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Summary Solving ODEs with ProbNumDiffEq. j1

Performance

e Numerical algorithms compute an approximate solution to numerical problems,
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prob = ODEProblem(lotkavolterra, u0O, tspan)

Probabilistic Numerical ODE Solvers

e Complexity of extended Kalman filtering and smoothing: O (Nd3q3).

# High-accuracy solve: e Many matrix-matrix operations
Consider an initial Vallfe problem appxsol = solve(prob, Tsit5(), abstol=1e-12, reltol=1le-12) = broadcast / FastBroadcast. j1 not straight-forward.
u(t) =/ (u(t)> t) ) MAS [t()? T]7 (1) e Implementation details: Currently the solver still allocates lots of memory for
with vector field f : R? x R — R? and initial value u(ty) = uy € R%. # Low-accuracy solve with a non-probabilistic solver: intermediate calculations which can be optimized away (WIP).
To quantify the numerical error, we seek to compute posterior distributions soll = solve(prob, Tsitb(), abstol=le-1, reltol=1e-0) _ )
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# Low—accuracy solve with a probabilistic solver:

for some time discretization {tn}qjlvzl C [to, 1. sol2 = solve(prob, EKO(order=5), abstol=le-1, reltol=1e-0) Additional Remarks
e Prior: Model u(t) with a ¢-times integrated Wiener process (IWP)
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such that 7 models the i-th derivative diu/ dt'. . B:t not eve;yt:)nni workz: perfec.tll]yzyet: Matrlf)—value(.i .O.[?Es, GPU-arrays, Stati-
. » cArrays. jl, backprop (e.g. wit ote. jl), sensitivities, ...
e Measurement process & Data: Z(t) := UW(t) — f (UY(¢),¢t) = 0. - Solution 7\ Rel yd ) : 'IF')h Pg . Je i dJ od by DA £FEAl .
. . . . . ) . _ : : 1P : / \ e Related approach: e ProbInts method provide 1 ncertainty. j
e Approximate inference with Gaussian filtering / smoothing: Approximate OrdinaryDiffEq.jl: Tsit5 , °€ approg . PTOVICE=E BY 1 . AR
N 1 ProbNumDiffEq.jl: EKO(5) quantifies numerical uncertainty by repeatedly solving the ODE and disturbing the
p(U®) | {Z(t:) = 0},5,) =N (u(t), X(t)) (4) o ‘ solution (see also [9]). In comparison, the filtering-based solvers of ProbNumDif-
efficiently (i.e. O(N)) with extended Kalman filtering / smoothing |3, 5]. = fEq. j1 require only a single solve to compute a probabilistic, Gaussian posterior.
e Visual examp|e for the Iogistic equation u(t) — u(t)(l — u(t)); \5 ‘ e For more probabilistic numerics check out ProbNum, a feature-rich Python
_ _ package for probabilistic numerics [6]. It includes probabilistic linear solvers, Bayesian
Prior Posterior quadrature, probabilistic ODE solvers, filtering and smoothing algorithms, and more.
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