ProbNumDiffEq.jl: Fast and Practical ODE Filters in Julia

 or "Building a PN library on existing non-PN code"$$
\begin{aligned}
& \text { Natha } \\
& 26 \\
& \text { ? }
\end{aligned}
$$

Nathanael Bosch

$$
26.10 .2021
$$

EBERHARD KARLS
 UNIVERSITAT TUBINGEN

Nax Panax hastute
Intelligent Systems imprs-is

+ speed up existing methods to be competitive with classic algorithms
+ find killer applications of PN that goes beyod the functionality of classic methods
+ speed up existing methods to be competitive with classic algorithms
+ find killer applications of PN that goes beyod the functionality of classic methods

Key Challenges for Probabilistic Numerics

+ be competitive with classic algorithms
+ speed
+ features
+ convenience
+ find killer applications of PN that goes beyod the functionality of classic methods

Ordinary Differential Equations

+ Problem setting: Initial value problem

$$
\begin{equation*}
y(t)=f(y(t), t), \quad t \in\left[t_{\min }, t_{\max }\right], \quad y\left(t_{\min }\right)=y_{0} \tag{1}
\end{equation*}
$$

Goal: Approximate the ODE solution $\hat{y} \approx y(t)$.

Ordinary Differential Equations

+ Problem setting: Initial value problem

$$
\begin{equation*}
y(t)=f(y(t), t), \quad t \in\left[t_{\min }, t_{\max }\right], \quad y\left(t_{\min }\right)=y_{0} \tag{1}
\end{equation*}
$$

Goal: Approximate the ODE solution $\hat{y} \approx y(t)$.

```
Code Example: SciPy
import numpy as np
from scipy.integrate import solve_ivp
def lotkavolterra(t, y):
    y1 = 0.5 * y[0] - 0.05 * y[0] * y[1]
    y2 = -0.5 * y[1] + 0.05 * y[0] * y[1]
    return np.array([y1, y2])
tspan = [0.0, 20.0]
y0 = np.array([20, 20])
sol = solve_ivp(lotkavolterra, tspan, y0, method="RK45")
```


ODEs come in various forms

(a) Lotka-Volterra (non-stiff)

ODEs come in various forms

(a) Lotka-Volterra (non-stiff)

(b) Van der Pol (stiff)

ODEs come in various forms

(a) Lotka-Volterra (non-stiff)

(b) Van der Pol (stiff)

(c) Henon-Heiles (second-order and energy preserving)

Solving ODEs in practice requires making choices

Algorithmic choices:

+ Explicit or implicit solver? Runge-Kutta or multi-step? What order?
+ Step-size adaptation or fixed steps? What accuracy?
+ Higher-order ODE? Symplectic solver?

Solving ODEs in practice requires making choices

Algorithmic choices:

+ Explicit or implicit solver? Runge-Kutta or multi-step? What order?
+ Step-size adaptation or fixed steps? What accuracy?
+ Higher-order ODE? Symplectic solver?

More features:

+ Output control: Time-series or final value only? Dense output?
+ Number type: Float32 or Float64? Arbitrary precision?
Complex numbers?
+ Taking derivatives: Discrete or continuous sensitivities? Forward or backward-mode?

Solving ODEs in practice requires making choices

Algorithmic choices:

+ Explicit or implicit solver? Runge-Kutta or multi-step? What order?
+ Step-size adaptation or fixed steps? What accuracy?
+ Higher-order ODE? Symplectic solver?

More features:

+ Output control: Time-series or final value only? Dense output?
+ Number type: Float32 or Float64? Arbitrary precision? Complex numbers?
+ Taking derivatives: Discrete or continuous sensitivities? Forward or backward-mode?

Existing software:

+ SciPy
+ MATLAB
+ deSolve (R)
+ Multiple Fortran libraries
+ torchdiffeq
+ jax
+ DifferentialEquations.jl

Solving ODEs in practice requires making choices

Algorithmic choices:

+ Explicit or implicit solver? Runge-Kutta or multi-step? What order?
+ Step-size adaptation or fixed steps? What accuracy? [Bosch et al., 2021a]
+ Higher-order ODE? Symplectic solver? [Bosch et al., 2021b]
More features:
+ Output control: Time-series or final value only? Dense output?
+ Number type: Float32 or Float64? Arbitrary precision? Complex numbers?
+ Taking derivatives: Discrete or continuous sensitivities? Forward or backward-mode?

Existing software:

+ SciPy
+ MATLAB
+ deSolve (R)
+ Multiple Fortran libraries
+ torchdiffeq
+ jax
+ DifferentialEquations.jl
+ ProbNumDiffEq.jl

Julia in a Nutshell

Fast

Julia was designed from the beginning for high performance. Julia programs compile to efficient native code for multiple platforms via LLVM.

Composable

Julia uses multiple dispatch as a paradigm, making it easy to express many object-oriented and functional programming patterns. The talk on the Unreasonable Effectiveness of Multiple Dispatch explains why it works so well.

Dynamic

Julia is dynamically typed, feels like a scripting language, and has good support for interactive use.

General

Julia provides asynchronous I/O, metaprogramming, debugging, logging, profiling, a package manager, and more. One can build entire Applications and Microservices in Julia.

Reproducible

Reproducible environments make it possible to recreate the same Julia environment every time, across platforms, with pre-built binaries.

Open source

Julia is an open source project with over 1,000 contributors. It is made available under the MIT license. The source code is available on GitHub.

Why DifferentialEquations.jl?

Subjec//lem	matab	Scity	desolre	Differenfoitquotion3.jl	Sundials	Hoirer	ODEPACK/NetID /NAC	Jicode	Prostool	fatode	cst	soost	Malternaico	Mapls
Longuoge	marab	Python	1	Julia	C++ and Fortran	Fotron	Fotron	Python	Python	Fortion	c	c++	Mathematico	Maple
Soloction of Mothods for ODEs	Far	Poor	Kor	Excelent	Good	Fort	Good	Poat	Poor	Foir	Poor	For	Far	Foir
Efficioncr**	Poor	Poorte.	Poores	Excolent	Excollont	Good	Good	Good	Good	Good	Fair	Foir	Far	Good
Tweokabilly	Fair	Poor	cood	Excolent	Exactiont	cood	Cood	For	Fair	Fair	Far	for	cood	Fair
Event Handing	Good	Good	Far	Excolent	Goode	Mons	Good**	None	Fair	Nane	Nons	None	Good	Good
Symbolic Caleulation of Jocobians and Autodifferentiation	Hone	None	Mone	Excelent	None	None	None	None	None	Nore	None	None	Excellent	Excelent
Complor Numbers	Excellont	Good	For	Good	None	Nons	Nane	Mone	Nons	Nore	Nono	Good	Excellont	Excolent
Arbitrary Piecision Numbers	Hene	Non=	Hons	Excelent	None	Hone	None	Hone	None	Hore	Hone	Excellent	Excellent	Excelent
Control Over Linear/Nonlinear Solvars	ne	Pour	,ne	Excelent	Excelent	Good	Depends on the solver	one	None	Hore	None	None	Far	None
Suii-in Paralelim	Hone	None	Mions	Excelent	Excellent	Hone	None	Hone	None	None	None	far	Nions	None
Differentici-Algokraic Equalion (DAE) Solvers	Good	None	Good	Excelent	Good	Excelent	Good	None	Fair	Good	None	None	Good	Good
Implicilly-Defined DAE solvers	Good	None	Excellent	Fair	Excelent	None	Excelent	Wone	None	None	None	None	Good	Not
Constont-log Delay Dïferential Equation [DDE Solvers	Far	None	Poor	Excelent	None	Good	Fait (via DDverk)	Far	None	Hone	Hene	None	Good	Excelent
Stale-Dependent DDE Solvers	Poor	None	Poor	Excolent	None	Excolont	cood	Hone	Nono	Hone	Nono	None	Nono	Excolent
Stochastic Difforontiol Equation (SDE) Solvers	Poor	None	Hons	Excelent	None	None	None	Good	None	None	None	None	Foir	Poor
Specidized Mothods for 2nc order CDEs and Hamitonions (and symplectic insegrators)	Hane	None	Hone	Escelent	None	Good	None	Hone	None	Hore	None	Fat	Good	None
Boundary Value Froblem [BVP) Solvers	Good	For	ne	Good	None	Hone	Good	None	None	Hone	None	None	Good	Pair
Gpu Compdibility	Hone	None	Hone	Excelent	Good	Mano	None	Hone	None	Nore	Nons	Good	Neno	None
Analysis Addons (Sensitivity Analysis, Parameter Estimation etc.)	Hone	None	Hons	Excelent	Escelent	Horn	Good flor some methood like DASFK)	${ }^{\text {\| }}$ (Poor	Good	None	None	Excellent	Noce

Why DifferentialEquations.jl?

DifferentialEquations.jl [Rackauckas and Nie, 2017]:

+ >50 (>150?) available solvers (non-stiff, stiff, secondorder, exponential, symplectic, ...)
+ ODEs, DAEs, SDEs, DDEs, BVPs, ...
+ Wide range of (continuous \& discrete) sensitivity analysis options [Rackauckas et al., 2018]
+ Interacts well with other parts of the Julia ecosystem:
+ AD / Jacobians via ForwardDiff.jl, ReverseDiff.jl, Zygote.jl, Enzyme.jl, . .
+ NeuralODEs with Flux.jl
+ Probabilistic programming with Turing.j

Why DifferentialEquations.jl?

DifferentialEquations.jl [Rackauckas and Nie, 2017]:

+ >50 (>150?) available solvers (non-stiff, stiff, secondorder, exponential, symplectic, ...)
+ ODEs, DAEs, SDEs, DDEs, BVPs, ...
+ Wide range of (continuous \& discrete) sensitivity analysis options [Rackauckas et al., 2018]
+ Interacts well with other parts of the Julia ecosystem:
+ AD / Jacobians via ForwardDiff.jl, ReverseDiff.jl, Zygote.jl, Enzyme.jl, ...
+ NeuralODEs with Flux.jl
+ Probabilistic programming with Turing.j
+ Modular implementation and easy to extend
+ Core ODE solvers in OrdinaryDiffEq.j
+ Specific solver contributions e.g. in GeometricIntegrators.jl or TaylorIntegration.jl
+ ODE Filters: ProbNumDiffEq.j UNVERSTITAT TUBINGEN

Demo time

Benchmark (non-stiff)

Benchmark (stiff)

EBERHARD KARLS
ININ/ED CITAT UNIVERSITAT
TUBINGEN

Frror

Second-order ODEs

Initial value problem

$$
\begin{equation*}
\ddot{y}(t)=f(\dot{y}(t), y(t), t), \quad t \in\left[t_{\min }, t_{\max }\right], \quad \dot{y}\left(t_{\min }\right)=\dot{y}_{0}, \quad y\left(t_{\min }\right)=y_{0} \tag{2}
\end{equation*}
$$

ODE Filters in a nutshell:

+ Prior: $y \sim$ Gauss-Markov
+ Adjusted information operator:

$$
\begin{equation*}
\mathcal{Z}[y](t)=\ddot{y}(t)-f(\dot{y}(t), y(t), t) \equiv 0 \tag{3}
\end{equation*}
$$

+ Discretize and infer (with an extended Kalman filter)

$$
\begin{equation*}
p\left(y(t) \mid\left\{Z[y]\left(t_{i}\right)=0\right\}_{i=1}^{N}\right) \tag{4}
\end{equation*}
$$

Second-order ODEs, energy preservation, additional derivatives, DAEs: [Bosch et al., 2021b]

Demo time

Thanks to all my collaborators:

+ Philipp Hennig
+ Filip Tronarp
+ Nicholas Krämer
+ Jonathan Schmidt

Bibliography I

- Bosch, N., Hennig, P., and Tronarp, F. (2021a).

Calibrated adaptive probabilistic ode solvers.
In Banerjee, A. and Fukumizu, K., editors, Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine Learning Research, pages 3466-3474. PMLR.

- Bosch, N., Tronarp, F., and Hennig, P. (2021b).

Pick-and-mix information operators for probabilistic ode solvers.
CoRR.

- Rackauckas, C., Ma, Y., Dixit, V., Guo, X., Innes, M., Revels, J., Nyberg, J., and Ivaturi, V. (2018).

A comparison of automatic differentiation and continuous sensitivity analysis for derivatives of differential equation solutions.

```
CoRR.
```


Bibliography II

- Rackauckas, C. and Nie, Q. (2017).

DifferentialEquations.jl a performant and feature-rich ecosystem for solving differential equations in julia.
Journal of Open Research Software, 5(1).

Backup

EBERHARD KARLS

 tuingin

