2



Ordinary Differential Equations
� Problem setting: Initial value problem

ẏ(t) = f (y(t), t), t ∈ [tmin, tmax], y(tmin) = y0. (1)
Goal: Approximate the ODE solution ŷ ≈ y(t).

Code Example: SciPy

import numpy as np
from scipy.integrate import solve_ivp

def lotkavolterra(t, y):
y1 = 0.5 * y[0] - 0.05 * y[0] * y[1]
y2 = -0.5 * y[1] + 0.05 * y[0] * y[1]
return np.array([y1, y2])

tspan = [0.0, 20.0]
y0 = np.array([20, 20])
sol = solve_ivp(lotkavolterra, tspan, y0, method="RK45")

3



Ordinary Differential Equations
� Problem setting: Initial value problem

ẏ(t) = f (y(t), t), t ∈ [tmin, tmax], y(tmin) = y0. (1)
Goal: Approximate the ODE solution ŷ ≈ y(t).

Code Example: SciPy

import numpy as np
from scipy.integrate import solve_ivp

def lotkavolterra(t, y):
y1 = 0.5 * y[0] - 0.05 * y[0] * y[1]
y2 = -0.5 * y[1] + 0.05 * y[0] * y[1]
return np.array([y1, y2])

tspan = [0.0, 20.0]
y0 = np.array([20, 20])
sol = solve_ivp(lotkavolterra, tspan, y0, method="RK45")

3



ODEs come in various forms

(a) Lotka-Volterra (non-stiff)

(b) Van der Pol (stiff) (c) Henon-Heiles (second-order
and energy preserving)

4



ODEs come in various forms

(a) Lotka-Volterra (non-stiff) (b) Van der Pol (stiff)

(c) Henon-Heiles (second-order
and energy preserving)

4



ODEs come in various forms

(a) Lotka-Volterra (non-stiff) (b) Van der Pol (stiff) (c) Henon-Heiles (second-order
and energy preserving)

4



Solving ODEs in practice requires making choices

Algorithmic choices:
� Explicit or implicit solver? Runge–Kutta or multi-step? What

order?
� Step-size adaptation or fixed steps? What accuracy?
� Higher-order ODE? Symplectic solver?

More features:
� Output control: Time-series or final value only? Dense output?
� Number type: Float32 or Float64? Arbitrary precision?

Complex numbers?
� Taking derivatives: Discrete or continuous sensitivities?

Forward or backward-mode?

Existing software:
� SciPy
� MATLAB
� deSolve (R)
� Multiple Fortran

libraries
� torchdiffeq
� jax
� DifferentialEquations.jl

5



Solving ODEs in practice requires making choices

Algorithmic choices:
� Explicit or implicit solver? Runge–Kutta or multi-step? What

order?
� Step-size adaptation or fixed steps? What accuracy?
� Higher-order ODE? Symplectic solver?

More features:
� Output control: Time-series or final value only? Dense output?
� Number type: Float32 or Float64? Arbitrary precision?

Complex numbers?
� Taking derivatives: Discrete or continuous sensitivities?

Forward or backward-mode?

Existing software:
� SciPy
� MATLAB
� deSolve (R)
� Multiple Fortran

libraries
� torchdiffeq
� jax
� DifferentialEquations.jl

5



Solving ODEs in practice requires making choices

Algorithmic choices:
� Explicit or implicit solver? Runge–Kutta or multi-step? What

order?
� Step-size adaptation or fixed steps? What accuracy?
� Higher-order ODE? Symplectic solver?

More features:
� Output control: Time-series or final value only? Dense output?
� Number type: Float32 or Float64? Arbitrary precision?

Complex numbers?
� Taking derivatives: Discrete or continuous sensitivities?

Forward or backward-mode?

Existing software:
� SciPy
� MATLAB
� deSolve (R)
� Multiple Fortran

libraries
� torchdiffeq
� jax
� DifferentialEquations.jl

5



Solving ODEs in practice requires making choices
Algorithmic choices:

� Explicit or implicit solver? Runge–Kutta or multi-step?
What order?

� Step-size adaptation or fixed steps? What accuracy?
[Bosch et al., 2021a]

� Higher-order ODE? Symplectic solver?
[Bosch et al., 2021b]

More features:
� Output control: Time-series or final value only? Dense

output?
� Number type: Float32 or Float64? Arbitrary precision?

Complex numbers?
� Taking derivatives: Discrete or continuous sensitivities?

Forward or backward-mode?

Existing software:
� SciPy
� MATLAB
� deSolve (R)
� Multiple Fortran

libraries
� torchdiffeq
� jax
� DifferentialEquations.jl
� ProbNumDiffEq.jl

6



What is Julia?

7



Why DifferentialEquations.jl?

8



Why DifferentialEquations.jl?

DifferentialEquations.jl [Rackauckas and Nie, 2017]:

� >50 (>150?) available solvers (non-stiff, stiff, secondorder, exponential, symplectic, . . . )
� ODEs, DAEs, SDEs, DDEs, BVPs, . . .
� Wide range of (continuous & discrete) sensitivity analysis options [Rackauckas et al., 2018]
� Interacts well with other parts of the Julia ecosystem:

� AD / Jacobians via ForwardDiff.jl, ReverseDiff.jl, Zygote.jl, Enzyme.jl, . . .
� NeuralODEs with Flux.jl
� Probabilistic programming with Turing.jl

� Modular implementation and easy to extend
� Core ODE solvers in OrdinaryDiffEq.jl
� Specific solver contributions e.g. in GeometricIntegrators.jl or TaylorIntegration.jl
� ODE Filters: ProbNumDiffEq.jl

9



Why DifferentialEquations.jl?

DifferentialEquations.jl [Rackauckas and Nie, 2017]:

� >50 (>150?) available solvers (non-stiff, stiff, secondorder, exponential, symplectic, . . . )
� ODEs, DAEs, SDEs, DDEs, BVPs, . . .
� Wide range of (continuous & discrete) sensitivity analysis options [Rackauckas et al., 2018]
� Interacts well with other parts of the Julia ecosystem:

� AD / Jacobians via ForwardDiff.jl, ReverseDiff.jl, Zygote.jl, Enzyme.jl, . . .
� NeuralODEs with Flux.jl
� Probabilistic programming with Turing.jl

� Modular implementation and easy to extend
� Core ODE solvers in OrdinaryDiffEq.jl
� Specific solver contributions e.g. in GeometricIntegrators.jl or TaylorIntegration.jl
� ODE Filters: ProbNumDiffEq.jl

9



Solving ODEs in Julia with DifferentialEquations.jl

Demo time

10



Benchmark (non-stiff)

11



Benchmark (non-stiff)

12



Benchmark (non-stiff)

13



Benchmark (non-stiff)

14



Benchmark (stiff)

15



Second-order ODEs

Initial value problem

ÿ(t) = f (ẏ(t), y(t), t), t ∈ [tmin, tmax], ẏ(tmin) = ẏ0, y(tmin) = y0. (2)

ODE Filters in a nutshell:

� Prior: y ∼ Gauss-Markov
� Adjusted information operator:

Z[y](t) = ÿ(t)− f (ẏ(t), y(t), t) ≡ 0. (3)

� Discretize and infer (with an extended Kalman filter)

p
(
y(t) | {Z [y](ti) = 0}N

i=1

)
(4)

Second-order ODEs, energy preservation, additional derivatives, DAEs: [Bosch et al., 2021b]

16



Solving second-order, energy-preserving ODEs

Demo time

17



Acknowledgments

Thanks to all my collaborators:

� Philipp Hennig
� Filip Tronarp
� Nicholas Krämer
� Jonathan Schmidt

18



Bibliography I

I Bosch, N., Hennig, P., and Tronarp, F. (2021a).
Calibrated adaptive probabilistic ode solvers.
In Banerjee, A. and Fukumizu, K., editors, Proceedings of The 24th International Conference
on Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine Learning
Research, pages 3466–3474. PMLR.

I Bosch, N., Tronarp, F., and Hennig, P. (2021b).
Pick-and-mix information operators for probabilistic ode solvers.
CoRR.

I Rackauckas, C., Ma, Y., Dixit, V., Guo, X., Innes, M., Revels, J., Nyberg, J., and Ivaturi, V.
(2018).
A comparison of automatic differentiation and continuous sensitivity analysis for derivatives of
differential equation solutions.
CoRR.

19



Bibliography II

I Rackauckas, C. and Nie, Q. (2017).
DifferentialEquations.jl a performant and feature-rich ecosystem for solving differential
equations in julia.
Journal of Open Research Software, 5(1).

20



Backup

21


	anm0: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


