Numerics of Machine Learning LECTURE 06
 Solving Ordinary Differential Equations

Nathanael Bosch \& Jonathan Schmidt

24 November 2022

EBERHARD KARLS
 UNIVERSITAT TUBINGEN

Faculty of Science
Department of Computer Science
Chair for the methods of Machine Learning

Where are we in the course?

- Last week: State-space models and extended Kalman filters/smoothers ("How to estimate the state of a dynamical system from observations")
- This week: Ordinary differential equations and how to solve them ("How to simulate, approximately, the evolution of a deterministic dynamical system")

Today:

- What is an ordinary differential equation (ODE) and why should we care?
- How to numerically solve an ODE: From Euler (forward and backward) to Runge-Kutta
- Parameter inference in ODEs (and neural ODEs)

Ordinary differential equation:

$$
\dot{x}(t)=f(x(t), t), \quad t \in \mathbb{T} \subset \mathbb{R},
$$

where
$\rightarrow x: \mathbb{T} \rightarrow \mathbb{R}^{d}$ is the unknown function
$\rightarrow f: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$ is the vector field

- \mathbb{T} is the time domain; typically $\mathbb{T}=[0, T]$
- Diffusion Models

ODEs and SDEs for generative modeling

https://developer.nvidia.com/blog/
improving-diffusion-models-as-an-alternative-to-gans-part-1/

- Diffusion Models ODEs and SDEs for generative modeling
- Normalizing Flows ODEs as bijectors to model distributions

https://docs.pymc.io/en/v3/pymc-examples/ examples/variational_inference/normalizing
- Diffusion Models

ODEs and SDEs for generative modeling

- Normalizing Flows

ODEs as bijectors to model distributions

- Neural ODEs

ResNets as discretized ODEs

Chen et al, "Neural Ordinary Differential Equations", NeurIPS 2018

- Diffusion Models

ODEs and SDEs for generative modeling

- Normalizing Flows

ODEs as bijectors to model distributions

- Neural ODEs

ResNets as discretized ODEs

- Optimization Theory

Gradient descent follows ODE dynamics

- Diffusion Models

ODEs and SDEs for generative modeling

- Normalizing Flows

ODEs as bijectors to model distributions

- Neural ODEs

ResNets as discretized ODEs

- Optimization Theory

Gradient descent follows ODE dynamics

- Parameter Inference (later this lecture!) ODEs as inductive bias

Tronarp, Bosch, Hennig, "Fenrir: Physics-Enhanced Regression for Initial Value Problems", ICML 2022

- Diffusion Models

ODEs and SDEs for generative modeling

- Normalizing Flows

ODEs as bijectors to model distributions

- Neural ODEs

ResNets as discretized ODEs

- Optimization Theory

Gradient descent follows ODE dynamics

- Parameter Inference (later this lecture!) ODEs as inductive bias

https:
//raw.githubusercontent.com/nathanaelbosch/ ProbNumDiffEq.jl/main/examples/banner.svg
- Probabilistic Numerics (next lecture!) ODE solving as learning

Ordinary differential equation :

$$
\dot{x}(t)=f(x(t), t), \quad t \in \mathbb{T} \subset \mathbb{R},
$$

where
$\rightarrow x: \mathbb{T} \rightarrow \mathbb{R}^{d}$ is the unknown function
$\rightarrow f: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$ is the vector field

- \mathbb{T} is the time domain; typically $\mathbb{T}=[0, T]$

Ordinary differential equation :

$$
\dot{x}(t)=f(x(t), t), \quad t \in \mathbb{T} \subset \mathbb{R},
$$

where

- $x: \mathbb{T} \rightarrow \mathbb{R}^{d}$ is the unknown function
$\rightarrow f: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$ is the vector field
- \mathbb{T} is the time domain; typically $\mathbb{T}=[0, T]$

Solution (fundamental theorem of calculus):

$$
x(t)=x(0)+\int_{0}^{t} f(x(\tau), \tau) \mathrm{d} \tau
$$

Ordinary differential equation :

$$
\dot{x}(t)=f(x(t), t), \quad t \in \mathbb{T} \subset \mathbb{R},
$$

where
$\Delta x: \mathbb{T} \rightarrow \mathbb{R}^{d}$ is the unknown function

- $f: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$ is the vector field
- \mathbb{T} is the time domain; typically $\mathbb{T}=[0, T]$

Solution (fundamental theorem of calculus):

$$
x(t)=x(0)+\int_{0}^{t} f(x(\tau), \tau) d \tau
$$

\Rightarrow Solutions depend on the initial value $x(0)$

Ordinary differential equation initial value problem:

$$
\dot{x}(t)=f(x(t), t), \quad t \in \mathbb{T} \subset \mathbb{R}, \quad x(0)=x_{0},
$$

where
$\Delta x: \mathbb{T} \rightarrow \mathbb{R}^{d}$ is the unknown function
$\rightarrow f: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$ is the vector field
$-\mathbb{T}$ is the time domain; typically $\mathbb{T}=[0, T]$

- x_{0} is the initial value

Solution (fundamental theorem of calculus):

$$
x(t)=x(0)+\int_{0}^{t} f(x(\tau), \tau) \mathrm{d} \tau
$$

\Rightarrow Solutions depend on the initial value $x(0)$

A simple example: Modeling population growth

- Logistic ODE:

$$
\dot{P}(t)=r P(t)\left(1-\frac{P(t)}{K}\right)
$$

where P is the population size, r is the growth rate, and K is the carrying capacity (bottleneck).

A simple example: Modeling population growth

- Logistic ODE:

$$
\dot{P}(t)=r P(t)\left(1-\frac{P(t)}{K}\right),
$$

where P is the population size, r is the growth rate, and K is the carrying capacity (bottleneck).

- Solution:

$$
P(t)=\frac{K}{1+\frac{K-P(0)}{P(0)} e^{-r t}} .
$$

(You can verify for yourself by taking its derivative!)

A simple example: Modeling population growth

- Logistic ODE:

$$
\dot{P}(t)=r P(t)\left(1-\frac{P(t)}{K}\right),
$$

where P is the population size, r is the growth rate, and K is the carrying capacity (bottleneck).

- Solution:

$$
P(t)=\frac{K}{1+\frac{K-P(0)}{P(0)} e^{-r t}} .
$$

(You can verify for yourself by taking its derivative!)

- Example with $K=1$ and $r=1$:

A simple example: Modeling population growth

- Logistic ODE:

$$
\dot{P}(t)=r P(t)\left(1-\frac{P(t)}{K}\right),
$$

where P is the population size, r is the growth rate, and K is the carrying capacity (bottleneck).

- Solution:

$$
P(t)=\frac{K}{1+\frac{K-P(0)}{P(0)} e^{-r t}} .
$$

(You can verify for yourself by taking its derivative!)

- Initial condition: $P(0)=0.01$.
- Example with $K=1$ and $r=1$:

A simple example: Modeling population growth

- Logistic ODE:

$$
\dot{P}(t)=r P(t)\left(1-\frac{P(t)}{K}\right)
$$

where P is the population size, r is the growth rate, and K is the carrying capacity (bottleneck).

- Solution:

$$
P(t)=\frac{K}{1+\frac{K-P(0)}{P(0)} e^{-r t}}
$$

(You can verify for yourself by taking its derivative!)

- Initial condition: $P(0)=0.01$.
- Example with $K=1$ and $r=1$:

Next: How can we solve ODEs in general?

How to numerically solve ODEs - the general case

Recall: The initial value problem

$$
\dot{x}(t)=f(x(t), t), \quad t \in[0, T], \quad x(0)=x_{0},
$$

has the solution

$$
x(t)=x(0)+\int_{0}^{t} f(x(\tau), \tau) d \tau
$$

How to numerically solve ODEs - the general case

Recall: The initial value problem

$$
\dot{x}(t)=f(x(t), t), \quad t \in[0, T], \quad x(0)=x_{0},
$$

has the solution

$$
x(t)=x(0)+\int_{0}^{t} f(x(\tau), \tau) d \tau
$$

Numerical solvers extrapolate step by step: If we know $x(t)$, then $x(t+h)$ is given by

$$
x(t+h)=x(t)+\int_{t}^{t+h} f(x(\tau), \tau) d \tau
$$

\Rightarrow At each step, we need to approximate $\int_{t}^{t+h} f(x(\tau), \tau) \mathrm{d} \tau$.

How to numerically solve ODEs - the general case

Recall: The initial value problem

$$
\dot{x}(t)=f(x(t), t), \quad t \in[0, T], \quad x(0)=x_{0},
$$

has the solution

$$
x(t)=x(0)+\int_{0}^{t} f(x(\tau), \tau) d \tau
$$

Numerical solvers extrapolate step by step: If we know $x(t)$, then $x(t+h)$ is given by

$$
x(t+h)=x(t)+\int_{t}^{t+h} f(x(\tau), \tau) d \tau
$$

\Rightarrow At each step, we need to approximate $\int_{t}^{t+h} f(x(\tau), \tau) \mathrm{d} \tau$.
How?

How to numerically solve ODEs

$$
\text { Recall: } \quad x(t+h)=x(t)+\int_{t}^{t+h} f(x(\tau), \tau) \mathrm{d} \tau
$$

How to numerically solve ODEs

$$
\text { Recall: } \quad x(t+h)=x(t)+\int_{t}^{t+h} f(x(\tau), \tau) \mathrm{d} \tau
$$

Definition (Taylor Series Expansion)

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a function. Then the Taylor series expansion of g at t_{0} is given by

$$
g(\tau)=g\left(t_{0}\right)+g^{(1)}\left(t_{0}\right)\left(\tau-t_{0}\right)+\frac{1}{2} g^{(2)}\left(t_{0}\right)\left(\tau-t_{0}\right)^{2}+\cdots=\sum_{n=0}^{\infty} \frac{g^{(n)}\left(t_{0}\right)}{n!}\left(\tau-t_{0}\right)^{n}
$$

How to numerically solve ODEs

$$
\text { Recall: } \quad x(t+h)=x(t)+\int_{t}^{t+h} f(x(\tau), \tau) \mathrm{d} \tau .
$$

Definition (Taylor Series Expansion)

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a function. Then the Taylor series expansion of g at t_{0} is given by

$$
g(\tau)=g\left(t_{0}\right)+g^{(1)}\left(t_{0}\right)\left(\tau-t_{0}\right)+\frac{1}{2} g^{(2)}\left(t_{0}\right)\left(\tau-t_{0}\right)^{2}+\cdots=\sum_{n=0}^{\infty} \frac{g^{(n)}\left(t_{0}\right)}{n!}\left(\tau-t_{0}\right)^{n} .
$$

- Zeroth-order Taylor series approximation around $\tau=t$:

How to numerically solve ODEs

$$
\text { Recall: } \quad x(t+h)=x(t)+\int_{t}^{t+h} f(x(\tau), \tau) \mathrm{d} \tau .
$$

Definition (Taylor Series Expansion)

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a function. Then the Taylor series expansion of g at t_{0} is given by

$$
g(\tau)=g\left(t_{0}\right)+g^{(1)}\left(t_{0}\right)\left(\tau-t_{0}\right)+\frac{1}{2} g^{(2)}\left(t_{0}\right)\left(\tau-t_{0}\right)^{2}+\cdots=\sum_{n=0}^{\infty} \frac{g^{(n)}\left(t_{0}\right)}{n!}\left(\tau-t_{0}\right)^{n} .
$$

- Zeroth-order Taylor series approximation around $\tau=t$:

$$
f(x(\tau), \tau) \approx f(x(t), t)+\mathcal{O}(h)
$$

$$
\text { Recall: } \quad x(t+h)=x(t)+\int_{t}^{t+h} f(x(\tau), \tau) \mathrm{d} \tau .
$$

Definition (Taylor Series Expansion)

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a function. Then the Taylor series expansion of g at t_{0} is given by

$$
g(\tau)=g\left(t_{0}\right)+g^{(1)}\left(t_{0}\right)\left(\tau-t_{0}\right)+\frac{1}{2} g^{(2)}\left(t_{0}\right)\left(\tau-t_{0}\right)^{2}+\cdots=\sum_{n=0}^{\infty} \frac{g^{(n)}\left(t_{0}\right)}{n!}\left(\tau-t_{0}\right)^{n} .
$$

- Zeroth-order Taylor series approximation around $\tau=t$:

$$
\begin{aligned}
f(x(\tau), \tau) & \approx f(x(t), t)+\mathcal{O}(h) \\
\Rightarrow \int_{t}^{t+h} f(x(\tau), \tau) \mathrm{d} \tau & \approx \int_{t}^{t+h} f(x(t), t) \mathrm{d} \tau=h \cdot f(x(t), t) .
\end{aligned}
$$

$$
\text { Recall: } \quad x(t+h)=x(t)+\int_{t}^{t+h} f(x(\tau), \tau) \mathrm{d} \tau .
$$

Definition (Taylor Series Expansion)

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a function. Then the Taylor series expansion of g at t_{0} is given by

$$
g(\tau)=g\left(t_{0}\right)+g^{(1)}\left(t_{0}\right)\left(\tau-t_{0}\right)+\frac{1}{2} g^{(2)}\left(t_{0}\right)\left(\tau-t_{0}\right)^{2}+\cdots=\sum_{n=0}^{\infty} \frac{g^{(n)}\left(t_{0}\right)}{n!}\left(\tau-t_{0}\right)^{n} .
$$

- Zeroth-order Taylor series approximation around $\tau=t$:

$$
\begin{aligned}
f(x(\tau), \tau) & \approx f(x(t), t)+\mathcal{O}(h) \\
\Rightarrow \int_{t}^{t+h} f(x(\tau), \tau) \mathrm{d} \tau & \approx \int_{t}^{t+h} f(x(t), t) \mathrm{d} \tau=h \cdot f(x(t), t) .
\end{aligned}
$$

(Explicit) Forward Euler: $\hat{x}(t+h)=\hat{x}(t)+h \cdot f(\hat{x}(t), t)$.

$$
\text { Recall: } \quad x(t+h)=x(t)+\int_{t}^{t+h} f(x(\tau), \tau) \mathrm{d} \tau .
$$

Definition (Taylor Series Expansion)

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a function. Then the Taylor series expansion of g at t_{0} is given by

$$
g(\tau)=g\left(t_{0}\right)+g^{(1)}\left(t_{0}\right)\left(\tau-t_{0}\right)+\frac{1}{2} g^{(2)}\left(t_{0}\right)\left(\tau-t_{0}\right)^{2}+\cdots=\sum_{n=0}^{\infty} \frac{g^{(n)}\left(t_{0}\right)}{n!}\left(\tau-t_{0}\right)^{n} .
$$

- Zeroth-order Taylor series approximation around $\tau=t+h$:

$$
\begin{aligned}
f(x(\tau), \tau) & \approx f(x(t+h), t+h)+\mathcal{O}(h) \\
\Rightarrow \int_{t}^{t+h} f(x(\tau), \tau) \mathrm{d} \tau & \approx \int_{t}^{t+h} f(x(t+h), t+h) \mathrm{d} \tau=h \cdot f(x(t+h), t+h) .
\end{aligned}
$$

(Implicit) Backward Euler: $\hat{x}(t+h)=\hat{x}(t)+h \cdot f(\hat{x}(t+h), t+h)$.

$$
\text { Recall: } \quad x(t+h)=x(t)+\int_{t}^{t+h} f(x(\tau), \tau) \mathrm{d} \tau .
$$

Definition (Taylor Series Expansion)

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a function. Then the Taylor series expansion of g at t_{0} is given by

$$
g(\tau)=g\left(t_{0}\right)+g^{(1)}\left(t_{0}\right)\left(\tau-t_{0}\right)+\frac{1}{2} g^{(2)}\left(t_{0}\right)\left(\tau-t_{0}\right)^{2}+\cdots=\sum_{n=0}^{\infty} \frac{g^{(n)}\left(t_{0}\right)}{n!}\left(\tau-t_{0}\right)^{n} .
$$

- Zeroth-order Taylor series approximation around $\tau=t+h$:

$$
\begin{aligned}
f(x(\tau), \tau) & \approx f(x(t+h), t+h)+\mathcal{O}(h) \\
\Rightarrow \int_{t}^{t+h} f(x(\tau), \tau) \mathrm{d} \tau & \approx \int_{t}^{t+h} f(x(t+h), t+h) \mathrm{d} \tau=h \cdot f(x(t+h), t+h) .
\end{aligned}
$$

(Implicit) Backward Euler: $\hat{x}(t+h)=\hat{x}(t)+h \cdot f(\hat{x}(t+h), t+h)$.

h = 1 // 10
x, out = x0, [x0]
for t in tspan[1]:h:(tspan[2]-h)
x = x + h * f(x, t)
push!(out, x)
end
13 plot(tspan[1]:h:tspan[2], out, marker=:o)

```

\section*{using Plots}
```

```
f(x, t) = x * (1 - x)
```

```
f(x, t) = x * (1 - x)
x0, tspan = 0.1, (0, 5)
```

x0, tspan = 0.1, (0, 5)

```
```

using Plots
12

```
using Plots, Roots
```

f(x, t) = x * (1 - x)
x0, tspan = 0.1, (0, 5)
h = 1 // 10
x, out = x0, [x0]
for t in (tspan[1]+h):h:tspan[2]
x = find_zero(y -> y - (x + h*f(y, t)), x)
push!(out, x)
end
plot(tspan[1]:h:tspan[2], out, marker=:o)

```


Consider the following scalar ODE (test equation)
\[
\dot{x}(t)=\lambda x(t) .
\]

How small do we have to make the steps, depending on \(\lambda\) ? (here \(\lambda=-21\) ).


\section*{Stability: The difference between forward and backward Euler}

Consider the following scalar ODE (test equation)
\[
\dot{x}(t)=\lambda x(t) .
\]

How small do we have to make the steps, depending on \(\lambda\) ? (here \(\lambda=-21\) ).
- Forward Euler: \(\hat{x}(t+h)=\hat{x}(t)+h \cdot \lambda \hat{x}(t)\)
\(\Rightarrow \hat{x}(t+h)=(1+h \lambda) \cdot \hat{x}(t)\)
\(\Rightarrow\) For \(\hat{x}(t)\) to remain bounded, we need \(|1+h \lambda| \leq 1\).


Consider the following scalar ODE (test equation)
\[
\dot{x}(t)=\lambda x(t) .
\]

How small do we have to make the steps, depending on \(\lambda\) ? (here \(\lambda=-21\) ).
- Forward Euler: \(\hat{x}(t+h)=\hat{x}(t)+h \cdot \lambda \hat{x}(t)\)
\(\Rightarrow \hat{x}(t+h)=(1+h \lambda) \cdot \hat{x}(t)\)
\(\Rightarrow\) For \(\hat{x}(t)\) to remain bounded, we need \(|1+h \lambda| \leq 1\).


Consider the following scalar ODE (test equation)
\[
\dot{x}(t)=\lambda x(t) .
\]

How small do we have to make the steps, depending on \(\lambda\) ? (here \(\lambda=-21\) ).
- Forward Euler: \(\hat{x}(t+h)=\hat{x}(t)+h \cdot \lambda \hat{x}(t)\)
\(\Rightarrow \hat{x}(t+h)=(1+h \lambda) \cdot \hat{x}(t)\)
\(\Rightarrow\) For \(\hat{x}(t)\) to remain bounded, we need \(|1+h \lambda| \leq 1\).
- Backward Euler: \(\hat{x}(t+h)=\hat{x}(t)+h \cdot \lambda \hat{x}(t+h)\)
\[
\begin{aligned}
& \Rightarrow \hat{x}(t+h)=\frac{1}{(1-h \lambda)} \cdot \hat{x}(t) \\
& \Rightarrow \frac{1}{|1-h \lambda|} \leq 1
\end{aligned}
\]


Consider the following scalar ODE (test equation)
\[
\dot{x}(t)=\lambda x(t) .
\]

How small do we have to make the steps, depending on \(\lambda\) ? (here \(\lambda=-21\) ).
- Forward Euler: \(\hat{x}(t+h)=\hat{x}(t)+h \cdot \lambda \hat{x}(t)\)
\(\Rightarrow \hat{x}(t+h)=(1+h \lambda) \cdot \hat{x}(t)\)
\(\Rightarrow\) For \(\hat{x}(t)\) to remain bounded, we need \(|1+h \lambda| \leq 1\).
- Backward Euler: \(\hat{x}(t+h)=\hat{x}(t)+h \cdot \lambda \hat{x}(t+h)\)
\[
\begin{aligned}
& \Rightarrow \hat{x}(t+h)=\frac{1}{(1-h \lambda)} \cdot \hat{x}(t) \\
& \Rightarrow \frac{1}{|1-h \lambda|} \leq 1
\end{aligned}
\]


Consider the following scalar ODE (test equation)
\[
\dot{x}(t)=\lambda x(t) .
\]

How small do we have to make the steps, depending on \(\lambda\) ? (here \(\lambda=-21\) ).
- Forward Euler: \(\hat{x}(t+h)=\hat{x}(t)+h \cdot \lambda \hat{x}(t)\)
\(\Rightarrow \hat{x}(t+h)=(1+h \lambda) \cdot \hat{x}(t)\)
\(\Rightarrow\) For \(\hat{x}(t)\) to remain bounded, we need \(|1+h \lambda| \leq 1\).
- Backward Euler: \(\hat{x}(t+h)=\hat{x}(t)+h \cdot \lambda \hat{x}(t+h)\)
\[
\begin{aligned}
& \Rightarrow \hat{x}(t+h)=\frac{1}{(1-h \lambda)} \cdot \hat{x}(t) \\
& \Rightarrow \frac{1}{|1-h \lambda|} \leq 1
\end{aligned}
\]

\(\Rightarrow\) Different algorithms have different stability properties!

\section*{Next: Runge-Kutta solvers}

\section*{How to numerically solve ODEs - continued}
\[
\text { Recall: } \quad x(t+h)=x(t)+\int_{t}^{t+h} f(x(\tau), \tau) \mathrm{d} \tau
\]
\[
\text { Recall: } \quad x(t+h)=x(t)+\int_{t}^{t+h} f(x(\tau), \tau) \mathrm{d} \tau
\]

\section*{Numerical Quadrature}

Let \(g: \mathbb{R} \rightarrow \mathbb{R}^{d}\) be a function. Then numerical quadrature (or numerical integration) approximates
\[
\int_{l}^{r} g(\tau) \mathrm{d} \tau \approx \sum_{i=1}^{n} w_{i} g\left(t_{i}\right)
\]
where \(t_{i}\) are the quadrature nodes and \(w_{i}\) are the quadrature weights.
\[
\text { Recall: } \quad x(t+h)=x(t)+\int_{t}^{t+h} f(x(\tau), \tau) \mathrm{d} \tau
\]

\section*{Numerical Quadrature}

Let \(g: \mathbb{R} \rightarrow \mathbb{R}^{d}\) be a function. Then numerical quadrature (or numerical integration) approximates
\[
\int_{l}^{r} g(\tau) \mathrm{d} \tau \approx \sum_{i=1}^{n} w_{i} g\left(t_{i}\right)
\]
where \(t_{i}\) are the quadrature nodes and \(w_{i}\) are the quadrature weights.
- This motivates (explicit) Runge-Kutta:
\[
\int_{t}^{t+h} f(x(\tau), \tau) \mathrm{d} \tau \approx h \cdot \sum_{i=1}^{s} w_{i} f\left(\hat{x}\left(\tau_{i}\right), \tau_{i}\right)
\]
\[
\text { Recall: } \quad x(t+h)=x(t)+\int_{t}^{t+h} f(x(\tau), \tau) \mathrm{d} \tau .
\]

\section*{Numerical Quadrature}

Let \(g: \mathbb{R} \rightarrow \mathbb{R}^{d}\) be a function. Then numerical quadrature (or numerical integration) approximates
\[
\int_{l}^{r} g(\tau) \mathrm{d} \tau \approx \sum_{i=1}^{n} w_{i} g\left(t_{i}\right)
\]
where \(t_{i}\) are the quadrature nodes and \(w_{i}\) are the quadrature weights.
- This motivates (explicit) Runge-Kutta:
\[
\int_{t}^{t+h} f(x(\tau), \tau) \mathrm{d} \tau \approx h \cdot \sum_{i=1}^{s} w_{i} f\left(\hat{x}\left(\tau_{i}\right), \tau_{i}\right)
\]

Next: How to choose weights \(w_{i}\) and nodes \(\tau_{i}\) ? And how to construct \(\hat{x}\left(\tau_{i}\right)\) ?

\section*{Definition ((Explicit) Runge-Kutta method)}

An explicit Runge-Kutta method is given by
\[
\hat{x}(t+h)=\hat{x}(t)+h \sum_{i=1}^{s} b_{i} k_{i},
\]
where
\[
\begin{aligned}
& k_{1}=f(\hat{x}(t), t), \\
& k_{2}=f\left(\hat{x}(t)+h\left(a_{21} k_{1}\right), t+h c_{2}\right), \\
& k_{3}=f\left(\hat{x}(t)+h\left(a_{31} k_{1}+a_{32} k_{2}\right), t+h c_{3}\right), \\
& \vdots \\
& k_{s}=f\left(\hat{x}(t)+h \sum_{j=1}^{s-1} a_{s j} k_{j}, t+h c_{s}\right) .
\end{aligned}
\]

Definition ((Explicit) Runge-Kutta method)
An explicit Runge-Kutta method is given by
\[
\hat{x}(t+h)=\hat{x}(t)+h \sum_{i=1}^{s} b_{i} k_{i},
\]
where
\[
\begin{aligned}
& k_{1}=f(\hat{x}(t), t), \\
& k_{2}=f\left(\hat{x}(t)+h\left(a_{21} k_{1}\right), t+h c_{2}\right), \\
& k_{3}=f\left(\hat{x}(t)+h\left(a_{31} k_{1}+a_{32} k_{2}\right), t+h c_{3}\right),
\end{aligned}
\]
\[
k_{s}=f\left(\hat{x}(t)+h \sum_{j=1}^{s-1} a_{s j} k_{j}, t+h c_{s}\right) .
\]
"Butcher tableau": A compact representation of a specific Runge-Kutta method

Runge-Kutta in general:
\[
\hat{x}(t+h)=\hat{x}(t)+h \sum_{i=1}^{s} b_{i} k_{i}, \quad \text { with } \quad k_{i}=f\left(\hat{x}(t)+h \sum_{j=1}^{i-1} a_{j j} k_{j}, t+h c_{i}\right) .
\]

Runge-Kutta in general:
\[
\hat{x}(t+h)=\hat{x}(t)+h \sum_{i=1}^{s} b_{i} k_{i}, \quad \text { with } \quad k_{i}=f\left(\hat{x}(t)+h \sum_{j=1}^{i-1} a_{i j} k_{j}, t+h c_{i}\right) .
\]

Turns out forward Euler is actually a Runge-Kutta method:
\[
\begin{aligned}
k_{1} & =f(\hat{x}(t), t), \\
\hat{x}(t+h) & =\hat{x}(t)+h k_{1} .
\end{aligned}
\]

Runge-Kutta in general:
\[
\hat{x}(t+h)=\hat{x}(t)+h \sum_{i=1}^{s} b_{i} k_{i}, \quad \text { with } \quad k_{i}=f\left(\hat{x}(t)+h \sum_{j=1}^{i-1} a_{j j} k_{j}, t+h c_{i}\right) .
\]

Turns out forward Euler is actually a Runge-Kutta method:
\[
\begin{aligned}
k_{1} & =f(\hat{x}(t+0 h), t+0 h), \\
\hat{x}(t+h) & =\hat{x}(t)+h \cdot 7 k_{1} .
\end{aligned}
\]

Butcher tableau:


Runge-Kutta in general:
\[
\hat{x}(t+h)=\hat{x}(t)+h \sum_{i=1}^{s} b_{i} k_{i}, \quad \text { with } \quad k_{i}=f\left(\hat{x}(t)+h \sum_{j=1}^{i-1} a_{j j} k_{j}, t+h c_{i}\right) .
\]

Turns out backward Euler is actually a (implicit) Runge-Kutta method:
\[
\begin{aligned}
k_{1} & =f(\hat{x}(t+1 h), t+1 h), \\
\hat{x}(t+h) & =\hat{x}(t)+h \cdot 1 k_{1} .
\end{aligned}
\]

Butcher tableau:

(the 1 makes it implicit!)

The explicit midpoint rule aims to improve the accuracy of the forward Euler method by selecting
\[
\hat{x}(t+h)=\hat{x}(t)+h f\left(\hat{x}\left(t+\frac{h}{2}\right), t+\frac{h}{2}\right) .
\]

But how to choose \(\hat{x}\left(t+\frac{h}{2}\right)\) ?

The explicit midpoint rule aims to improve the accuracy of the forward Euler method by selecting
\[
\hat{x}(t+h)=\hat{x}(t)+h f\left(\hat{x}\left(t+\frac{h}{2}\right), t+\frac{h}{2}\right) .
\]

But how to choose \(\hat{x}\left(t+\frac{h}{2}\right)\) ?
With another Euler step!

The explicit midpoint rule aims to improve the accuracy of the forward Euler method by selecting
\[
\hat{x}(t+h)=\hat{x}(t)+h f\left(\hat{x}\left(t+\frac{h}{2}\right), t+\frac{h}{2}\right) .
\]

But how to choose \(\hat{x}\left(t+\frac{h}{2}\right)\) ?
With another Euler step!
This leads to the scheme:

\[
\begin{aligned}
k_{1} & =f(\hat{x}(t), t+0 h), \\
k_{2} & =f\left(\hat{x}(t)+h \cdot \frac{1}{2} k_{1}, t+\frac{1}{2} h\right), \\
\hat{x}(t+h) & =\hat{x}(t)+h\left(0 k_{1}+1 k_{2}\right) .
\end{aligned}
\]

The classic fourth-order Runge-Kutta method selects
\[
\begin{aligned}
& k_{1}=f(\hat{x}(t), t+0 h) \\
& k_{2}=f\left(\hat{x}(t)+h \cdot \frac{1}{2} k_{1}, t+\frac{1}{2} h\right), \\
& k_{3}=f\left(\hat{x}(t)+h \cdot \frac{1}{2} k_{2}, t+\frac{1}{2} h\right), \\
& k_{4}=f\left(\hat{x}(t)+h \cdot 1 k_{3}, t+1 h\right),
\end{aligned}
\]
and then

\[
\hat{x}(t+h)=\hat{x}(t)+h\left(\frac{1}{6} k_{1}+\frac{1}{3} k_{2}+\frac{1}{3} k_{3}+\frac{1}{6} k_{4}\right) .
\]
(Further reading: "Solving Ordinary Differential Equations I" by Hairer, Norsett and Wanner, Chapter II.1; includes derivations for the coefficients!)

\section*{The Dormand-Prince method}

\section*{DOPRI5 has a much more complicated Butcher tableau:}
\begin{tabular}{c|ccccccc}
0 & & & & & & & \\
\(\frac{1}{5}\) & \(\frac{1}{5}\) & & & & & & \\
\(\frac{3}{10}\) & \(\frac{3}{40}\) & \(\frac{9}{40}\) & & & & & \\
\(\frac{4}{5}\) & \(\frac{44}{45}\) & \(-\frac{56}{15}\) & \(\frac{32}{9}\) & & & & \\
\(\frac{8}{9}\) & \(\frac{19372}{6561}\) & \(-\frac{25360}{2187}\) & \(\frac{64448}{6561}\) & \(-\frac{212}{729}\) & & & \\
1 & \(\frac{9017}{3168}\) & \(-\frac{355}{33}\) & \(\frac{46732}{5247}\) & \(\frac{49}{176}\) & \(-\frac{5103}{18656}\) & & \\
\(\frac{1}{2}\) & \(\frac{35}{384}\) & 0 & \(\frac{500}{1113}\) & \(\frac{125}{192}\) & \(-\frac{2187}{6784}\) & \(\frac{11}{84}\) & \\
\hline & \(\frac{35}{384}\) & 0 & \(\frac{500}{1113}\) & \(\frac{125}{192}\) & \(-\frac{2187}{6784}\) & 0 & \(\frac{11}{84}\) \\
& \(\frac{5179}{57600}\) & 0 & \(\frac{7571}{16695}\) & \(\frac{393}{640}\) & \(-\frac{92097}{339200}\) & \(\frac{187}{2100}\) & \(\frac{1}{40}\)
\end{tabular}

\section*{The Dormand-Prince method}

DOPRI5 has a much more complicated Butcher tableau:
\begin{tabular}{c|ccccccc}
0 & & & & & & & \\
\(\frac{1}{5}\) & \(\frac{1}{5}\) & & & & & & \\
\(\frac{3}{10}\) & \(\frac{3}{40}\) & \(\frac{9}{40}\) & & & & & \\
\(\frac{4}{5}\) & \(\frac{44}{45}\) & \(-\frac{56}{15}\) & \(\frac{32}{9}\) & & & & \\
\(\frac{8}{9}\) & \(\frac{19372}{6561}\) & \(-\frac{25360}{2187}\) & \(\frac{64448}{6561}\) & \(-\frac{212}{729}\) & & & \\
1 & \(\frac{9017}{3168}\) & \(-\frac{355}{33}\) & \(\frac{46732}{5247}\) & \(\frac{49}{176}\) & \(-\frac{5103}{18656}\) & & \\
\(\frac{1}{2}\) & \(\frac{35}{384}\) & 0 & \(\frac{500}{1113}\) & \(\frac{125}{192}\) & \(-\frac{2187}{6784}\) & \(\frac{11}{84}\) & \\
\hline & \(\frac{35}{384}\) & 0 & \(\frac{500}{1113}\) & \(\frac{125}{192}\) & \(-\frac{2187}{6784}\) & 0 & \(\frac{11}{84}\) \\
& \(\frac{5179}{57600}\) & 0 & \(\frac{7571}{16695}\) & \(\frac{393}{640}\) & \(-\frac{92097}{339200}\) & \(\frac{187}{2100}\) & \(\frac{1}{40}\)
\end{tabular}

This is the reason for the SciPy code:

https://github.com/scipy/scipy/blob/main/
scipy/integrate/dop/dopri5.f

\section*{The Dormand-Prince method}

DOPRI5 has a much more complicated Butcher tableau:
This is the reason for the SciPy code:
\begin{tabular}{c|ccccccc}
0 & & & & & & & \\
\(\frac{1}{5}\) & \(\frac{1}{5}\) & & & & & & \\
\(\frac{3}{10}\) & \(\frac{3}{40}\) & \(\frac{9}{40}\) & & & & & \\
\(\frac{4}{5}\) & \(\frac{44}{45}\) & \(-\frac{56}{15}\) & \(\frac{32}{9}\) & & & & \\
\(\frac{8}{9}\) & \(\frac{19372}{6561}\) & \(-\frac{25360}{2187}\) & \(\frac{64448}{6561}\) & \(-\frac{212}{729}\) & & & \\
1 & \(\frac{9017}{3168}\) & \(-\frac{355}{33}\) & \(\frac{46732}{5247}\) & \(\frac{49}{176}\) & \(-\frac{5103}{18656}\) & & \\
\(\frac{1}{2}\) & \(\frac{35}{384}\) & 0 & \(\frac{500}{1113}\) & \(\frac{125}{192}\) & \(-\frac{2187}{6784}\) & \(\frac{11}{84}\) & \\
\hline & \(\frac{35}{384}\) & 0 & \(\frac{500}{1113}\) & \(\frac{125}{192}\) & \(-\frac{2187}{6784}\) & 0 & \(\frac{11}{84}\) \\
& \(\frac{5179}{57600}\) & 0 & \(\frac{7571}{16695}\) & \(\frac{393}{640}\) & \(-\frac{92097}{339200}\) & \(\frac{187}{2100}\) & \(\frac{1}{40}\)
\end{tabular}
(the two bottom lines are there because of "error estimation" which is not covered in this lecture; if interested, check out Chapter II. 4 in "Solving Ordinary Differential Equations I" by Hairer et al.)

Intermediate summary on classical numerical ODE solvers:
- There are A LOT of numerical ODE solvers!

Intermediate summary on classical numerical ODE solvers:
- There are A LOT of numerical ODE solvers! Differences between solvers include:
- Stability: Explicit vs implicit methods.

Intermediate summary on classical numerical ODE solvers:
- There are A LOT of numerical ODE solvers! Differences between solvers include:
- Stability: Explicit vs implicit methods.
- Order and convergence rates:

A Runge-Kutta method has order p if the local truncation error is of order \(O\left(h^{\rho+1}\right)\). Examples:

Intermediate summary on classical numerical ODE solvers:
- There are A LOT of numerical ODE solvers! Differences between solvers include:
- Stability: Explicit vs implicit methods.
- Order and convergence rates:

A Runge-Kutta method has order \(p\) if the local truncation error is of order \(O\left(h^{\rho+1}\right)\). Examples:
- Forward Euler: \(p=1\) (exercise sheet)

Intermediate summary on classical numerical ODE solvers:
- There are A LOT of numerical ODE solvers! Differences between solvers include:
- Stability: Explicit vs implicit methods.
- Order and convergence rates:

A Runge-Kutta method has order \(p\) if the local truncation error is of order \(O\left(h^{p+1}\right)\). Examples:
- Forward Euler: \(p=1\) (exercise sheet)
- Explicit midpoint method: \(p=2\)

Intermediate summary on classical numerical ODE solvers:
- There are A LOT of numerical ODE solvers! Differences between solvers include:
- Stability: Explicit vs implicit methods.
- Order and convergence rates:

A Runge-Kutta method has order \(p\) if the local truncation error is of order \(O\left(h^{\rho+1}\right)\). Examples:
- Forward Euler: \(p=1\) (exercise sheet)
- Explicit midpoint method: \(p=2\)
- The classical fourth-order Runge-Kutta method: \(p=4\).

Intermediate summary on classical numerical ODE solvers:
- There are A LOT of numerical ODE solvers! Differences between solvers include:
- Stability. Explicit vs implicit methods.
- Order and convergence rates:

A Runge-Kutta method has order \(p\) if the local truncation error is of order \(O\left(h^{\rho+1}\right)\). Examples:
- Forward Euler: \(p=1\) (exercise sheet)
- Explicit midpoint method: \(p=2\)
- The classical fourth-order Runge-Kutta method: \(p=4\).
- The Dormand-Prince method: \(p=5\).

Intermediate summary on classical numerical ODE solvers:
- There are A LOT of numerical ODE solvers! Differences between solvers include:
- Stability: Explicit vs implicit methods.
- Order and convergence rates:

A Runge-Kutta method has order \(p\) if the local truncation error is of order \(O\left(h^{\rho+1}\right)\). Examples:
- Forward Euler: \(p=1\) (exercise sheet)
- Explicit midpoint method: \(p=2\)
- The classical fourth-order Runge-Kutta method: \(p=4\).
- The Dormand-Prince method: \(p=5\).
- There is a lot of stuff happening under the hood when calling scipy . integrate . ode or similar:

Intermediate summary on classical numerical ODE solvers:
- There are A LOT of numerical ODE solvers! Differences between solvers include:
- Stability: Explicit vs implicit methods.
- Order and convergence rates:

A Runge-Kutta method has order p if the local truncation error is of order \(O\left(h^{\rho+1}\right)\). Examples:
- Forward Euler: \(p=1\) (exercise sheet)
- Explicit midpoint method: \(p=2\)
- The classical fourth-order Runge-Kutta method: \(p=4\).
- The Dormand-Prince method: \(p=5\).
- There is a lot of stuff happening under the hood when calling scipy . integrate . ode or similar:
- Step-size selection: Discretize on the fly instead of using a fixed step size. (exercise sheet)

Intermediate summary on classical numerical ODE solvers:
- There are A LOT of numerical ODE solvers! Differences between solvers include:
- Stability: Explicit vs implicit methods.
- Order and convergence rates:

A Runge-Kutta method has order p if the local truncation error is of order \(O\left(h^{\rho+1}\right)\). Examples:
- Forward Euler: \(p=1\) (exercise sheet)
- Explicit midpoint method: \(p=2\)
- The classical fourth-order Runge-Kutta method: \(p=4\).
- The Dormand-Prince method: \(p=5\).
- There is a lot of stuff happening under the hood when calling scipy . integrate . ode or similar:
- Step-size selection: Discretize on the fly instead of using a fixed step size. (exercise sheet)
- (sometimes) Automatic solver selection: Use heuristics to decide which solver to use.

Intermediate summary on classical numerical ODE solvers:
- There are A LOT of numerical ODE solvers! Differences between solvers include:
- Stability: Explicit vs implicit methods.
- Order and convergence rates:

A Runge-Kutta method has order p if the local truncation error is of order \(O\left(h^{\rho+1}\right)\). Examples:
- Forward Euler: \(p=1\) (exercise sheet)
- Explicit midpoint method: \(p=2\)
- The classical fourth-order Runge-Kutta method: \(p=4\).
- The Dormand-Prince method: \(p=5\).
- There is a lot of stuff happening under the hood when calling scipy . integrate .ode or similar:
- Step-size selection: Discretize on the fly instead of using a fixed step size. (exercise sheet)
- (sometimes) Automatic solver selection: Use heuristics to decide which solver to use.

Next block: What if we don't know \(f\) but instead have to estimate it from data?


Tronarp, Bosch, Hennig, "Fenrir: Physics-Enhanced Regression for Initial Value Problems", ICML 2022


Tronarp, Bosch, Hennig, "Fenrir: Physics-Enhanced Regression for Initial Value Problems", ICML 2022
- Typical goal: "Fit the data".
- Parameter inference: Learn the parameters of a Mechanistic model, e.g. here the SEIR model
\[
\begin{aligned}
\dot{S} & =-\beta_{E} S E / N \\
\dot{E} & =\beta_{E} S E / N-\gamma E \\
\dot{I} & =\gamma E-\lambda I \\
\dot{R} & =\lambda I
\end{aligned}
\]
such that the solution fits the data.


Tronarp, Bosch, Hennig, "Fenrir: Physics-Enhanced Regression for Initial Value Problems", ICML 2022
- Typical goal: "Fit the data".
- Parameter inference: Learn the parameters of a Mechanistic model, e.g. here the SEIR model
\[
\begin{aligned}
\dot{S} & =-\beta_{E} S E / N \\
\dot{E} & =\beta_{E} S E / N-\gamma E \\
\dot{I} & =\gamma E-\lambda I \\
\dot{R} & =\lambda I
\end{aligned}
\]
such that the solution fits the data.
\(\Rightarrow\) Provides interpretable results

\section*{Parameter Inference}


Tronarp, Bosch, Hennig, "Fenrir: Physics-Enhanced Regression for Initial Value Problems", ICML 2022
- Typical goal: "Fit the data".
- Parameter inference: Learn the parameters of a Mechanistic model, e.g. here the SEIR model
\[
\begin{aligned}
\dot{S} & =-\beta_{E} S E / N \\
\dot{E} & =\beta_{E} S E / N-\gamma E \\
\dot{I} & =\gamma E-\lambda I \\
\dot{R} & =\lambda I
\end{aligned}
\]
such that the solution fits the data.
\(\Rightarrow\) Provides interpretable results

Learning unknown dynamics from data.
Setup: Consider an initial value problem
\[
\dot{x}(t)=f(x(t), t, \theta), \quad x(0)=x_{0}(\theta), \quad t \in[0, T],
\]
where the parameters \(\theta \in \mathbb{R}^{d}\) are unknown.

Setup: Consider an initial value problem
\[
\dot{x}(t)=f(x(t), t, \theta), \quad x(0)=x_{0}(\theta), \quad t \in[0, T],
\]
where the parameters \(\theta \in \mathbb{R}^{d}\) are unknown.
Assume noisy observations \(\mathcal{D}=\left\{\left(y_{i}, t_{i}\right)\right\}_{i=1}^{n}\), where
\[
y_{i}=H \cdot x\left(t_{i}\right)+\epsilon_{i}, \quad \epsilon_{i} \sim \mathcal{N}(0, \Sigma) .
\]

\section*{Parameter Inference}

Setup: Consider an initial value problem
\[
\dot{x}(t)=f(x(t), t, \theta), \quad x(0)=x_{0}(\theta), \quad t \in[0, T],
\]
where the parameters \(\theta \in \mathbb{R}^{d}\) are unknown.
Assume noisy observations \(\mathcal{D}=\left\{\left(y_{i}, t_{i}\right)\right\}_{i=1}^{n}\), where
\[
y_{i}=H \cdot x\left(t_{i}\right)+\epsilon_{i}, \quad \epsilon_{i} \sim \mathcal{N}(0, \Sigma) .
\]

Goal: Estimate \(\theta\) from \(\mathcal{D}\) :
\[
p(\theta \mid \mathcal{D})=\frac{p(\mathcal{D} \mid \theta) p(\theta)}{p(\mathcal{D})} .
\]

\section*{Parameter Inference}

Setup: Consider an initial value problem
\[
\dot{x}(t)=f(x(t), t, \theta), \quad x(0)=x_{0}(\theta), \quad t \in[0, T],
\]
where the parameters \(\theta \in \mathbb{R}^{d}\) are unknown.
Assume noisy observations \(\mathcal{D}=\left\{\left(y_{i}, t_{i}\right)\right\}_{i=1}^{n}\), where
\[
y_{i}=H \cdot x\left(t_{i}\right)+\epsilon_{i}, \quad \epsilon_{i} \sim \mathcal{N}(0, \Sigma) .
\]

Goal: Estimate \(\theta\) from \(\mathcal{D}\) :
\[
p(\theta \mid \mathcal{D})=\frac{p(\mathcal{D} \mid \theta) p(\theta)}{p(\mathcal{D})} .
\]

Cheaper goal: Compute the maximum-likelihood estimate
\[
\hat{\theta}_{\mathrm{ML}}=\underset{\theta}{\arg \max } p(\mathcal{D} \mid \theta) .
\]

Assuming i.i.d. data, the likelihood is given by
\[
p(\mathcal{D} \mid \theta)=\prod_{i=1}^{n} \mathcal{N}\left(y_{i} ; H x_{\theta}\left(t_{i}\right), \Sigma\right) .
\]

Issue: The likelihood is intractable, since it depends on the true solution \(x_{\theta}(t)\) of the ODE.

Assuming i.i.d. data, the likelihood is given by
\[
p(\mathcal{D} \mid \theta)=\prod_{i=1}^{n} \mathcal{N}\left(y_{i} ; H x_{\theta}\left(t_{i}\right), \Sigma\right) .
\]

Issue: The likelihood is intractable, since it depends on the true solution \(x_{\theta}(t)\) of the ODE.
Solution: Use a numerical ODE solver to approximate the solution:
\[
x_{\theta}(t) \approx \hat{x}_{\theta}(t)
\]
where \(\hat{x}_{\theta}(t)\) is the numerical solution of the ODE with parameters \(\theta\).

Assuming i.i.d. data, the likelihood is given by
\[
p(\mathcal{D} \mid \theta)=\prod_{i=1}^{n} \mathcal{N}\left(y_{i} ; H x_{\theta}\left(t_{i}\right), \Sigma\right)
\]

Issue: The likelihood is intractable, since it depends on the true solution \(x_{\theta}(t)\) of the ODE. Solution: Use a numerical ODE solver to approximate the solution:
\[
x_{\theta}(t) \approx \hat{x}_{\theta}(t)
\]
where \(\hat{x}_{\theta}(t)\) is the numerical solution of the ODE with parameters \(\theta\).
Then
\[
p(\mathcal{D} \mid \theta) \approx \prod_{i=1}^{n} \mathcal{N}\left(y_{i} ; H \hat{x}_{\theta}\left(t_{i}\right), \Sigma\right)
\]
which is tractable.

Assuming i.i.d. data, the likelihood is given by
\[
p(\mathcal{D} \mid \theta)=\prod_{i=1}^{n} \mathcal{N}\left(y_{i} ; H x_{\theta}\left(t_{i}\right), \Sigma\right) .
\]

Issue: The likelihood is intractable, since it depends on the true solution \(x_{\theta}(t)\) of the ODE.
Solution: Use a numerical ODE solver to approximate the solution:
\[
x_{\theta}(t) \approx \hat{x}_{\theta}(t)
\]
where \(\hat{x}_{\theta}(t)\) is the numerical solution of the ODE with parameters \(\theta\).
Then
\[
p(\mathcal{D} \mid \theta) \approx \prod_{i=1}^{n} \mathcal{N}\left(y_{i} ; H \hat{x}_{\theta}\left(t_{i}\right), \Sigma\right),
\]
which is tractable.
Maximizing the likelihood is equivalent to minimizing the negative log-likelihood:
\[
L(\theta)=\frac{1}{2} \sum_{i=1}^{n}\left(H \hat{x}_{\theta}\left(t_{i}\right)-y_{i}\right)^{\top} \Sigma^{-1}\left(H \hat{x}_{\theta}\left(t_{i}\right)-y_{i}\right) .
\]

\section*{Parameter Inference with numerical ODE solvers}
- Dynamics: (simplified) SIRD model
\[
\dot{S}=-\beta S I \quad \dot{I}=\beta S I-\gamma I-\eta I \quad \dot{R}=\gamma I \quad \dot{D}=\eta I
\]
for \(t \in[0,100]\), with \(\operatorname{SIRD}(0)=[1-10,10,0,0]\) and four unknown parameters \(I 0, \beta, \gamma, \eta \in \mathbb{R}\).


\section*{Parameter Inference with numerical ODE solvers}
- Dynamics: (simplified) SIRD model
\[
\dot{S}=-\beta S I \quad \dot{I}=\beta S I-\gamma I-\eta I \quad \dot{R}=\gamma I \quad \dot{D}=\eta I
\]
for \(t \in[0,100]\), with \(\operatorname{SIRD}(0)=[1-10,10,0,0]\) and four unknown parameters \(I_{0}, \beta, \gamma, \eta \in \mathbb{R}\).
- Data: \(\mathcal{D}=\left\{\left(y_{i}, t_{i}\right)\right\}_{i=1}^{n}\), where \(y_{i} \sim \mathcal{N}\left(x\left(t_{i}\right), 0.1 \cdot 1\right)\); generated with \(\theta^{*}=\left(10^{-5}, 0.5,0.06,0.002\right)\).


\section*{Parameter Inference with numerical ODE solvers}
- Dynamics: (simplified) SIRD model
\[
\dot{S}=-\beta S I \quad \dot{I}=\beta S I-\gamma I-\eta I \quad \dot{R}=\gamma I \quad \dot{D}=\eta I
\]
for \(t \in[0,100]\), with \(\operatorname{SIRD}(0)=[1-10,10,0,0]\) and four unknown parameters \(I_{0}, \beta, \gamma, \eta \in \mathbb{R}\).
- Data: \(\mathcal{D}=\left\{\left(y_{i}, t_{i}\right)\right\}_{i=1}^{n}\), where \(y_{i} \sim \mathcal{N}\left(x\left(t_{i}\right), 0.1 \cdot 1\right)\); generated with \(\theta^{*}=\left(10^{-5}, 0.5,0.06,0.002\right)\).
- Loss (as in last slide): \(L(\theta)=\frac{1}{2} 0.1 \sum_{i=1}^{n}\left\|\hat{x}_{\theta}\left(t_{i}\right)-y_{i}\right\|_{2}^{2}\).

- Dynamics: (simplified) SIRD model
\[
\dot{S}=-\beta S I \quad \dot{I}=\beta S I-\gamma I-\eta I \quad \dot{R}=\gamma I \quad \dot{D}=\eta I
\]
for \(t \in[0,100]\), with \(\operatorname{SIRD}(0)=[1-10,10,0,0]\) and four unknown parameters \(I_{0}, \beta, \gamma, \eta \in \mathbb{R}\).
- Data: \(\mathcal{D}=\left\{\left(y_{i}, t_{i}\right)\right\}_{i=1}^{n}\), where \(y_{i} \sim \mathcal{N}\left(x\left(t_{i}\right), 0.1 \cdot 1\right)\); generated with \(\theta^{*}=\left(10^{-5}, 0.5,0.06,0.002\right)\).
- Loss (as in last slide): \(L(\theta)=\frac{1}{2} 0.1 \sum_{i=1}^{n}\left\|\hat{x}_{\theta}\left(t_{i}\right)-y_{i}\right\|_{2}^{2}\).
- Initial guess: \(\theta_{0}=(0.1,0.1,0.1,0.1)\).

- Dynamics: (simplified) SIRD model
\[
\dot{S}=-\beta S I \quad \dot{I}=\beta S I-\gamma I-\eta I \quad \dot{R}=\gamma I \quad \dot{D}=\eta I
\]
for \(t \in[0,100]\), with \(\operatorname{SIRD}(0)=[1-10,10,0,0]\) and four unknown parameters \(I_{0}, \beta, \gamma, \eta \in \mathbb{R}\).
- Data: \(\mathcal{D}=\left\{\left(y_{i}, t_{i}\right)\right\}_{i=1}^{n}\), where \(y_{i} \sim \mathcal{N}\left(x\left(t_{i}\right), 0.1 \cdot 1\right)\); generated with \(\theta^{*}=\left(10^{-5}, 0.5,0.06,0.002\right)\).
- Loss (as in last slide): \(L(\theta)=\frac{1}{2} 0.1 \sum_{i=1}^{n}\left\|\hat{x}_{\theta}\left(t_{i}\right)-y_{i}\right\|_{2}^{2}\).
- Initial guess: \(\theta_{0}=(0.1,0.1,0.1,0.1)\).
- Optimize: with the optimizer of your choice (e.g. L-BFGS)


\section*{Parameter Inference with numerical ODE solvers}
- Dynamics: (simplified) SIRD model
\[
\dot{S}=-\beta S I \quad \dot{I}=\beta S I-\gamma I-\eta I \quad \dot{R}=\gamma I \quad \dot{D}=\eta I
\]
for \(t \in[0,100]\), with \(\operatorname{SIRD}(0)=[1-10,10,0,0]\) and four unknown parameters \(I_{0}, \beta, \gamma, \eta \in \mathbb{R}\).
- Data: \(\mathcal{D}=\left\{\left(y_{i}, t_{i}\right)\right\}_{i=1}^{n}\), where \(y_{i} \sim \mathcal{N}\left(x\left(t_{i}\right), 0.1 \cdot 1\right)\); generated with \(\theta^{*}=\left(10^{-5}, 0.5,0.06,0.002\right)\).
- Loss (as in last slide): \(L(\theta)=\frac{1}{2} 0.1 \sum_{i=1}^{n}\left\|\hat{x}_{\theta}\left(t_{i}\right)-y_{i}\right\|_{2}^{2}\).
- Initial guess: \(\theta_{0}=(0.1,0.1,0.1,0.1)\).
- Optimize: with the optimizer of your choice (e.g. L-BFGS)


\section*{Parameter Inference with numerical ODE solvers}
- Dynamics: (simplified) SIRD model
\[
\dot{S}=-\beta S I \quad \dot{I}=\beta S I-\gamma I-\eta I \quad \dot{R}=\gamma I \quad \dot{D}=\eta I
\]
for \(t \in[0,100]\), with \(\operatorname{SIRD}(0)=[1-10,10,0,0]\) and four unknown parameters \(I_{0}, \beta, \gamma, \eta \in \mathbb{R}\).
- Data: \(\mathcal{D}=\left\{\left(y_{i}, t_{i}\right)\right\}_{i=1}^{n}\), where \(y_{i} \sim \mathcal{N}\left(x\left(t_{i}\right), 0.1 \cdot 1\right)\); generated with \(\theta^{*}=\left(10^{-5}, 0.5,0.06,0.002\right)\).
- Loss (as in last slide): \(L(\theta)=\frac{1}{2} 0.1 \sum_{i=1}^{n}\left\|\hat{x}_{\theta}\left(t_{i}\right)-y_{i}\right\|_{2}^{2}\).
- Initial guess: \(\theta_{0}=(0.1,0.1,0.1,0.1)\).
- Optimize: with the optimizer of your choice (e.g. L-BFGS)


\section*{Parameter Inference with numerical ODE solvers}
- Dynamics: (simplified) SIRD model
\[
\dot{S}=-\beta S I \quad \dot{I}=\beta S I-\gamma I-\eta I \quad \dot{R}=\gamma I \quad \dot{D}=\eta I
\]
for \(t \in[0,100]\), with \(\operatorname{SIRD}(0)=[1-10,10,0,0]\) and four unknown parameters \(I_{0}, \beta, \gamma, \eta \in \mathbb{R}\).
- Data: \(\mathcal{D}=\left\{\left(y_{i}, t_{i}\right)\right\}_{i=1}^{n}\), where \(y_{i} \sim \mathcal{N}\left(x\left(t_{i}\right), 0.1 \cdot 1\right)\); generated with \(\theta^{*}=\left(10^{-5}, 0.5,0.06,0.002\right)\).
- Loss (as in last slide): \(L(\theta)=\frac{1}{2} 0.1 \sum_{i=1}^{n}\left\|\hat{x}_{\theta}\left(t_{i}\right)-y_{i}\right\|_{2}^{2}\).
- Initial guess: \(\theta_{0}=(0.1,0.1,0.1,0.1)\).
- Optimize: with the optimizer of your choice (e.g. L-BFGS)


\section*{Parameter Inference with numerical ODE solvers}
- Dynamics: (simplified) SIRD model
\[
\dot{S}=-\beta S I \quad \dot{I}=\beta S I-\gamma I-\eta I \quad \dot{R}=\gamma I \quad \dot{D}=\eta I
\]
for \(t \in[0,100]\), with \(\operatorname{SIRD}(0)=[1-10,10,0,0]\) and four unknown parameters \(I_{0}, \beta, \gamma, \eta \in \mathbb{R}\).
- Data: \(\mathcal{D}=\left\{\left(y_{i}, t_{i}\right)\right\}_{i=1}^{n}\), where \(y_{i} \sim \mathcal{N}\left(x\left(t_{i}\right), 0.1 \cdot 1\right)\); generated with \(\theta^{*}=\left(10^{-5}, 0.5,0.06,0.002\right)\).
- Loss (as in last slide): \(L(\theta)=\frac{1}{2} 0.1 \sum_{i=1}^{n}\left\|\hat{x}_{\theta}\left(t_{i}\right)-y_{i}\right\|_{2}^{2}\).
- Initial guess: \(\theta_{0}=(0.1,0.1,0.1,0.1)\).
- Optimize: with the optimizer of your choice (e.g. L-BFGS)


\section*{Parameter Inference with numerical ODE solvers}
- Dynamics: (simplified) SIRD model
\[
\dot{S}=-\beta S I \quad \dot{I}=\beta S I-\gamma I-\eta I \quad \dot{R}=\gamma I \quad \dot{D}=\eta I
\]
for \(t \in[0,100]\), with \(\operatorname{SIRD}(0)=[1-10,10,0,0]\) and four unknown parameters \(I_{0}, \beta, \gamma, \eta \in \mathbb{R}\).
- Data: \(\mathcal{D}=\left\{\left(y_{i}, t_{i}\right)\right\}_{i=1}^{n}\), where \(y_{i} \sim \mathcal{N}\left(x\left(t_{i}\right), 0.1 \cdot 1\right)\); generated with \(\theta^{*}=\left(10^{-5}, 0.5,0.06,0.002\right)\).
- Loss (as in last slide): \(L(\theta)=\frac{1}{2} 0.1 \sum_{i=1}^{n}\left\|\hat{x}_{\theta}\left(t_{i}\right)-y_{i}\right\|_{2}^{2}\).
- Initial guess: \(\theta_{0}=(0.1,0.1,0.1,0.1)\).
- Optimize: with the optimizer of your choice (e.g. L-BFGS)


\section*{Parameter Inference with numerical ODE solvers}
- Dynamics: (simplified) SIRD model
\[
\dot{S}=-\beta S I \quad \dot{I}=\beta S I-\gamma I-\eta I \quad \dot{R}=\gamma I \quad \dot{D}=\eta I
\]
for \(t \in[0,100]\), with \(\operatorname{SIRD}(0)=[1-10,10,0,0]\) and four unknown parameters \(I_{0}, \beta, \gamma, \eta \in \mathbb{R}\).
- Data: \(\mathcal{D}=\left\{\left(y_{i}, t_{i}\right)\right\}_{i=1}^{n}\), where \(y_{i} \sim \mathcal{N}\left(x\left(t_{i}\right), 0.1 \cdot 1\right)\); generated with \(\theta^{*}=\left(10^{-5}, 0.5,0.06,0.002\right)\).
- Loss (as in last slide): \(L(\theta)=\frac{1}{2} 0.1 \sum_{i=1}^{n}\left\|\hat{x}_{\theta}\left(t_{i}\right)-y_{i}\right\|_{2}^{2}\).
- Initial guess: \(\theta_{0}=(0.1,0.1,0.1,0.1)\).
- Optimize: with the optimizer of your choice (e.g. L-BFGS)


\section*{Parameter Inference with numerical ODE solvers}
- Dynamics: (simplified) SIRD model
\[
\dot{S}=-\beta S I \quad \dot{I}=\beta S I-\gamma I-\eta I \quad \dot{R}=\gamma I \quad \dot{D}=\eta I
\]
for \(t \in[0,100]\), with \(\operatorname{SIRD}(0)=[1-10,10,0,0]\) and four unknown parameters \(I_{0}, \beta, \gamma, \eta \in \mathbb{R}\).
- Data: \(\mathcal{D}=\left\{\left(y_{i}, t_{i}\right)\right\}_{i=1}^{n}\), where \(y_{i} \sim \mathcal{N}\left(x\left(t_{i}\right), 0.1 \cdot 1\right)\); generated with \(\theta^{*}=\left(10^{-5}, 0.5,0.06,0.002\right)\).
- Loss (as in last slide): \(L(\theta)=\frac{1}{2} 0.1 \sum_{i=1}^{n}\left\|\hat{x}_{\theta}\left(t_{i}\right)-y_{i}\right\|_{2}^{2}\).
- Initial guess: \(\theta_{0}=(0.1,0.1,0.1,0.1)\).
- Optimize: with the optimizer of your choice (e.g. L-BFGS)


\section*{Parameter Inference with numerical ODE solvers}
- Dynamics: (simplified) SIRD model
\[
\dot{S}=-\beta S I \quad \dot{I}=\beta S I-\gamma I-\eta I \quad \dot{R}=\gamma I \quad \dot{D}=\eta I
\]
for \(t \in[0,100]\), with \(\operatorname{SIRD}(0)=[1-10,10,0,0]\) and four unknown parameters \(I_{0}, \beta, \gamma, \eta \in \mathbb{R}\).
- Data: \(\mathcal{D}=\left\{\left(y_{i}, t_{i}\right)\right\}_{i=1}^{n}\), where \(y_{i} \sim \mathcal{N}\left(x\left(t_{i}\right), 0.1 \cdot 1\right)\); generated with \(\theta^{*}=\left(10^{-5}, 0.5,0.06,0.002\right)\).
- Loss (as in last slide): \(L(\theta)=\frac{1}{2} 0.1 \sum_{i=1}^{n}\left\|\hat{x}_{\theta}\left(t_{i}\right)-y_{i}\right\|_{2}^{2}\).
- Initial guess: \(\theta_{0}=(0.1,0.1,0.1,0.1)\).
- Optimize: with the optimizer of your choice (e.g. L-BFGS)


\section*{Parameter Inference with numerical ODE solvers}
- Dynamics: (simplified) SIRD model
\[
\dot{S}=-\beta S I \quad \dot{I}=\beta S I-\gamma I-\eta I \quad \dot{R}=\gamma I \quad \dot{D}=\eta I
\]
for \(t \in[0,100]\), with \(\operatorname{SIRD}(0)=[1-10,10,0,0]\) and four unknown parameters \(I_{0}, \beta, \gamma, \eta \in \mathbb{R}\).
- Data: \(\mathcal{D}=\left\{\left(y_{i}, t_{i}\right)\right\}_{i=1}^{n}\), where \(y_{i} \sim \mathcal{N}\left(x\left(t_{i}\right), 0.1 \cdot 1\right)\); generated with \(\theta^{*}=\left(10^{-5}, 0.5,0.06,0.002\right)\).
- Loss (as in last slide): \(L(\theta)=\frac{1}{2} 0.1 \sum_{i=1}^{n}\left\|\hat{x}_{\theta}\left(t_{i}\right)-y_{i}\right\|_{2}^{2}\).
- Initial guess: \(\theta_{0}=(0.1,0.1,0.1,0.1)\).
- Optimize: with the optimizer of your choice (e.g. L-BFGS)


\section*{Parameter Inference with numerical ODE solvers}
- Dynamics: (simplified) SIRD model
\[
\dot{S}=-\beta S I \quad \dot{I}=\beta S I-\gamma I-\eta I \quad \dot{R}=\gamma I \quad \dot{D}=\eta I
\]
for \(t \in[0,100]\), with \(\operatorname{SIRD}(0)=[1-10,10,0,0]\) and four unknown parameters \(I_{0}, \beta, \gamma, \eta \in \mathbb{R}\).
- Data: \(\mathcal{D}=\left\{\left(y_{i}, t_{i}\right)\right\}_{i=1}^{n}\), where \(y_{i} \sim \mathcal{N}\left(x\left(t_{i}\right), 0.1 \cdot 1\right)\); generated with \(\theta^{*}=\left(10^{-5}, 0.5,0.06,0.002\right)\).
- Loss (as in last slide): \(L(\theta)=\frac{1}{2} 0.1 \sum_{i=1}^{n}\left\|\hat{x}_{\theta}\left(t_{i}\right)-y_{i}\right\|_{2}^{2}\).
- Initial guess: \(\theta_{0}=(0.1,0.1,0.1,0.1)\).
- Optimize: with the optimizer of your choice (e.g. L-BFGS)


\section*{Parameter Inference with numerical ODE solvers}
- Dynamics: (simplified) SIRD model
\[
\dot{S}=-\beta S I \quad \dot{I}=\beta S I-\gamma I-\eta I \quad \dot{R}=\gamma I \quad \dot{D}=\eta I
\]
for \(t \in[0,100]\), with \(\operatorname{SIRD}(0)=[1-10,10,0,0]\) and four unknown parameters \(I_{0}, \beta, \gamma, \eta \in \mathbb{R}\).
- Data: \(\mathcal{D}=\left\{\left(y_{i}, t_{i}\right)\right\}_{i=1}^{n}\), where \(y_{i} \sim \mathcal{N}\left(x\left(t_{i}\right), 0.1 \cdot 1\right)\); generated with \(\theta^{*}=\left(10^{-5}, 0.5,0.06,0.002\right)\).
- Loss (as in last slide): \(L(\theta)=\frac{1}{2} 0.1 \sum_{i=1}^{n}\left\|\hat{x}_{\theta}\left(t_{i}\right)-y_{i}\right\|_{2}^{2}\).
- Initial guess: \(\theta_{0}=(0.1,0.1,0.1,0.1)\).
- Optimize: with the optimizer of your choice (e.g. L-BFGS)


\section*{Parameter Inference with numerical ODE solvers}
- Dynamics: (simplified) SIRD model
\[
\dot{S}=-\beta S I \quad \dot{I}=\beta S I-\gamma I-\eta I \quad \dot{R}=\gamma I \quad \dot{D}=\eta I
\]
for \(t \in[0,100]\), with \(\operatorname{SIRD}(0)=[1-10,10,0,0]\) and four unknown parameters \(I_{0}, \beta, \gamma, \eta \in \mathbb{R}\).
- Data: \(\mathcal{D}=\left\{\left(y_{i}, t_{i}\right)\right\}_{i=1}^{n}\), where \(y_{i} \sim \mathcal{N}\left(x\left(t_{i}\right), 0.1 \cdot 1\right)\); generated with \(\theta^{*}=\left(10^{-5}, 0.5,0.06,0.002\right)\).
- Loss (as in last slide): \(L(\theta)=\frac{1}{2} 0.1 \sum_{i=1}^{n}\left\|\hat{x}_{\theta}\left(t_{i}\right)-y_{i}\right\|_{2}^{2}\).
- Initial guess: \(\theta_{0}=(0.1,0.1,0.1,0.1)\).
- Optimize: with the optimizer of your choice (e.g. L-BFGS)


\section*{Parameter Inference with numerical ODE solvers}
- Dynamics: (simplified) SIRD model
\[
\dot{S}=-\beta S I \quad \dot{I}=\beta S I-\gamma I-\eta I \quad \dot{R}=\gamma I \quad \dot{D}=\eta I
\]
for \(t \in[0,100]\), with \(\operatorname{SIRD}(0)=[1-10,10,0,0]\) and four unknown parameters \(I_{0}, \beta, \gamma, \eta \in \mathbb{R}\).
- Data: \(\mathcal{D}=\left\{\left(y_{i}, t_{i}\right)\right\}_{i=1}^{n}\), where \(y_{i} \sim \mathcal{N}\left(x\left(t_{i}\right), 0.1 \cdot 1\right)\); generated with \(\theta^{*}=\left(10^{-5}, 0.5,0.06,0.002\right)\).
- Loss (as in last slide): \(L(\theta)=\frac{1}{2} 0.1 \sum_{i=1}^{n}\left\|\hat{x}_{\theta}\left(t_{i}\right)-y_{i}\right\|_{2}^{2}\).
- Initial guess: \(\theta_{0}=(0.1,0.1,0.1,0.1)\).
- Optimize: with the optimizer of your choice (e.g. L-BFGS)


\section*{Parameter Inference with numerical ODE solvers}
- Dynamics: (simplified) SIRD model
\[
\dot{S}=-\beta S I \quad \dot{I}=\beta S I-\gamma I-\eta I \quad \dot{R}=\gamma I \quad \dot{D}=\eta I
\]
for \(t \in[0,100]\), with \(\operatorname{SIRD}(0)=[1-10,10,0,0]\) and four unknown parameters \(I_{0}, \beta, \gamma, \eta \in \mathbb{R}\).
- Data: \(\mathcal{D}=\left\{\left(y_{i}, t_{i}\right)\right\}_{i=1}^{n}\), where \(y_{i} \sim \mathcal{N}\left(x\left(t_{i}\right), 0.1 \cdot 1\right)\); generated with \(\theta^{*}=\left(10^{-5}, 0.5,0.06,0.002\right)\).
- Loss (as in last slide): \(L(\theta)=\frac{1}{2} 0.1 \sum_{i=1}^{n}\left\|\hat{x}_{\theta}\left(t_{i}\right)-y_{i}\right\|_{2}^{2}\).
- Initial guess: \(\theta_{0}=(0.1,0.1,0.1,0.1)\).
- Optimize: with the optimizer of your choice (e.g. L-BFGS)


\section*{Parameter Inference with numerical ODE solvers}
- Dynamics: (simplified) SIRD model
\[
\dot{S}=-\beta S I \quad \dot{I}=\beta S I-\gamma I-\eta I \quad \dot{R}=\gamma I \quad \dot{D}=\eta I
\]
for \(t \in[0,100]\), with \(\operatorname{SIRD}(0)=[1-10,10,0,0]\) and four unknown parameters \(I_{0}, \beta, \gamma, \eta \in \mathbb{R}\).
- Data: \(\mathcal{D}=\left\{\left(y_{i}, t_{i}\right)\right\}_{i=1}^{n}\), where \(y_{i} \sim \mathcal{N}\left(x\left(t_{i}\right), 0.1 \cdot 1\right)\); generated with \(\theta^{*}=\left(10^{-5}, 0.5,0.06,0.002\right)\).
- Loss (as in last slide): \(L(\theta)=\frac{1}{2} 0.1 \sum_{i=1}^{n}\left\|\hat{x}_{\theta}\left(t_{i}\right)-y_{i}\right\|_{2}^{2}\).
- Initial guess: \(\theta_{0}=(0.1,0.1,0.1,0.1)\).
- Optimize: with the optimizer of your choice (e.g. L-BFGS)

- Dynamics: (simplified) SIRD model
\[
\dot{S}=-\beta S I \quad \dot{I}=\beta S I-\gamma I-\eta I \quad \dot{R}=\gamma I \quad \dot{D}=\eta I
\]
for \(t \in[0,100]\), with \(\operatorname{SIRD}(0)=[1-10,10,0,0]\) and four unknown parameters \(I_{0}, \beta, \gamma, \eta \in \mathbb{R}\).
- Data: \(\mathcal{D}=\left\{\left(y_{i}, t_{i}\right)\right\}_{i=1}^{n}\), where \(y_{i} \sim \mathcal{N}\left(x\left(t_{i}\right), 0.1 \cdot 1\right)\); generated with \(\theta^{*}=\left(10^{-5}, 0.5,0.06,0.002\right)\).
- Loss (as in last slide): \(L(\theta)=\frac{1}{2} 0.1 \sum_{i=1}^{n}\left\|\hat{x}_{\theta}\left(t_{i}\right)-y_{i}\right\|_{2}^{2}\).
- Initial guess: \(\theta_{0}=(0.1,0.1,0.1,0.1)\).
- Optimize: with the optimizer of your choice (e.g. L-BFGS)
- Result: \(\hat{\theta}_{\text {ML }}=\left(9.46 \cdot 10^{-6}, 0.5014,0.0603,0.0020\right)\). (took \(\sim 3.5\) seconds)


\section*{Parameter Inference with numerical ODE solvers}
- Dynamics: (simplified) SIRD model
\[
\dot{S}=-\beta S I \quad \dot{I}=\beta S I-\gamma I-\eta I \quad \dot{R}=\gamma I \quad \dot{D}=\eta I
\]
for \(t \in[0,100]\), with \(\operatorname{SIRD}(0)=[1-10,10,0,0]\) and four unknown parameters \(I_{0}, \beta, \gamma, \eta \in \mathbb{R}\).
- Data: \(\mathcal{D}=\left\{\left(y_{i}, t_{i}\right)\right\}_{i=1}^{n}\), where \(y_{i} \sim \mathcal{N}\left(x\left(t_{i}\right), 0.1 \cdot 1\right)\); generated with \(\theta^{*}=\left(10^{-5}, 0.5,0.06,0.002\right)\).
- Loss (as in last slide): \(L(\theta)=\frac{1}{2} 0.1 \sum_{i=1}^{n}\left\|\hat{x}_{\theta}\left(t_{i}\right)-y_{i}\right\|_{2}^{2}\).
- Initial guess: \(\theta_{0}=(0.1,0.1,0.1,0.1)\).
- Optimize: with the optimizer of your choice (e.g. L-BFGS)
- Result: \(\hat{\theta}_{\text {ML }}=\left(9.46 \cdot 10^{-6}, 0.5014,0.0603,0.0020\right)\). (took \(\sim 3.5\) seconds)


We can learn system parameters from data via (local) optimization!

ODE dynamics as before, but this time with time-varying contact rate \(\beta(t)\) :
\[
\dot{S}=-\beta(t) S I / N, \quad \dot{I}=\beta(t) S I / N-\gamma I-\eta I, \quad \dot{R}=\gamma I, \quad \dot{D}=\eta I .
\]

Data are the real COVID counts from Germany.

ODE dynamics as before, but this time with time-varying contact rate \(\beta(t)\) :
\[
\dot{S}=-\beta(t) S I / N, \quad \dot{I}=\beta(t) S I / N-\gamma I-\eta I, \quad \dot{R}=\gamma l, \quad \dot{D}=\eta l .
\]

Data are the real COVID counts from Germany. Related result as shown in lecture 1:


ODE dynamics as before, but this time with time-varying contact rate \(\beta(t)\) :
\[
\dot{S}=-\beta(t) S I / N, \quad \dot{I}=\beta(t) S I / N-\gamma I-\eta I, \quad \dot{R}=\gamma I, \quad \dot{D}=\eta I
\]

Data are the real COVID counts from Germany. Idea today: Just model \(\beta(t)\) with a neural network \(\beta_{\theta}^{\mathrm{NN}}\), and do parameter inference on \(\theta\) as before! Result:


ODE dynamics as before, but this time with time-varying contact rate \(\beta(t)\) :
\[
\dot{S}=-\beta(t) S I / N, \quad \dot{I}=\beta(t) S I / N-\gamma I-\eta I, \quad \dot{R}=\gamma I, \quad \dot{D}=\eta I
\]

Data are the real COVID counts from Germany.
Idea today: Just model \(\beta(t)\) with a neural network \(\beta_{\theta}^{\mathrm{NN}}\), and do parameter inference on \(\theta\) as before! Result:

ODE dynamics as before, but this time with time-varying contact rate \(\beta(t)\) :
\[
\dot{S}=-\beta(t) S I / N, \quad \dot{I}=\beta(t) S I / N-\gamma I-\eta I, \quad \dot{R}=\gamma I, \quad \dot{D}=\eta I
\]

Data are the real COVID counts from Germany.
Idea today: Just model \(\beta(t)\) with a neural network \(\beta_{\theta}^{\mathrm{NN}}\), and do parameter inference on \(\theta\) as before! Result:


Disclaimer: I only had limited time and it might very well be possible to do this much better!

ODE dynamics as before, but this time with time-varying contact rate \(\beta(t)\) :
\[
\dot{S}=-\beta(t) S I / N, \quad \dot{\dot{I}}=\beta(t) S I / N-\gamma I-\eta l, \quad \dot{R}=\gamma l, \quad \dot{D}=\eta l .
\]

Data are the real COVID counts from Germany.
Next week: \(\beta(t) \sim \mathcal{G P}\) !


\section*{Summary}
- ODEs play an important role in machine learning.
- In general, solving an ODE requires a numerical solver, e.g. Euler or Runge-Kutta

Please cite this course, as
- ... of which there are many! With different properties (stability, order, ...).
- We can learn ODE parameters via (local) optimization, even neural networks! @techreport \{NoML22.
title \(=\{\) Numerics of Machine Learning\},
author \(=\{\mathrm{N}\). Bosch and J. Grosse
and \(P\). Hennig and \(A\). Kristiadi
and \(M\). Pförtner and J. Schmidt
and \(F\). Schneider and L. Tatzel
and \(J\). Wenger \},
series \(=\{\) Lecture Notes in Machine Learning \},
year \(=\{2022\}\).
institution \(=\{\) Tübingen Al Center \(\}\),
\}

\section*{Summary}
- ODEs play an important role in machine learning.
- In general, solving an ODE requires a numerical solver, e.g. Euler or Runge-Kutta

Please cite this course, as
- ... of which there are many! With different properties (stability, order, ...).
- We can learn ODE parameters via (local) optimization, even neural networks!
```

@techreport {NoML22.
title = {Numerics of Machine Learning}
author = {N. Bosch and J. Grosse
and P. Hennig and A. Kristiad
and M. Pförtner and J. Schmidt
and F. Schneider and L. Tatzel
and J. Wenger}
series = {Lecture Notes in Machine Learning},
year = {2022},
institution = {Tübingen Al Center}
}

```

Next week: Probabilistic numerical ODE solvers! Combining ODEs and Bayesian state estimation.```

