ProbNumDiffEq.jl: Fast and Practical ODE Filters in Julia

or "Building a PN library on existing non-PN code"

Nathanael Bosch 26.10.2021

EBERHARD KARLS UNIVERSITÄT TÜBINGEN

some of the presented work is supported by the European Research Council.

- + speed up existing methods to be competitive with classic algorithms
- + find killer applications of PN that goes beyod the functionality of classic methods

- + speed up existing methods to be competitive with classic algorithms
- + find killer applications of PN that goes beyod the functionality of classic methods

+ be competitive with classic algorithms

- speed
- features
- + convenience
- + find killer applications of PN that goes beyod the functionality of classic methods

Ordinary Differential Equations

+ Problem setting: Initial value problem

 $\dot{y}(t) = f(y(t), t), \qquad t \in [t_{\min}, t_{\max}], \qquad y(t_{\min}) = y_0.$ (1)

Goal: Approximate the ODE solution $\hat{y} \approx y(t)$.

Ordinary Differential Equations

UNIVERSITÄT TÜBINGEN

+ Problem setting: Initial value problem

 $\dot{y}(t) = f(y(t), t), \qquad t \in [t_{\min}, t_{\max}], \qquad y(t_{\min}) = y_0.$ (1)

Goal: Approximate the ODE solution $\hat{y} \approx y(t)$.

Code Example: SciPy

```
import numpy as np
from scipy.integrate import solve_ivp
```

```
def lotkavolterra(t, y):
    y1 = 0.5 * y[0] - 0.05 * y[0] * y[1]
    y2 = -0.5 * y[1] + 0.05 * y[0] * y[1]
    return np.array([y1, y2])
```

```
tspan = [0.0, 20.0]
y0 = np.array([20, 20])
sol = solve_ivp(lotkavolterra, tspan, y0, method="RK45")
```

ODEs come in various forms

ODEs come in various forms

ODEs come in various forms

4

Algorithmic choices:

- + Explicit or implicit solver? Runge–Kutta or multi-step? What order?
- + Step-size adaptation or fixed steps? What accuracy?
- + Higher-order ODE? Symplectic solver?

UNIVERSITAT

Algorithmic choices:

- + Explicit or implicit solver? Runge–Kutta or multi-step? What order?
- + Step-size adaptation or fixed steps? What accuracy?
- + Higher-order ODE? Symplectic solver?

More features:

- + Output control: Time-series or final value only? Dense output?
- + Number type: Float32 or Float64? Arbitrary precision? Complex numbers?
- + Taking derivatives: Discrete or continuous sensitivities? Forward or backward-mode?

Algorithmic choices:

- + Explicit or implicit solver? Runge–Kutta or multi-step? What order?
- + Step-size adaptation or fixed steps? What accuracy?
- + Higher-order ODE? Symplectic solver?

More features:

- + Output control: Time-series or final value only? Dense output?
- + Number type: Float32 or Float64? Arbitrary precision? Complex numbers?
- + Taking derivatives: Discrete or continuous sensitivities? Forward or backward-mode?

Existing software:

- ⋆ SciPy
- + MATLAB
- + deSolve (R)
- Multiple Fortran libraries
- + torchdiffeq
- + jax
- DifferentialEquations.jl

Solving ODEs in practice requires making choices

eberhard karls UNIVERSITAT TÜBINGEN

Algorithmic choices:

- + Explicit or implicit solver? Runge–Kutta or multi-step? What order?
- + Step-size adaptation or fixed steps? What accuracy? [Bosch et al., 2021a]
- + Higher-order ODE? Symplectic solver? [Bosch et al., 2021b]

More features:

- + Output control: Time-series or final value only? Dense output?
- + Number type: Float32 or Float64? Arbitrary precision? Complex numbers?
- + Taking derivatives: **Discrete** or continuous sensitivities? **Forward** or backward-mode?

Existing software:

- ✤ SciPy
- + MATLAB
- + deSolve (R)
- Multiple Fortran libraries
- torchdiffeq
- + jax
- DifferentialEquations.jl
- ProbNumDiffEq.jl

What is Julia?

Julia in a Nutshell

Fast

Julia was designed from the beginning for high performance. Julia programs compile to efficient native code for multiple platforms via LLVM.

Composable

Julia uses multiple dispatch as a paradigm, making it easy to express many object-oriented and functional programming patterns. The talk on the Unreasonable Effectiveness of Multiple Dispatch explains why it works so well.

Dynamic

Julia is dynamically typed, feels like a scripting language, and has good support for interactive use.

General

Julia provides asynchronous I/O, metaprogramming, debugging, logging, profiling, a package manager, and more. One can build entire Applications and Microservices in Julia.

Reproducible

Reproducible environments make it possible to recreate the same Julia environment every time, across platforms, with pre-built binaries.

Open source

Julia is an open source project with over 1,000 contributors. It is made available under the MIT license. The source code is available on GitHub.

Why DifferentialEquations.jl?

EBERHARD KARLS	
LINHVEDCITXT	
UNIVERSITAT	
TUDINICENT	
I ÜBINGEN	

Comparison Of Differential Equation Solver Software														
Subject/item	MATLAB	SciPy	deSolve	DifferentialEquations. JI	Sundials	Hairer	ODEPACK/Netlib /NAG	JICODE	PyDSTool	FATODE	GSL	BOOST	Mathematica	Maple
Language	MATLAB	Python	8	Julia	C++ and Forlran	Fortran	Fortran	Python	Python	Fortran	c	C++	Mathematica	Maple
Selection of Methods for ODEs	fair	Poor	Fair	Excellent	Good	Fair	Good	Poor	Poor	Fair	Poor	Fair	fair	Fair
Efficiency*	Poor	Poor****	Poort	Excellent	Excellent	Good	Good	Good	Good	Good	fair	fair	Fair	Good
Tweakability	fair	Poor	Good	Excellent	Excellent	Good	Good	fair	Fair	Fair	fair	Fair	Good	Foir
Event Handling	Good	Good	fair	Excelent	Good**	None	Good**	None	Fair	None	None	None	Good	Good
Symbolic Calculation of Jacobians and Autodifferentiation	None	None	None	Excellent	None	None	None	None	None	None	None	None	Excellent	Excellent
Complex Numbers	Excellent	Good	Fair	Good	None	None	None	None	None	None	None	Good	Excellent	Excellent
Arbitrary Precision Numbers	None	None	None	Excellent	None	None	None	None	None	None	None	Excellent	Excellent	Excellent
Control Over Linear/Nonlinear Solvers	None	Poor	None	Excellent	Excellent	Good	Depends on the solver	None	None	None	None	None	Fair	None
Built-in Parallelism	None	None	None	Excellent	Excellent	None	None	None	None	None	None	Fair	None	None
Differential-Algebraic Equation (DAE) Solvers	Good	None	Good	Excellent	Good	Excellent	Good	None	Fair	Good	None	None	Good	Good
Implicitly-Defined DAI Solvers	Good	None	Excellent	Fair	Excellent	None	Excellent	None	None	None	None	None	Good	None
Constant-Lag Delay Differential Equation (DDE) Solvers	Fair	None	Poor	Excellent	None	Good	Fair (via DDVERK)	Fair	None	None	None	None	Good	Excellent
State-Dependent DDE Solvers	Poor	None	Poor	Excellent	None	Excellent	Good	None	None	None	None	None	None	Excellent
Stochastic Differential Equation (SDE) Solvers	Poor	None	None	Excellent	None	None	None	Good	None	None	None	None	fair	Poor
Specialized Methods for 2nd Order ODEs and Hamiltonians (and Symplectic Integrators)	None	None	None	Excellent	None	Good	None	None	None	None	None	Fair	Good	None
Boundary Value Problem (BVP) Solvers	Good	Fair	None	Good	None	None	Good	None	None	None	None	None	Good	Foir
GPU Compatibility	None	None	None	Excellent	Good	None	None	None	None	None	None	Good	None	None
Analysis Addons (Sensitivity Analysis, Parameter Estimation, etc.)	None	None	None	Excellent	Excellent	None	Good (for some methods like DASPK)	None	Poor	Good	None	None	Excellent	None

DifferentialEquations.jl [Rackauckas and Nie, 2017]:

- + >50 (>150?) available solvers (non-stiff, stiff, secondorder, exponential, symplectic, ...)
- + ODEs, DAEs, SDEs, DDEs, BVPs, ...
- + Wide range of (continuous & discrete) sensitivity analysis options [Rackauckas et al., 2018]
- + Interacts well with other parts of the Julia ecosystem:
 - + AD / Jacobians via ForwardDiff.jl, ReverseDiff.jl, Zygote.jl, Enzyme.jl, ...
 - + NeuralODEs with Flux.jl
 - + Probabilistic programming with Turing.jl

DifferentialEquations.jl [Rackauckas and Nie, 2017]:

- + >50 (>150?) available solvers (non-stiff, stiff, secondorder, exponential, symplectic, ...)
- + ODEs, DAEs, SDEs, DDEs, BVPs, ...
- + Wide range of (continuous & discrete) sensitivity analysis options [Rackauckas et al., 2018]
- + Interacts well with other parts of the Julia ecosystem:
 - + AD / Jacobians via ForwardDiff.jl, ReverseDiff.jl, Zygote.jl, Enzyme.jl, ...
 - + NeuralODEs with Flux.jl
 - + Probabilistic programming with Turing.jl
- + Modular implementation and easy to extend
 - + Core ODE solvers in OrdinaryDiffEq.jl
 - + Specific solver contributions e.g. in GeometricIntegrators.jl or TaylorIntegration.jl
 - + ODE Filters: ProbNumDiffEq.jl

Demo time

Benchmark (stiff)

Julia: RadauIIA5 Julia: Rodas5 Julia: QNDF Hairer: rodas

Hairer: radau MATLAB: ode15s

SciPy: LSODA SciPy: BDF Sundials: CVODE liblsoda: LSODA PNDE.jl: EK1(5) PNDE.jl: EK1(7)

Initial value problem

 $\ddot{y}(t) = f(\dot{y}(t), y(t), t), \qquad t \in [t_{\min}, t_{\max}], \qquad \dot{y}(t_{\min}) = \dot{y}_0, \qquad y(t_{\min}) = y_0.$ (2)

ODE Filters in a nutshell:

- + Prior: $y \sim \text{Gauss-Markov}$
- + Adjusted information operator:

$$\mathcal{Z}[y](t) = \ddot{y}(t) - f(\dot{y}(t), y(t), t) \equiv 0.$$
(3)

+ Discretize and infer (with an extended Kalman filter)

$$p(y(t) \mid \{Z[y](t_i) = 0\}_{i=1}^N)$$
(4)

Second-order ODEs, energy preservation, additional derivatives, DAEs: [Bosch et al., 2021b]

Demo time

Thanks to all my collaborators:

- + Philipp Hennig
- + Filip Tronarp
- + Nicholas Krämer
- + Jonathan Schmidt

Bosch, N., Hennig, P., and Tronarp, F. (2021a).
 Calibrated adaptive probabilistic ode solvers.

In Banerjee, A. and Fukumizu, K., editors, *Proceedings of The 24th International Conference on Artificial Intelligence and Statistics*, volume 130 of *Proceedings of Machine Learning Research*, pages 3466–3474. PMLR.

- Bosch, N., Tronarp, F., and Hennig, P. (2021b).
 Pick-and-mix information operators for probabilistic ode solvers. *CoRR*.
- Rackauckas, C., Ma, Y., Dixit, V., Guo, X., Innes, M., Revels, J., Nyberg, J., and Ivaturi, V. (2018).

A comparison of automatic differentiation and continuous sensitivity analysis for derivatives of differential equation solutions.

CoRR.

▶ Rackauckas, C. and Nie, Q. (2017).

DifferentialEquations.jl a performant and feature-rich ecosystem for solving differential equations in julia.

Journal of Open Research Software, 5(1).

