
LATEX TikZposter

ProbNumDiffEq.jl – Probabilistic Numerics for ODEs
Nathanael Bosch, University of Tübingen

ProbNumDiffEq.jl – Probabilistic Numerics for ODEs
Nathanael Bosch, University of Tübingen

nathanael.bosch@uni-tuebingen.de https://github.com/nathanaelbosch/ProbNumDiffEq.jl

Summary

•Numerical algorithms compute an approximate solution to numerical problems,
such as differential equations, linear algebra, integration, optimization, ...

•Probabilistic numerical algorithms return a posterior distribution over solutions,
which includes a probabilistic quantification of their numerical approximation error.

•ProbNumDiffEq.jl implements probabilistic numerical solvers for ordinary differ-
ential equations (ODEs) in Julia, building on OrdinaryDiffEq.jl [7].

Probabilistic Numerical ODE Solvers

Consider an initial value problem

u̇(t) = f (u(t), t) , ∀t ∈ [t0, T], (1)

with vector field f : Rd × R → Rd and initial value u(t0) = u0 ∈ Rd.
To quantify the numerical error, we seek to compute posterior distributions

p
(
u(t)

∣∣∣ {u̇(tn) = f (u(tn), tn)}Nn=1
)
, (2)

for some time discretization {tn}Nn=1 ⊂ [t0, T].

•Prior: Model u(t) with a q-times integrated Wiener process (IWP)
U : [0,∞) → Rd(q+1), t 7→ U(t) =

[
U (0)(t), U (1)(t), . . . , U (q)(t)

]
, with

dU (i)(t) = U (i+1)(t) dt, i = 0, . . . , q − 1, (3a)

dU (q)(t) = σId dW (t), (3b)

such that U (i) models the i-th derivative diu/ dti.

•Measurement process & Data: Z(t) := U (1)(t)− f
(
U (0)(t), t

)
≡ 0.

•Approximate inference with Gaussian filtering / smoothing: Approximate

p
(
U(t)

∣∣ {Z(ti) = 0}Ni=1
)
≈ N (µ(t),Σ(t)) (4)

efficiently (i.e. O(N)) with extended Kalman filtering / smoothing [3, 5].

•Visual example for the logistic equation u̇(t) = u(t)(1− u(t)):

EKF−−−−→

•This framework includes explicit (EK0), semi-implicit (EK1), and implicit methods
(IEKS, currently only a prototype implementation) (see [4] for more information).

•The posterior distribution (Eq. (4)) naturally provides dense output and sampling.

Solving ODEs with ProbNumDiffEq.jl

] add ProbNumDiffEq

using ProbNumDiffEq, OrdinaryDiffEq, Plots

Problem definition as in DifferentialEquations.jl

lotkavolterra(u, p, t) = [0.5 * u[1] - 0.05 * u[1] * u[2]

-0.5 * u[2] + 0.05 * u[1] * u[2]]

u0 = [20.0; 20.0]

tspan = (0.0, 20.0)

prob = ODEProblem(lotkavolterra, u0, tspan)

High-accuracy solve:

appxsol = solve(prob, Tsit5(), abstol=1e-12, reltol=1e-12)

Low-accuracy solve with a non-probabilistic solver:

sol1 = solve(prob, Tsit5(), abstol=1e-1, reltol=1e-0)

Low-accuracy solve with a probabilistic solver:

sol2 = solve(prob, EK0(order=5), abstol=1e-1, reltol=1e-0)

plot(appxsol, linestyle=:dash, color=:black, label="Solution")

plot!(sol1, color=1, label="OrdinaryDiffEq.jl: Tsit5")

plot!(sol2, color=2, label="ProbNumDiffEq.jl: EK0(5)")

t

u(
t)

Solution
OrdinaryDiffEq.jl: Tsit5
ProbNumDiffEq.jl: EK0(5)

Results:

•Both solutions are disturbed by a noticeable numerical approximation error.

•The probabilistic EK0(5) solver provides a posterior distribution and thereby esti-
mates its own numerical uncertainty.

• For more inspection we could also generate samples of the posterior distribution.

Performance

102 103

#evaluations (f + Jac_f)

100

10 5

10 10Fi
na

l e
rro

r

10 4 10 3 10 2

runtime [s]

100

10 5

10 10

Tsit5
RadauIIA5
EK0(5)
EK1(5)

•Complexity of extended Kalman filtering and smoothing: O
(
Nd3q3

)
.

•Many matrix-matrix operations
⇒ broadcast / FastBroadcast.jl not straight-forward.

• Implementation details: Currently the solver still allocates lots of memory for
intermediate calculations which can be optimized away (WIP).

Additional Remarks

• ProbNumDiffEq.jl is compatible with many features from OrdinaryDiffEq.jl

/ DifferentialEquations.jl / Julia: Stepsize control, plotting functionality,
callbacks, ForwardDiff.jl, ...

•But not everything works perfectly yet: Matrix-valued ODEs, GPU-arrays, Stati-
cArrays.jl, backprop (e.g. with Zygote.jl), sensitivities, ...

•Related approach: The ProbIntsmethod provided by DiffEqUncertainty.jl
quantifies numerical uncertainty by repeatedly solving the ODE and disturbing the
solution (see also [9]). In comparison, the filtering-based solvers of ProbNumDif-
fEq.jl require only a single solve to compute a probabilistic, Gaussian posterior.

•For more probabilistic numerics check out ProbNum, a feature-rich Python
package for probabilistic numerics [6]. It includes probabilistic linear solvers, Bayesian
quadrature, probabilistic ODE solvers, filtering and smoothing algorithms, and more.

References and related work:
[1] N. Bosch et al. “Calibrated Adaptive Probabilistic ODE Solvers”. In International Conference on Artificial Intelligence and

Statistics (AISTATS), 2021.

[2] S. Särkkä and A. Solin. “Applied Stochastic Differential Equations”. In Cambridge University Press, 2019.

[3] F. Tronarp et al. “Probabilistic solutions to ordinary differential equations as nonlinear Bayesian filtering: a new perspec-
tive”. In Statistics and Computing, 2019.

[4] F. Tronarp et al. “Bayesian Ode Solvers: the Maximum a Posteriori Estimate”. In Statistics and Computing, 2021.

[5] S. Särkkä. “Bayesian Filtering and Smoothing”. In Cambridge University Press, 2013.

[6] ProbNum, https://github.com/probabilistic-numerics/probnum.

[7] OrdinaryDiffEq.jl, https://github.com/SciML/OrdinaryDiffEq.jl.

[8] C. Rackauckas and Q. Nie. “DifferentialEquations.jl–a performant and feature-rich ecosystem for solving differential
equations in julia”. In Journal of Open Research Software, 2017.

[9] P. Conrad et al. Girolami M, Särkkä S, Stuart A, Zygalakis K. “Statistical analysis of differential equations: introducing
probability measures on numerical solutions” In Statistics and Computing, 2017.

https://github.com/nathanaelbosch/ProbNumDiffEq.jl
https://github.com/probabilistic-numerics/probnum
https://github.com/SciML/OrdinaryDiffEq.jl

