FUR INTELLIGENTE SYSTEME

TUBINGEN / Nathanael Bosch, University of Tiibingen j_mprs-j_s

UNIVERSITAT @@ ProbNumDiffEq.jl — Probabilistic Numerics for ODES wmaxpianckmsmimur

Summary Solving ODEs with ProbNumDiffEq. j1

Performance

e Numerical algorithms compute an approximate solution to numerical problems,

. o # ProbNumD+ f fE 1 @ e
such as differential equations, linear algebra, integration, optimization, ...] adgd Prob um LS TEY . . S 10°} 100 | .
o]] _ o _ using ProbNumDiffEq, OrdinaryDiffEq, Plots e 7 o - log N ® Tsits
e Probabilistic numerical algorithms return a posterior distribution over solutions, o S o™ ¢ B RadaullAs
h. h . I d b bl . . o _ 0_5-_ ‘ * i 0_5-_ o u ‘ "
which includes a probabilistic quantification of their numerical approximation error. # Problem definition as in DifferentialEquations. 5l ~ U ¢ oo 107 e N 0’ £ *— EKO(5)
' % -] = |
e ProbNumDiffEq.jl implements probabilistic numerical solvers for ordinary differ- lotkavolterra(u, p, t) = [0.5 * u[1] - 0.05 * u[1] * u[2] uE_ _ N ‘0‘. . _ o, % 0;* ¢ EK1(5)
ential equations (ODEs) in Julia, building on OrdinaryDiffEq.j1 [7]. -0.5 * u[2] + 0.05 * u[1] * ul2]] 10719 L — — 10719 L — — —-
A y 10 = [20.0; 20.0] 102 10 107 107 10
tspan = (0.0, 20.0) #evaluations (f + Jac f) runtime [s]

prob = ODEProblem(lotkavolterra, u0O, tspan)

Probabilistic Numerical ODE Solvers

e Complexity of extended Kalman filtering and smoothing: O (Nd3q3).

High-accuracy solve: e Many matrix-matrix operations
Consider an initial Vallfe problem appxsol = solve(prob, Tsit5(), abstol=1e-12, reltol=1le-12) = broadcast / FastBroadcast. j1 not straight-forward.
u(t) =/ (u(t)> t)) MAS [t()? T]7 (1) e Implementation details: Currently the solver still allocates lots of memory for
with vector field f : R? x R — R? and initial value u(ty) = uy € R%. # Low-accuracy solve with a non-probabilistic solver: intermediate calculations which can be optimized away (WIP).
To quantify the numerical error, we seek to compute posterior distributions soll = solve(prob, Tsitb(), abstol=le-1, reltol=1e-0) _)

p (ul®) | falt) = flutt),)}, 2)

Low—accuracy solve with a probabilistic solver:

for some time discretization {tn}qjlvzl C [to, 1. sol2 = solve(prob, EKO(order=5), abstol=le-1, reltol=1e-0) Additional Remarks
e Prior: Model u(t) with a ¢-times integrated Wiener process (IWP)
. d(g+1 _ 0 1 : ‘ = = =" ion" . . .
U :[0,00) = RU ¢ U(t) = [UV(t), UN(2), ..., U ()], with Plotl(aPPXSOL linestyle -dafh’ color=:black, label "fomtlon) o ProbNumDiffEq. j1 is compatible with many features from OrdinaryDiffEq.jl
dU@(t) — U@H)(t) dt, i=0,...,q—1, (3a) plot!(soll, color=1, label= Drdlnaryl.)lfqu..Jl. Tsit5") / DifferentialEquations.jl / Julia: Stepsize control, plotting functionality,
plot! (so0l2, color=2, label="ProbNumDiffEq.jl: EKO(5)") Iback . .
dU(Q)(t) = oI, AW (1), (3b) callbacks, ForwardDiff. jl, ...
such that 7 models the i-th derivative diu/ dt'. . B:t not eve;yt:)nni workz: perfec.tll]yzyet: Matrlf)—value(.i .O.[?Es, GPU-arrays, Stati-
. » cArrays. jl, backprop (e.g. wit ote. jl), sensitivities, ...
e Measurement process & Data: Z(t) := UW(t) — f (UY(¢),¢t) = 0. - Solution 7\ Rel yd) : 'IF')h Pg . Je i dJ od by DA £FEAl .
.) . _ : : 1P : / \ e Related approach: e ProbInts method provide 1 ncertainty. j
e Approximate inference with Gaussian filtering / smoothing: Approximate OrdinaryDiffEq.jl: Tsit5 , °€ approg . PTOVICE=E BY 1 . AR
N 1 ProbNumDiffEq.jl: EKO(5) quantifies numerical uncertainty by repeatedly solving the ODE and disturbing the
p(U®) | {Z(t:) = 0},5,) =N (u(t), X(t)) (4) o ‘ solution (see also [9]). In comparison, the filtering-based solvers of ProbNumDif-
efficiently (i.e. O(N)) with extended Kalman filtering / smoothing |3, 5]. = fEq. j1 require only a single solve to compute a probabilistic, Gaussian posterior.
e Visual examp|e for the Iogistic equation u(t) — u(t)(l — u(t)); \5 ‘ e For more probabilistic numerics check out ProbNum, a feature-rich Python
_ _ package for probabilistic numerics [6]. It includes probabilistic linear solvers, Bayesian
Prior Posterior quadrature, probabilistic ODE solvers, filtering and smoothing algorithms, and more.
\ /
= = / | s R
s s b References and related work:
[1] N. Bosch et al. “Calibrated Adaptive Probabilistic ODE Solvers". In International Conference on Artificial Intelligence and
Statistics (AISTATS), 2021.
Results: [2] S. Sarkka and A. Solin. “Applied Stochastic Differential Equations”. In Cambridge University Press, 2019.
S S e Both solutions are disturbed by a noticeable numerical approximation error. [3] F. Tronarp et al. “Probabilistic solutions to ordinary differential equations as nonlinear Bayesian filtering: a new perspec-
é _5: Th babilist | ¥ o distribut 4 thereb _ tive". In Statistics and Computing, 2019.
LT LT * © pI’.O abilistic EK(_) (5|) >0 ver. provides a posterior distribution and thereby esti- 4] F. Tronarp et al. “Bayesian Ode Solvers: the Maximum a Posteriori Estimate”. In Statistics and Computing, 2021.
S S mates Its own numerical uncertainty. 5] S. Sarkka. “Bayesian Filtering and Smoothing”. In Cambridge University Press, 2013.
; 7 e For more inspection we could also generate samples of the posterior distribution. 6] Problum, https://github. con/probabilistic-numerics/probnum.
_ _ o o o _ o _ / 7] Ordi DiffEq.jl, https://github.com/SciML/0rdi DiffEq.jl.
e This framework includes explicit (EKO), semi-implicit (EK1), and implicit methods S) | v | : | Com_ C_ e) | o |
_ _ _ _ 8] C. Rackauckas and Q. Nie. "DifferentialEquations.jl—-a performant and feature-rich ecosystem for solving differential
(IEKS, currently only a prototype implementation) (see [4] for more information). equations in julia”. In Journal of Open Research Software, 2017.
e [he posterior distribution (Eq (4)) naturally provides dense output and sampling. [9] P. Conrad et al. Girolami M, Sarkka S, Stuart A, Zygalakis K. “Statistical analysis of differential equations: introducing
probability measures on numerical solutions” In Statistics and Computing, 2017.
\ / _)

nathanael.bosch@uni-tuebingen.de https://github.com/nathanaelbosch/ProbNumDiffEq. jl

https://github.com/nathanaelbosch/ProbNumDiffEq.jl
https://github.com/probabilistic-numerics/probnum
https://github.com/SciML/OrdinaryDiffEq.jl

