Probabilistic Numerics for Ordinary Differential Equations

Nathanael Bosch

22. November 2022

EBERHARD KARLS
 UNIVERSITAT TUBINGEN

imprs-is

[^0]
Background

- Ordinary differential equations and how to solve them
- State estimation with extended Kalman filtering \& smoothing

Background

- Ordinary differential equations and how to solve them
- State estimation with extended Kalman filtering \& smoothing

Central statement: ODE solving is state estimation

- "ODE filters": How to solve ODEs with extended Kalman filtering and smoothing
- Bells and whistles to make ODE filters work even better
- Uncertainty calibration
- Square-root filtering
- Ordinary differential equations and how to solve them
- State estimation with extended Kalman filtering \& smoothing

Central statement: ODE solving is state estimation

- "ODE filters": How to solve ODEs with extended Kalman filtering and smoothing
- Bells and whistles to make ODE filters work even better
- Uncertainty calibration
- Square-root filtering

Fun with ODE filters

- Generalizing ODE filters to other related problems (higher-order ODEs, DAEs, ...)
- Latent force inference: Joint GP regression on both ODEs and data

Background: Ordinary Differential Equations and how to solve them

$$
\dot{X}(t)=f(X(t), t)
$$

with $t \in[0, T]$, vector field $f: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$, and initial value $x(0)=x_{0}$. Goal: "Find $x^{\prime \prime}$.

- Simple example: Logistic ODE

$$
\dot{x}(t)=x(t)(1-x(t)), \quad t \in[0,10], \quad x(0)=0.1
$$

$$
\dot{x}(t)=f(x(t), t)
$$

with $t \in[0, T]$, vector field $f: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$, and initial value $x(0)=x_{0}$. Goal: "Find x ".

Numerical ODE solvers:

- Forward Euler:

$$
\hat{x}(t+h)=\hat{x}(t)+h f(\hat{x}(t), t)
$$

$$
\dot{x}(t)=f(x(t), t)
$$

with $t \in[0, T]$, vector field $f: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$, and initial value $x(0)=x_{0}$. Goal: "Find x ".

Numerical ODE solvers:

- Forward Euler:

$$
\hat{x}(t+h)=\hat{x}(t)+h f(\hat{x}(t), t)
$$

- Backward Euler:

$$
\hat{x}(t+h)=\hat{x}(t)+h f(\hat{x}(t+h), t+h)
$$

$$
\dot{x}(t)=f(x(t), t)
$$

with $t \in[0, T]$, vector field $f: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$, and initial value $x(0)=x_{0}$. Goal: "Find x ".

Numerical ODE solvers:

- Forward Euler:

$$
\hat{x}(t+h)=\hat{x}(t)+h f(\hat{x}(t), t)
$$

- Backward Euler:

$$
\hat{x}(t+h)=\hat{x}(t)+h f(\hat{x}(t+h), t+h)
$$

- Runge-Kutta:

$$
\hat{x}(t+h)=\hat{x}(t)+h \sum_{i=1}^{s} b_{i} f\left(\tilde{x}_{i}, t+c_{i} h\right)
$$

$$
\dot{x}(t)=f(x(t), t)
$$

with $t \in[0, T]$, vector field $f: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$, and initial value $x(0)=x_{0}$. Goal: "Find x ".

Numerical ODE solvers:

- Forward Euler:

$$
\hat{x}(t+h)=\hat{x}(t)+h f(\hat{x}(t), t)
$$

- Backward Euler:

$$
\hat{x}(t+h)=\hat{x}(t)+h f(\hat{x}(t+h), t+h)
$$

- Runge-Kutta:

$$
\hat{x}(t+h)=\hat{x}(t)+h \sum_{i=1}^{s} b_{i} f\left(\tilde{x}_{i}, t+c_{i} h\right)
$$

- Multistep:

$$
\hat{x}(t+h)=\hat{x}(t)+h \sum_{i=0}^{s-1} b_{i} f(\hat{x}(t-i h), t-i h)
$$

$$
\dot{x}(t)=f(x(t), t)
$$

with $t \in[0, T]$, vector field $f: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$, and initial value $x(0)=x_{0}$. Goal: "Find $x^{\prime \prime}$.

Numerical ODE solvers:

- Forward Euler:

$$
\hat{x}(t+h)=\hat{x}(t)+h f(\hat{x}(t), t)
$$

- Backward Euler:

$$
\hat{x}(t+h)=\hat{x}(t)+h f(\hat{x}(t+h), t+h)
$$

- Runge-Kutta:

$$
\hat{x}(t+h)=\hat{x}(t)+h \sum_{i=1}^{s} b_{i} f\left(\tilde{x}_{i}, t+c_{i} h\right)
$$

- Multistep:

$$
\hat{x}(t+h)=\hat{x}(t)+h \sum_{i=0}^{s-1} b_{i} f(\hat{x}(t-i h), t-i h)
$$

Forward Euler for different step sizes:

$$
\dot{x}(t)=f(x(t), t)
$$

with $t \in[0, T]$, vector field $f: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$, and initial value $x(0)=x_{0}$. Goal: "Find x ".

Numerical ODE solvers:

- Forward Euler:

$$
\hat{x}(t+h)=\hat{x}(t)+h f(\hat{x}(t), t)
$$

- Backward Euler:

$$
\hat{x}(t+h)=\hat{x}(t)+h f(\hat{x}(t+h), t+h)
$$

- Runge-Kutta:

$$
\hat{x}(t+h)=\hat{x}(t)+h \sum_{i=1}^{s} b_{i} f\left(\tilde{x}_{i}, t+c_{i} h\right)
$$

- Multistep:

$$
\hat{x}(t+h)=\hat{x}(t)+h \sum_{i=0}^{s-1} b_{i} f(\hat{x}(t-i h), t-i h)
$$

Forward Euler for different step sizes:

Numerical ODE solvers estimate $x(t)$ by evaluating f on a discrete set of points.

Background: Bayesian State Estimation with Extended Kalman filtering and smoothing

Non-linear Gaussian state-estimation problem:
Initial distribution:

$$
x_{0} \sim \mathcal{N}\left(x_{0} ; \mu_{0}, \Sigma_{0}\right),
$$

Prior / dynamics: $\quad x_{i+1} \mid x_{i} \sim \mathcal{N}\left(x_{i+1} ; f\left(x_{i}\right), Q_{i}\right)$,
Likelihood / measurement:
Data:

$$
\begin{aligned}
y_{i} \mid x_{i} & \sim \mathcal{N}\left(y_{i} ; m\left(x_{i}\right), R_{i}\right), \\
\mathcal{D} & =\left\{y_{i}\right\}_{i=1}^{N} .
\end{aligned}
$$

Non-linear Gaussian state-estimation problem:
Initial distribution:

$$
x_{0} \sim \mathcal{N}\left(x_{0} ; \mu_{0}, \Sigma_{0}\right),
$$

Prior / dynamics:
Likelihood / measurement:
Data:

$$
\begin{aligned}
x_{i+1} \mid x_{i} & \sim \mathcal{N}\left(x_{i+1} ; f\left(x_{i}\right), Q_{i}\right), \\
y_{i} \mid x_{i} & \sim \mathcal{N}\left(y_{i} ; m\left(x_{i}\right), R_{i}\right), \\
\mathcal{D} & =\left\{y_{i}\right\}_{i=1}^{N} .
\end{aligned}
$$

The extended Kalman filter/smoother (EKF/EKS) recursively computes Gaussian approximations:

$$
\begin{aligned}
\text { Predict: } & p\left(x_{i} \mid y_{1: i-1}\right) & \approx \mathcal{N}\left(x_{i} ; \mu_{i}^{P}, \Sigma_{i}^{P}\right), \\
\text { Filter: } & p\left(x_{i} \mid y_{1: i}\right) & \approx \mathcal{N}\left(x_{i} ; \mu_{i}, \Sigma_{i}\right), \\
\text { Smooth: } & p\left(x_{i} \mid y_{1: N}\right) & \approx \mathcal{N}\left(x_{i} ; \mu_{i}^{S}, \Sigma_{i}^{S}\right), \\
\text { Likelihood: } & p\left(y_{i} \mid y_{1: i-1}\right) & \approx \mathcal{N}\left(y_{i} ; \hat{y}_{i}, S_{i}\right) .
\end{aligned}
$$

Non-linear Gaussian state-estimation problem:
Initial distribution:

$$
\begin{aligned}
x_{0} & \sim \mathcal{N}\left(x_{0} ; \mu_{0}, \Sigma_{0}\right), \\
x_{i+1} \mid x_{i} & \sim \mathcal{N}\left(x_{i+1} ; f\left(x_{i}\right), Q_{i}\right), \\
y_{i} \mid x_{i} & \sim \mathcal{N}\left(y_{i} ; m\left(x_{i}\right), R_{i}\right), \\
\mathcal{D} & =\left\{y_{i}\right\}_{i=1}^{N} .
\end{aligned}
$$

The extended Kalman filter/smoother (EKF/EKS) recursively

computes Gaussian approximations:

$$
\begin{array}{rlrl}
\text { Predict: } & p\left(x_{i} \mid y_{1: i-1}\right) & \approx \mathcal{N}\left(x_{i} ; \mu_{i}^{P}, \Sigma_{i}^{P}\right), \\
\text { Filter: } & p\left(x_{i} \mid y_{1: i}\right) & \approx \mathcal{N}\left(x_{i} ; \mu_{i}, \Sigma_{i}\right), \\
\text { Smooth: } & & p\left(x_{i} \mid y_{1: N}\right) & \approx \mathcal{N}\left(x_{i} ; \mu_{i}^{S}, \Sigma_{i}^{S}\right), \\
\text { Likelihood: } & & p\left(y_{i} \mid y_{1: i-1}\right) & \approx \mathcal{N}\left(y_{i} ; \hat{y}_{i}, S_{i}\right) .
\end{array}
$$

PREDICT

$$
\begin{aligned}
& \mu_{i+1}^{P}=f\left(\mu_{i}\right), \\
& \sum_{i+1}^{P}=J_{f}\left(\mu_{i}\right) \Sigma_{i} J_{f}\left(\mu_{i}\right)^{\top}+Q_{i} .
\end{aligned}
$$

Prior / dynamics:

Data:

Non-linear Gaussian state-estimation problem:
Initial distribution:

$$
\begin{aligned}
x_{0} & \sim \mathcal{N}\left(x_{0} ; \mu_{0}, \Sigma_{0}\right), \\
x_{i+1} \mid x_{i} & \sim \mathcal{N}\left(x_{i+1} ; f\left(x_{i}\right), Q_{i}\right),
\end{aligned}
$$

Prior / dynamics:
Likelihood / measurement:

$$
y_{i} \mid x_{i} \sim \mathcal{N}\left(y_{i} ; m\left(x_{i}\right), R_{i}\right)
$$

Data:

$$
\mathcal{D}=\left\{y_{i}\right\}_{i=1}^{N}
$$

The extended Kalman filter/smoother (EKF/EKS) recursively computes Gaussian approximations:

Predict:
Filter:
Smooth:
Likelihood:

$$
\begin{aligned}
p\left(x_{i} \mid y_{1: i-1}\right) & \approx \mathcal{N}\left(x_{i} ; \mu_{i}^{P}, \Sigma_{i}^{P}\right), \\
p\left(x_{i} \mid y_{1: i}\right) & \approx \mathcal{N}\left(x_{i} ; \mu_{i}, \Sigma_{i}\right), \\
p\left(x_{i} \mid y_{1: N}\right) & \approx \mathcal{N}\left(x_{i} ; \mu_{i}^{S}, \Sigma_{i}^{S}\right), \\
p\left(y_{i} \mid y_{1: i-1}\right) & \approx \mathcal{N}\left(y_{i} ; \hat{y}_{i}, S_{i}\right) .
\end{aligned}
$$

PREDICT

$$
\begin{aligned}
& \mu_{i+1}^{P}=f\left(\mu_{i}\right), \\
& \sum_{i+1}^{P}=J_{f}\left(\mu_{i}\right) \sum_{i} J_{f}\left(\mu_{i}\right)^{\top}+Q_{i} .
\end{aligned}
$$

UPDATE

$$
\begin{aligned}
& \hat{z}_{i}=m\left(\mu_{i}^{P}\right), \\
& S_{i}=J_{m}\left(\mu_{i}^{P}\right) \Sigma_{i}^{P} J_{m}\left(\mu_{i}^{P}\right)^{\top}+R_{i}, \\
& K_{i}=\Sigma_{i}^{P} J_{m}\left(\mu_{i}^{P}\right)^{\top} S_{i}^{-1}, \\
& \mu_{i}=\mu_{i}^{P}+K_{i}\left(z_{i}-\hat{z}_{i}\right), \\
& \Sigma_{i}=\Sigma_{i}^{P}-K_{i} S_{i} K_{i}^{\top} .
\end{aligned}
$$

E

Non-linear Gaussian state-estimation problem:
Initial distribution:

$$
\begin{aligned}
x_{0} & \sim \mathcal{N}\left(x_{0} ; \mu_{0}, \Sigma_{0}\right), \\
x_{i+1} \mid x_{i} & \sim \mathcal{N}\left(x_{i+1} ; f\left(x_{i}\right), Q_{i}\right),
\end{aligned}
$$

Prior / dynamics:
Likelihood / measurement:

$$
y_{i} \mid x_{i} \sim \mathcal{N}\left(y_{i} ; m\left(x_{i}\right), R_{i}\right)
$$

Data:

$$
\mathcal{D}=\left\{y_{i}\right\}_{i=1}^{N}
$$

The extended Kalman filter/smoother (EKF/EKS) recursively computes Gaussian approximations:

Predict:
Filter:
Smooth:
Likelihood:

$$
\begin{aligned}
p\left(x_{i} \mid y_{1: i-1}\right) & \approx \mathcal{N}\left(x_{i} ; \mu_{i}^{P}, \Sigma_{i}^{P}\right), \\
p\left(x_{i} \mid y_{1: i}\right) & \approx \mathcal{N}\left(x_{i} ; \mu_{i}, \Sigma_{i}\right), \\
p\left(x_{i} \mid y_{1: N}\right) & \approx \mathcal{N}\left(x_{i} ; \mu_{i}^{S}, \Sigma_{i}^{S}\right), \\
p\left(y_{i} \mid y_{1: i-1}\right) & \approx \mathcal{N}\left(y_{i} ; \hat{y}_{i}, S_{i}\right) .
\end{aligned}
$$

PREDICT

$$
\begin{aligned}
& \mu_{i+1}^{P}=f\left(\mu_{i}\right), \\
& \sum_{i+1}^{P}=J_{f}\left(\mu_{i}\right) \Sigma_{i} J_{f}\left(\mu_{i}\right)^{\top}+Q_{i} .
\end{aligned}
$$

UPDATE

$$
\begin{aligned}
\hat{z}_{i} & =m\left(\mu_{i}^{P}\right), \\
S_{i} & =J_{m}\left(\mu_{i}^{P}\right) \Sigma_{i}^{P} J_{m}\left(\mu_{i}^{P}\right)^{\top}+R_{i}, \\
K_{i} & =\Sigma_{i}^{P} J_{m}\left(\mu_{i}^{P}\right)^{\top} S_{i}^{-1}, \\
\mu_{i} & =\mu_{i}^{P}+K_{i}\left(z_{i}-\hat{z}_{i}\right), \\
\Sigma_{i} & =\Sigma_{i}^{P}-K_{i} S_{i} K_{i}^{\top} .
\end{aligned}
$$

Similarly SMOOTH.

Today: Probabilistic numerical ODE solutions

or "How to treat ODEs as the state estimation problem that they really are"

Probabilistic numerical ODE solutions

or "How to treat ODEs as the state estimation problem that they really are"

Probabilistic numerical ODE solutions

or "How to treat ODEs as the state estimation problem that they really are"

$$
p\left(x(t) \mid x(0)=x_{0},\left\{\dot{x}\left(t_{n}\right)=f\left(x\left(t_{n}\right), t_{n}\right)\right\}_{n=1}^{N}\right)
$$

or "How to treat ODEs as the state estimation problem that they really are"

$$
p\left(x(t) \mid x(0)=x_{0},\left\{\dot{x}\left(t_{n}\right)=f\left(x\left(t_{n}\right), t_{n}\right)\right\}_{n=1}^{N}\right)
$$

To solve an ODE with Gaussian filtering and smoothing, we need:

1. Prior:
2. Likelihood:
3. Data:
or "How to treat ODEs as the state estimation problem that they really are"

$$
p\left(x(t) \mid x(0)=x_{0},\left\{\dot{x}\left(t_{n}\right)=f\left(x\left(t_{n}\right), t_{n}\right)\right\}_{n=1}^{N}\right)
$$

To solve an ODE with Gaussian filtering and smoothing, we need:

1. Prior:
2. Likelihood:
3. Data:

- Continuous Gauss-Markov prior: Let $X(t)=\left[X^{(0)}(t), X^{(1)}(t), \ldots, X^{(q)}(t)\right]^{\top}$ be the solution of a linear time-invariant (LTI) stochastic differential equation (SDE):

$$
\begin{aligned}
d X(t) & =F X(t) \mathrm{d} t+\Gamma \mathrm{d} W(t), \\
X(0) & \sim \mathcal{N}\left(\mu_{0}, \Sigma_{0}\right),
\end{aligned}
$$

with F such that $d X^{(i)}(t)=X^{(i+1)}(t) d t$. Then, we use $X^{(i)}(t)$ to model the i-th derivative of $x(t)$. Examples: Integrated Wiener process, Integrated Ornstein-Uhlenbeck process, Matérn process.

- Continuous Gauss-Markov prior: Let $X(t)=\left[X^{(0)}(t), X^{(1)}(t), \ldots, X^{(q)}(t)\right]^{\top}$ be the solution of a linear time-invariant (LTI) stochastic differential equation (SDE):

$$
\begin{aligned}
d X(t) & =F X(t) \mathrm{d} t+\Gamma \mathrm{d} W(t) \\
X(0) & \sim \mathcal{N}\left(\mu_{0}, \Sigma_{0}\right)
\end{aligned}
$$

with F such that $d X^{(i)}(t)=X^{(i+1)}(t) d t$. Then, we use $X^{(i)}(t)$ to model the i-th derivative of $x(t)$. Examples: Integrated Wiener process, Integrated Ornstein-Uhlenbeck process, Matérn process.

- Discrete transition densities: $X(t)$ can be described in discrete time with

$$
X(t+h) \mid X(t) \sim \mathcal{N}(X(t+h) ; A(h) X(t), Q(h)),
$$

where $(A(h), Q(h))$ are given by

$$
A(h)=\exp (F h), \quad Q(h)=\int_{0}^{h} A(h-\tau) \Gamma \Gamma^{\top} A(h-\tau)^{\top} \mathrm{d} \tau
$$

The transition matrices $(A(h), Q(h))$ can be computed with the "matrix fraction decomposition"; see for instance Särkkä \& Solin, "Applied Stochastic Differential Equations", 2013.

- Continuous Gauss-Markov prior: Let $X(t)=\left[X^{(0)}(t), X^{(1)}(t), \ldots, X^{(q)}(t)\right]^{\top}$ be the solution of a linear time-invariant (LTI) stochastic differential equation (SDE):

$$
\begin{aligned}
d X(t) & =F X(t) \mathrm{d} t+\Gamma \mathrm{d} W(t), \\
X(0) & \sim \mathcal{N}\left(\mu_{0}, \Sigma_{0}\right)
\end{aligned}
$$

with F such that $d X^{(i)}(t)=X^{(i+1)}(t) d t$. Then, we use $X^{(i)}(t)$ to model the i-th derivative of $x(t)$. Examples: Integrated Wiener process, Integrated Ornstein-Uhlenbeck process, Matérn process.

- Discrete transition densities: $X(t)$ can be described in discrete time with

$$
X(t+h) \mid X(t) \sim \mathcal{N}(X(t+h) ; A(h) X(t), Q(h)),
$$

where $(A(h), Q(h))$ are given by

$$
A(h)=\exp (F h), \quad Q(h)=\int_{0}^{h} A(h-\tau) \Gamma \Gamma^{\top} A(h-\tau)^{\top} \mathrm{d} \tau
$$

The transition matrices $(A(h), Q(h))$ can be computed with the "matrix fraction decomposition"; see for instance Särkkä \& Solin, "Applied Stochastic Differential Equations", 2013.

- q-times integrated Wiener process prior: $X(t) \sim \operatorname{IWP}(q)$

$$
\begin{aligned}
\mathrm{d} X^{(i)}(t) & =X^{(i+1)}(t) \mathrm{d} t, \quad i=0, \ldots, q-1 \\
\mathrm{~d} X^{(q)}(t) & =\sigma \mathrm{d} W(t) \\
X(0) & \sim \mathcal{N}\left(\mu_{0}, \Sigma_{0}\right)
\end{aligned}
$$

- q-times integrated Wiener process prior: $X(t) \sim \operatorname{IWP}(q)$

$$
\begin{aligned}
\mathrm{d} X^{(i)}(t) & =X^{(i+1)}(t) \mathrm{d} t, \quad i=0, \ldots, q-1, \\
\mathrm{~d} X^{(q)}(t) & =\sigma \mathrm{d} W(t), \\
X(0) & \sim \mathcal{N}\left(\mu_{0}, \Sigma_{0}\right) .
\end{aligned}
$$

- Discrete-time transitions:

$$
\begin{aligned}
X(t+h) \mid X(t) & \sim \mathcal{N}\left(X(t+h) ; A(h) X(t), \sigma^{2} Q(h)\right), \\
{[A(h)]_{j j} } & =\mathbb{I}_{i \leq j} \frac{h^{j-i}}{(j-i)!}, \\
{[Q(h)]_{j j} } & =\frac{h^{2 q+1-i-j}}{(2 q+1-i-j)(q-i)!(q-j)!},
\end{aligned}
$$

for any $i, j=0, \ldots, q$. (one-dimensional case).
(proof: [Kersting et al., 2020])

- q-times integrated Wiener process prior: $X(t) \sim \operatorname{IWP}(q)$

$$
\begin{aligned}
\mathrm{d} X^{(i)}(t) & =X^{(i+1)}(t) \mathrm{d} t, \quad i=0, \ldots, q-1, \\
\mathrm{~d} X^{(q)}(t) & =\sigma \mathrm{d} W(t), \\
X(0) & \sim \mathcal{N}\left(\mu_{0}, \Sigma_{0}\right) .
\end{aligned}
$$

- Discrete-time transitions:

$$
\begin{aligned}
X(t+h) \mid X(t) & \sim \mathcal{N}\left(X(t+h) ; A(h) X(t), \sigma^{2} Q(h)\right), \\
{[A(h)]_{j j} } & =\mathbb{I}_{i \leq \leq} \frac{h^{j-i}}{(j-i)!}, \\
{[Q(h)]_{j j} } & =\frac{h^{2 q+1-i-j}}{(2 q+1-i-j)(q-i)!(q-j)!},
\end{aligned}
$$

for any $i, j=0, \ldots, q$. (one-dimensional case).
(proof: [Kersting et al., 2020])

- Example: IWP(2)

$$
\begin{aligned}
& A(h)=\left(\begin{array}{lll}
1 & h & \frac{h^{2}}{2} \\
0 & 1 & h \\
0 & 0 & 1
\end{array}\right), \\
& Q(h)=\left(\begin{array}{lll}
\frac{h^{5}}{20} & \frac{h^{4}}{8} & \frac{h^{3}}{6} \\
\frac{h^{4}}{8} & \frac{h^{3}}{3} & \frac{h^{2}}{2} \\
\frac{h^{3}}{6} & \frac{h^{2}}{2} & h
\end{array}\right) .
\end{aligned}
$$

- q-times integrated Wiener process prior: $X(t) \sim \operatorname{IWP}(q)$
- Example: IWP(2)

$$
\begin{aligned}
\mathrm{d} X^{(i)}(t) & =X^{(i+1)}(t) \mathrm{d} t, \quad i=0, \ldots, q-1, \\
\mathrm{~d} X^{(q)}(t) & =\sigma \mathrm{d} W(t), \\
X(0) & \sim \mathcal{N}\left(\mu_{0}, \Sigma_{0}\right) .
\end{aligned}
$$

- Discrete-time transitions:

$$
\begin{aligned}
X(t+h) \mid X(t) & \sim \mathcal{N}\left(X(t+h) ; A(h) X(t), \sigma^{2} Q(h)\right), \\
{[A(h)]_{j j} } & =\mathbb{I}_{i \leq j} \frac{h^{j-i}}{(j-i)!}, \\
{[Q(h)]_{j j} } & =\frac{h^{2 q+1-i-j}}{(2 q+1-i-j)(q-i)!(q-j)!},
\end{aligned}
$$

for any $i, j=0, \ldots, q$. (one-dimensional case).
(proof: [Kersting et al., 2020])

- q-times integrated Wiener process prior: $X(t) \sim \operatorname{IWP}(q)$

$$
\begin{aligned}
\mathrm{d} X^{(i)}(t) & =X^{(i+1)}(t) \mathrm{d} t, \quad i=0, \ldots, q-1, \\
\mathrm{~d} X^{(q)}(t) & =\sigma \mathrm{d} W(t), \\
X(0) & \sim \mathcal{N}\left(\mu_{0}, \Sigma_{0}\right) .
\end{aligned}
$$

- Discrete-time transitions:

$$
\begin{aligned}
X(t+h) \mid X(t) & \sim \mathcal{N}\left(X(t+h) ; A(h) X(t), \sigma^{2} Q(h)\right), \\
{[A(h)]_{j j} } & =\mathbb{I}_{i \leq j} \frac{h^{j-i}}{(j-i)!}, \\
{[Q(h)]_{j j} } & =\frac{h^{2 q+1-i-j}}{(2 q+1-i-j)(q-i)!(q-j)!},
\end{aligned}
$$

for any $i, j=0, \ldots, q$. (one-dimensional case).
(proof: [Kersting et al., 2020])

- Example: IWP(2)

$$
p\left(x(t) \mid x(0)=x_{0},\left\{\dot{x}\left(t_{n}\right)=f\left(x\left(t_{n}\right), t_{n}\right)\right\}_{n=1}^{N}\right)
$$

To solve an ODE with Gaussian filtering and smoothing, we need:

1. Prior: q-times integrated Wiener process prior

$$
X(t+h) \mid X(t) \sim \mathcal{N}\left(X(t+h) ; A(h) X(t), \sigma^{2} Q(h)\right)
$$

2. Likelihood:
3. Data:

$$
p\left(x(t) \mid x(0)=x_{0},\left\{\dot{x}\left(t_{n}\right)=f\left(x\left(t_{n}\right), t_{n}\right)\right\}_{n=1}^{N}\right)
$$

To solve an ODE with Gaussian filtering and smoothing, we need:

1. Prior: q-times integrated Wiener process prior

$$
X(t+h) \mid X(t) \sim \mathcal{N}\left(X(t+h) ; A(h) X(t), \sigma^{2} Q(h)\right)
$$

2. Likelihood:
3. Data:

- Ideal but intractable goal: Want $x(t)$ to satisfy the ODE

$$
\dot{x}(t)=f(x(t), t)
$$

- Ideal but intractable goal: Want $x(t)$ to satisfy the ODE

$$
\begin{array}{rlrl}
\dot{x}(t) & =f(x(t), t) \\
\text { using } x(t) & x^{(1)}(t) & =f\left(x^{(0)}(t), t\right)
\end{array}
$$

- Ideal but intractable goal: Want $x(t)$ to satisfy the ODE

$$
\begin{aligned}
& \dot{x}(t)=f(x(t), t) \\
& \text { using } x(t)^{\Leftrightarrow} \\
& x^{(1)}(t)=f\left(x^{(0)}(t), t\right) \\
& 0=x^{(1)}(t)-f\left(x^{(0)}(t), t\right)
\end{aligned}
$$

- Ideal but intractable goal: Want $x(t)$ to satisfy the ODE

$$
\begin{gathered}
\dot{x}(t)=f(x(t), t) \\
x^{(1)}(t)=f\left(x^{(0)}(t), t\right) \\
\Leftrightarrow=x^{(1)}(t)-f\left(x^{(0)}(t), t\right)=: m(X(t), t)
\end{gathered}
$$

- Ideal but intractable goal: Want $x(t)$ to satisfy the ODE

$$
\begin{gathered}
\dot{x}(t)=f(x(t), t) \\
x^{(1)}(t)=f\left(x^{(0)}(t), t\right) \\
\Leftrightarrow=x^{(1)}(t)-f\left(x^{(0)}(t), t\right)=: m(X(t), t)
\end{gathered}
$$

- Easier goal: Satisfy the ODE on a discrete time grid

$$
\dot{x}\left(t_{i}\right)=f\left(x\left(t_{i}\right), t_{i}\right), \quad t_{i} \in \mathbb{T}=\left\{t_{i}\right\}_{i=1}^{N} \subset[0, T],
$$

- Ideal but intractable goal: Want $x(t)$ to satisfy the ODE

$$
\begin{gathered}
\dot{x}(t)=f(x(t), t) \\
x^{(1)}(t)=f\left(x^{(0)}(t), t\right) \\
\Leftrightarrow=x^{(1)}(t)-f\left(x^{(0)}(t), t\right)=: m(X(t), t)
\end{gathered}
$$

- Easier goal: Satisfy the ODE on a discrete time grid

$$
\begin{aligned}
\dot{x}\left(t_{i}\right) & =f\left(x\left(t_{i}\right), t_{i}\right), \quad t_{i} \in \mathbb{T}=\left\{t_{i}\right\}_{i=1}^{N} \subset[0, T], \\
\Leftrightarrow \quad m\left(X\left(t_{i}\right), t_{i}\right) & =0
\end{aligned}
$$

- Ideal but intractable goal: Want $x(t)$ to satisfy the ODE

$$
\begin{gathered}
\dot{x}(t)=f(x(t), t) \\
x^{(1)}(t)=f\left(X^{(0)}(t), t\right) \\
\Leftrightarrow x^{(1)}(t)-f\left(X^{(0)}(t), t\right)=: m(X(t), t) .
\end{gathered}
$$

- Easier goal: Satisfy the ODE on a discrete time grid

$$
\begin{aligned}
\dot{x}\left(t_{i}\right) & =f\left(x\left(t_{i}\right), t_{i}\right), \quad t_{i} \in \mathbb{T}=\left\{t_{i}\right\}_{i=1}^{N} \subset[0, T], \\
\Leftrightarrow \quad m\left(X\left(t_{i}\right), t_{i}\right) & =0
\end{aligned}
$$

- This motivates a measurement model and data:

$$
\begin{aligned}
Z\left(t_{i}\right) \mid X\left(t_{i}\right) & \sim \mathcal{N}\left(m\left(X\left(t_{i}\right), t_{i}\right), R\right) \\
Z_{i} & \triangleq 0, \quad i=1, \ldots, N .
\end{aligned}
$$

where z_{i} is a realization of $Z\left(t_{i}\right)$.

- Ideal but intractable goal: Want $x(t)$ to satisfy the ODE

$$
\begin{gathered}
\dot{x}(t)=f(x(t), t) \\
x^{(1)}(t)=f\left(X^{(0)}(t), t\right) \\
\Leftrightarrow x^{(1)}(t)-f\left(X^{(0)}(t), t\right)=: m(X(t), t) .
\end{gathered}
$$

- Easier goal: Satisfy the ODE on a discrete time grid

$$
\begin{aligned}
\dot{x}\left(t_{i}\right) & =f\left(x\left(t_{i}\right), t_{i}\right), \quad t_{i} \in \mathbb{T}=\left\{t_{i}\right\}_{i=1}^{N} \subset[0, T], \\
\Leftrightarrow \quad m\left(X\left(t_{i}\right), t_{i}\right) & =0
\end{aligned}
$$

- This motivates a noiseless measurement model and data:

$$
\begin{aligned}
& Z\left(t_{i}\right) \mid X\left(t_{i}\right) \sim \mathcal{N}\left(m\left(X\left(t_{i}\right), t_{i}\right), 0\right) \\
& z_{i} \triangleq 0, \quad i=1, \ldots, N .
\end{aligned}
$$

where z_{i} is a realization of $Z\left(t_{i}\right)$.

- Ideal but intractable goal: Want $x(t)$ to satisfy the ODE

$$
\begin{aligned}
& \dot{x}(t)=f(x(t), t) \\
& \text { using }^{x} x(t) \\
& x^{(1)}(t)=f\left(X^{(0)}(t), t\right) \\
& 0=X^{(1)}(t)-f\left(X^{(0)}(t), t\right)=: m(X(t), t) .
\end{aligned}
$$

- Easier goal: Satisfy the ODE on a discrete time grid

$$
\begin{aligned}
\dot{x}\left(t_{i}\right) & =f\left(x\left(t_{i}\right), t_{i}\right), \quad t_{i} \in \mathbb{T}=\left\{t_{i}\right\}_{i=1}^{N} \subset[0, T], \\
\Leftrightarrow \quad m\left(X\left(t_{i}\right), t_{i}\right) & =0
\end{aligned}
$$

- This motivates a noiseless measurement model and data:

$$
\begin{aligned}
& Z\left(t_{i}\right) \mid X\left(t_{i}\right) \sim \delta\left(m\left(X\left(t_{i}\right), t_{i}\right)\right) \\
& \quad Z_{i} \triangleq 0, \quad i=1, \ldots, N .
\end{aligned}
$$

where z_{i} is a realization of $Z\left(t_{i}\right)$.
(δ is the Dirac distribution)

- Ideal but intractable goal: Want $x(t)$ to satisfy the ODE

$$
\begin{gathered}
\dot{x}(t)=f(x(t), t) \\
x^{(1)}(t)=f\left(x^{(0)}(t), t\right) \\
0=x^{(1)}(t)-f\left(x^{(0)}(t), t\right)=: m(X(t), t)
\end{gathered}
$$

- Easier goal: Satisfy the ODE on a discrete time grid

$$
\begin{aligned}
\dot{x}\left(t_{i}\right) & =f\left(x\left(t_{i}\right), t_{i}\right), \quad t_{i} \in \mathbb{T}=\left\{t_{i}\right\}_{i=1}^{N} \subset[0, T], \\
\Leftrightarrow \quad m\left(X\left(t_{i}\right), t_{i}\right) & =0
\end{aligned}
$$

Example: Logistic ODE $\dot{x}=x(1-x)$
Prior samples

- This motivates a noiseless measurement model and data:

$$
\begin{aligned}
& Z\left(t_{i}\right) \mid X\left(t_{i}\right) \sim \delta\left(m\left(X\left(t_{i}\right), t_{i}\right)\right) \\
& \quad z_{i} \triangleq 0, \quad i=1, \ldots, N .
\end{aligned}
$$

where z_{i} is a realization of $Z\left(t_{i}\right)$. (δ is the Dirac distribution)

- Ideal but intractable goal: Want $x(t)$ to satisfy the ODE

$$
\begin{gathered}
\dot{x}(t)=f(x(t), t) \\
x^{(1)}(t)=f\left(x^{(0)}(t), t\right) \\
0=x^{(1)}(t)-f\left(x^{(0)}(t), t\right)=: m(X(t), t)
\end{gathered}
$$

- Easier goal: Satisfy the ODE on a discrete time grid

$$
\begin{aligned}
\dot{x}\left(t_{i}\right) & =f\left(x\left(t_{i}\right), t_{i}\right), \quad t_{i} \in \mathbb{T}=\left\{t_{i}\right\}_{i=1}^{N} \subset[0, T], \\
\Leftrightarrow \quad m\left(X\left(t_{i}\right), t_{i}\right) & =0
\end{aligned}
$$

Example: Logistic ODE $\dot{x}=x(1-x)$
Prior samples \& ODE solution

- This motivates a noiseless measurement model and data:

$$
\begin{aligned}
& Z\left(t_{i}\right) \mid X\left(t_{i}\right) \sim \delta\left(m\left(X\left(t_{i}\right), t_{i}\right)\right) \\
& \quad z_{i} \triangleq 0, \quad i=1, \ldots, N .
\end{aligned}
$$

where z_{i} is a realization of $Z\left(t_{i}\right)$. (δ is the Dirac distribution)

- Ideal but intractable goal: Want $x(t)$ to satisfy the ODE

$$
\begin{aligned}
\dot{x}(t) & =f(x(t), t) \\
\operatorname{using}^{(1)}(t) & =f\left(x^{(0)}(t), t\right) \\
0=x^{(1)}(t) & -f\left(x^{(0)}(t), t\right)=: m(X(t), t)
\end{aligned}
$$

Example: Logistic ODE $\dot{x}=x(1-x)$
Prior samples \& ODE solution (zoomed)

- Easier goal: Satisfy the ODE on a discrete time grid

$$
\begin{aligned}
\dot{x}\left(t_{i}\right) & \left.=f\left(x\left(t_{i}\right), t_{i}\right), \quad t_{i} \in \mathbb{T}=\left\{t_{i}\right\}\right\}_{i=1}^{N} \subset[0, T], \\
\Leftrightarrow \quad m\left(X\left(t_{i}\right), t_{i}\right) & =0
\end{aligned}
$$

- This motivates a noiseless measurement model and data:

$$
\begin{aligned}
& Z\left(t_{i}\right) \mid X\left(t_{i}\right) \sim \delta\left(m\left(X\left(t_{i}\right), t_{i}\right)\right) \\
& \quad z_{i} \triangleq 0, \quad i=1, \ldots, N .
\end{aligned}
$$

where z_{i} is a realization of $Z\left(t_{i}\right)$. (δ is the Dirac distribution)

(here: $\left.Z=X^{(1)}-X^{(0)}\left(1-X^{(0)}\right)\right)$

- Ideal but intractable goal: Want $x(t)$ to satisfy the ODE

$$
\begin{gathered}
\dot{x}(t)=f(x(t), t) \\
\text { using } x(t)_{\Leftrightarrow}^{x^{(1)}(t)}=f\left(x^{(0)}(t), t\right) \\
0=x^{(1)}(t)-f\left(x^{(0)}(t), t\right)=: m(X(t), t)
\end{gathered}
$$

Example: Logistic ODE $\dot{x}=x(1-x)$
Prior samples \& ODE solution \& "Data"

- Easier goal: Satisfy the ODE on a discrete time grid

$$
\begin{aligned}
\dot{x}\left(t_{i}\right) & \left.=f\left(x\left(t_{i}\right), t_{i}\right), \quad t_{i} \in \mathbb{T}=\left\{t_{i}\right\}\right\}_{i=1}^{N} \subset[0, T], \\
\Leftrightarrow \quad m\left(X\left(t_{i}\right), t_{i}\right) & =0
\end{aligned}
$$

- This motivates a noiseless measurement model and data:

$$
\begin{aligned}
& Z\left(t_{i}\right) \mid X\left(t_{i}\right) \sim \delta\left(m\left(X\left(t_{i}\right), t_{i}\right)\right) \\
& \quad z_{i} \triangleq 0, \quad i=1, \ldots, N .
\end{aligned}
$$

where z_{i} is a realization of $Z\left(t_{i}\right)$. (δ is the Dirac distribution)

(here: $\left.Z=X^{(1)}-X^{(0)}\left(1-X^{(0)}\right)\right)$

- Ideal but intractable goal: Want $x(t)$ to satisfy the ODE

$$
\begin{aligned}
& \dot{x}(t)=f(x(t), t) \\
& x^{(1)}(t)=f\left(x^{(0)}(t), t\right) \\
& \Leftrightarrow \\
& 0=x^{(1)}(t)-f\left(X^{(0)}(t), t\right)=: m(X(t), t)
\end{aligned}
$$

Example: Logistic ODE $\dot{x}=x(1-x)$
Posterior samples \& ODE solution

- Easier goal: Satisfy the ODE on a discrete time grid

$$
\begin{aligned}
\dot{x}\left(t_{i}\right) & =f\left(x\left(t_{i}\right), t_{i}\right), \quad t_{i} \in \mathbb{T}=\left\{t_{i}\right\}_{i=1}^{N} \subset[0, T], \\
\Leftrightarrow \quad m\left(X\left(t_{i}\right), t_{i}\right) & =0
\end{aligned}
$$

- This motivates a noiseless measurement model and data:

$$
\begin{aligned}
& Z\left(t_{i}\right) \mid X\left(t_{i}\right) \sim \delta\left(m\left(X\left(t_{i}\right), t_{i}\right)\right) \\
& \quad z_{i} \triangleq 0, \quad i=1, \ldots, N .
\end{aligned}
$$

where z_{i} is a realization of $Z\left(t_{i}\right)$.
(δ is the Dirac distribution)

$$
p\left(x(t) \mid x(0)=x_{0},\left\{\dot{x}\left(t_{n}\right)=f\left(x\left(t_{n}\right), t_{n}\right)\right\}_{n=1}^{N}\right)
$$

To solve an ODE with Gaussian filtering and smoothing, we need:

1. Prior: q-times integrated Wiener process prior:

$$
X(t+h) \mid X(t) \sim \mathcal{N}(A(h) X(t), Q(h))
$$

2. Likelihood: $Z(t) \mid X(t) \sim \delta\left(X^{(1)}(t)-f\left(X^{(0)}(t), t\right)\right)$
3. Data: $\mathcal{D}_{\mathrm{PN}}=\left\{\mathrm{z}_{i}\right\}$, with $\left(Z\left(t_{i}\right)=\right) \mathrm{z}_{i}=0$ on a discrete time grid $t_{i} \in \mathbb{T}$.

$$
p\left(x(t) \mid x(0)=x_{0},\left\{\dot{x}\left(t_{n}\right)=f\left(x\left(t_{n}\right), t_{n}\right)\right\}_{n=1}^{N}\right)
$$

To solve an ODE with Gaussian filtering and smoothing, we need:

1. Prior: q-times integrated Wiener process prior:

$$
X(t+h) \mid X(t) \sim \mathcal{N}(A(h) X(t), Q(h))
$$

2. Likelihood: $Z(t) \mid X(t) \sim \delta\left(X^{(1)}(t)-f\left(X^{(0)}(t), t\right)\right)$
3. Data: $\mathcal{D}_{\mathrm{PN}}=\left\{z_{i}\right\}$, with $\left(Z\left(t_{i}\right)=\right) z_{i}=0$ on a discrete time grid $t_{i} \in \mathbb{T}$.

This describes a state-space model

$$
p\left(x(t) \mid x(0)=x_{0},\left\{\dot{x}\left(t_{n}\right)=f\left(x\left(t_{n}\right), t_{n}\right)\right\}_{n=1}^{N}\right)
$$

To solve an ODE with Gaussian filtering and smoothing, we need:

1. Prior: q-times integrated Wiener process prior:

$$
X(t+h) \mid X(t) \sim \mathcal{N}(A(h) X(t), Q(h))
$$

2. Likelihood: $Z(t) \mid X(t) \sim \delta\left(X^{(1)}(t)-f\left(X^{(0)}(t), t\right)\right)$
3. Data: $\mathcal{D}_{\mathrm{PN}}=\left\{\mathrm{z}_{i}\right\}$, with $\left(Z\left(t_{i}\right)=\right) \mathrm{z}_{i}=0$ on a discrete time grid $t_{i} \in \mathbb{T}$.

This describes a state-space model \Rightarrow solve with EKF/EKS!

For a given initial value problem $\dot{x}(t)=f(x(t), t)$ on $[0, T]$ with $x(0)=x_{0}$, we have:

For a given initial value problem $\dot{x}(t)=f(x(t), t)$ on $[0, T]$ with $x(0)=x_{0}$, we have:

Initial distribution:
Prior / dynamics model:
Likelihood / measurement model:
Data:

$$
\begin{aligned}
X(0) & \sim \mathcal{N}\left(X(0) ; \mu_{0}, \Sigma_{0}\right) \\
X(t+h) \mid X(t) & \sim \mathcal{N}(X(t+h) ; A(h) X(t), Q(h)) \\
Z\left(t_{i}\right) \mid X\left(t_{i}\right) & \sim \delta\left(Z\left(t_{i}\right) ; X^{(1)}\left(t_{i}\right)-f\left(X^{(0)}\left(t_{i}\right), t_{i}\right)\right) \\
Z_{i} & \triangleq 0, \quad i=1, \ldots, N .
\end{aligned}
$$

For a given initial value problem $\dot{x}(t)=f(x(t), t)$ on $[0, T]$ with $x(0)=x_{0}$, we have:

Initial distribution:
Prior / dynamics model:
Likelihood / measurement model:
Data:

$$
\begin{aligned}
X(0) & \sim \mathcal{N}\left(X(0) ; \mu_{0}, \Sigma_{0}\right) \\
X(t+h) \mid X(t) & \sim \mathcal{N}(X(t+h) ; A(h) X(t), Q(h)) \\
Z\left(t_{i}\right) \mid X\left(t_{i}\right) & \sim \delta\left(Z\left(t_{i}\right) ; X^{(1)}\left(t_{i}\right)-f\left(X^{(0)}\left(t_{i}\right), t_{i}\right)\right) \\
Z_{i} & \triangleq 0, \quad i=1, \ldots, N .
\end{aligned}
$$

One thing is still missing:

For a given initial value problem $\dot{x}(t)=f(x(t), t)$ on $[0, T]$ with $x(0)=x_{0}$, we have:

Initial distribution:
Prior / dynamics model:
Likelihood / measurement model:
Data:

$$
\begin{aligned}
X(0) & \sim \mathcal{N}\left(X(0) ; \mu_{0}, \Sigma_{0}\right) \\
X(t+h) \mid X(t) & \sim \mathcal{N}(X(t+h) ; A(h) X(t), Q(h)) \\
Z\left(t_{i}\right) \mid X\left(t_{i}\right) & \sim \delta\left(Z\left(t_{i}\right) ; X^{(1)}\left(t_{i}\right)-f\left(X^{(0)}\left(t_{i}\right), t_{i}\right)\right) \\
z_{i} & \triangleq 0, \quad i=1, \ldots, N .
\end{aligned}
$$

One thing is still missing: What about the initial value??

For a given initial value problem $\dot{x}(t)=f(x(t), t)$ on $[0, T]$ with $x(0)=x_{0}$, we have:

Initial distribution:
Prior / dynamics model:
Likelihood / measurement model:
Data:

$$
\begin{aligned}
X(0) & \sim \mathcal{N}\left(X(0) ; \mu_{0}, \Sigma_{0}\right) \\
X(t+h) \mid X(t) & \sim \mathcal{N}(X(t+h) ; A(h) X(t), Q(h)) \\
Z\left(t_{i}\right) \mid X\left(t_{i}\right) & \sim \delta\left(Z\left(t_{i}\right) ; X^{(1)}\left(t_{i}\right)-f\left(X^{(0)}\left(t_{i}\right), t_{i}\right)\right) \\
Z_{i} & \triangleq 0, \quad i=1, \ldots, N .
\end{aligned}
$$

One thing is still missing: What about the initial value?? Just add another measurement at $t=0$:

$$
Z^{\text {init }} \mid X(0) \sim \delta\left(Z^{\text {init }} ; X^{(0)}(0)\right), \quad Z^{\text {init }} \triangleq x_{0} .
$$

```
Algorithm The extended Kalman ODE filter
    procedure Extended \(\operatorname{Kalman} \operatorname{ODE} \operatorname{FILTER}\left(\left(\mu_{0}^{-}, \Sigma_{0}^{-}\right),(A, Q),\left(f, x_{0}\right),\left\{t_{i}\right\}_{i=1}^{N}\right)\)
        \(\mu_{0}, \Sigma_{0} \varangle \operatorname{KF} \_\operatorname{UPDATE}\left(\mu_{0}^{-}, \Sigma_{0}^{-}, E_{0}, 0_{d \times d}, x_{0}\right) \quad / /\) Initial update to fot the initial value
        for \(k \in\{1, \ldots, N\}\) do
            \(h_{k} \leftarrow t_{k}-t_{k-1} \quad / /\) step size
            \(\mu_{k}^{-}, \Sigma_{k}^{-} \varangle\) KF_PREDICT \(\left(\mu_{k-1}, \Sigma_{k-1}, A\left(h_{k}\right), Q\left(h_{k}\right)\right) \quad / /\) kalman filter prediction
            \(m_{k}(X):=E_{1} X-f\left(E_{0} X, t_{k}\right) \quad\) // Define the non-linear observation model
            \(\mu_{k}, \Sigma_{k} \longleftarrow \operatorname{EKF} \_\operatorname{UPDATE}\left(\mu_{k}^{-}, \Sigma_{k}^{-}, m_{k}, 0_{d \times d}, \mathbf{0}_{d}\right) \quad / /\) Extended Kalman filter update
            end for
            return \(\left(\mu_{k}, \Sigma_{k}\right)_{k=1}^{N}\)
    end procedure
```

Recall: The state $X(t)$ is a stack of q derivatives $X=\left[X^{(0)}, X^{(1)}, \ldots, X^{(q)}\right]^{\top}$.
For convenience, define projection matrices E_{i} to map to the i-th derivative: $E_{i} X=X^{(i)}$.

```
Algorithm The extended Kalman ODE filter
    procedure Extended Kalman ODE FILTER \(\left(\left(\mu_{0}^{-}, \Sigma_{0}^{-}\right),(A, Q),\left(f, x_{0}\right),\left\{t_{i}\right\}_{i=1}^{N}\right)\)
        \(\mu_{0}, \Sigma_{0} \varangle \operatorname{KF} \_\operatorname{UPDATE}\left(\mu_{0}^{-}, \Sigma_{0}^{-}, E_{0}, 0_{d \times d}, x_{0}\right) \quad / /\) Initial update to fot the initial value
        for \(k \in\{1, \ldots, N\}\) do
            \(h_{k} \leftrightarrow t_{k}-t_{k-1} \quad / /\) step size
            \(\mu_{k}^{-}, \Sigma_{k}^{-} \varangle \operatorname{KF}\) PREDICT \(\left(\mu_{k-1}, \Sigma_{k-1}, A\left(h_{k}\right), Q\left(h_{k}\right)\right) \quad / /\) Kalman filter prediction
            \(m_{k}(X):=E_{1} X-f\left(E_{0} X, t_{k}\right) \quad\) // Define the non-linear observation model
            \(\mu_{k}, \Sigma_{k} \longleftarrow \operatorname{EKF} \_\operatorname{UPDATE}\left(\mu_{k}^{-}, \Sigma_{k}^{-}, m_{k}, 0_{d \times d}, \mathbf{0}_{d}\right) \quad / /\) Extended Kalman filter update
            end for
            return \(\left(\mu_{k}, \Sigma_{k}\right)_{k=1}^{N}\)
    end procedure
```

Recall: The state $X(t)$ is a stack of q derivatives $X=\left[X^{(0)}, X^{(1)}, \ldots, X^{(q)}\right]^{\top}$.
For convenience, define projection matrices E_{i} to map to the i-th derivative: $E_{i} X=X^{(i)}$.
Extended Kalman ODE smoother: Just run a RTS smoother after the filter!

```
Algorithm Kalman filter prediction
    , procedure KF_PREDICT \((\mu, \Sigma, A, Q)\)
        \(\mu^{P} \leftarrow A \mu\)
        \(\Sigma^{p} \leftarrow A \Sigma A^{\top}+Q \quad / /\) Predict covariance
        return \(\mu^{P}, \Sigma^{P}\)
    end procedure
```

```
Algorithm Extended Kalman filter update
    procedure EKF_UPDATE \((\mu, \Sigma, h, R, y)\)
        \(\hat{y} \longleftarrow h(\mu) \quad / /\) evaluate the observation model
        \(H \leftarrow J_{h}(\mu) \quad / /\) Jacobian of the observation model
        \(S \longleftarrow H \Sigma H^{\top}+R \quad / /\) Measurement covariance
        \(K \leftarrow \Sigma H^{\top} S^{-1} \quad / /\) Kalman gain
        \(\mu^{F} \propto \mu+K(y-\hat{y}) \quad / /\) update mean
        \(\Sigma^{F} \varangle \Sigma-K S K^{\top} \quad / /\) update covariance
        return \(\mu^{F}, \Sigma^{F}\)
    end procedure
```

(KF_UPDATE analog but with affine h)

DEMO TIME: The extended Kalman ODE filter in code

```
demo.jl
```


Uncertainty calibration or "how to choose prior hyperparameters"

- Problem: The prior hyperparameter σ strongly influences covariances. How to choose it?

Uncertainty calibration or "how to choose prior hyperparameters"

- Problem: The prior hyperparameter σ strongly influences covariances. How to choose it?
- Standard approach: Maximize the marginal likelihood:

$$
\hat{\sigma}=\arg \max p\left(\mathcal{D}_{\mathrm{PN}} \mid \sigma\right)=p\left(z_{1: N} \mid \sigma\right)=p\left(z_{1} \mid \sigma\right) \prod_{k=2}^{N} p\left(z_{k} \mid z_{1: k-1}, \sigma\right)
$$

Uncertainty calibration or "how to choose prior hyperparameters"

- Problem: The prior hyperparameter σ strongly influences covariances. How to choose it?
- Standard approach: Maximize the marginal likelihood:

$$
\hat{\sigma}=\arg \max p\left(\mathcal{D}_{\mathrm{PN}} \mid \sigma\right)=p\left(z_{1: N} \mid \sigma\right)=p\left(z_{1} \mid \sigma\right) \prod_{k=2}^{N} p\left(z_{k} \mid z_{1: k-1}, \sigma\right) .
$$

- The EKF provides Gaussian estimates $p\left(z_{k} \mid z_{1: k-1}\right) \approx \mathcal{N}\left(z_{k} ; \hat{z}_{k}, S_{k}\right)$.
\Rightarrow Quasi-maximum likelihood estimate:

$$
\hat{\sigma}=\arg \max p\left(\mathcal{D}_{\mathrm{PN}} \mid \sigma\right)=\arg \max \sum_{k=1}^{N} \log p\left(z_{k} \mid z_{1: k-1}, \sigma\right)
$$

- Problem: The prior hyperparameter σ strongly influences covariances. How to choose it?
- Standard approach: Maximize the marginal likelihood:

$$
\hat{\sigma}=\arg \max p\left(\mathcal{D}_{\mathrm{PN}} \mid \sigma\right)=p\left(z_{1: N} \mid \sigma\right)=p\left(z_{1} \mid \sigma\right) \prod_{k=2}^{N} p\left(z_{k} \mid z_{1: k-1}, \sigma\right) .
$$

- The EKF provides Gaussian estimates $p\left(z_{k} \mid z_{1: k-1}\right) \approx \mathcal{N}\left(z_{k} ; \hat{z}_{k}, S_{k}\right)$.
\Rightarrow Quasi-maximum likelihood estimate:

$$
\hat{\sigma}=\arg \max p\left(\mathcal{D}_{\mathrm{PN}} \mid \sigma\right)=\arg \max \sum_{k=1}^{N} \log p\left(z_{k} \mid z_{1: k-1}, \sigma\right)
$$

- In our specific context there is a closed-form solution (proof: [Tronarp et al., 2019]):

$$
\hat{\sigma}^{2}=\frac{1}{N d} \sum_{i=1}^{N}\left(z_{i}-\hat{z}_{i}\right)^{\top} S_{i}^{-1}\left(z_{i}-\hat{z}_{i}\right)
$$

and we don't even need to run the filter again! Just adjust the estimated covariances:

$$
\Sigma_{i} \triangleleft \hat{\sigma}^{2} \cdot \Sigma_{i}, \quad \forall i \in\{1, \ldots, N\} .
$$

DEMO TIME: Calibrated vs uncalibrated posteriors

demo.jl

- Problem: The computed covariances can have negative eigenvalues due to finite precision arithmetic and numerical round-off, in particular with small step sizes. Failure example: demo.jl

Numerically stable implementation: Square-root filtering

- Problem: The computed covariances can have negative eigenvalues due to finite precision arithmetic and numerical round-off, in particular with small step sizes. Failure example: demo.jl
- It holds: A matrix $M \in \mathbb{R}^{d \times d}$ is positive semi-definite if and only if there exists a matrix $B \in \mathbb{R}^{d \times d}$ such that $M=B B^{\top}$.

Numerically stable implementation: Square-root filtering

- Problem: The computed covariances can have negative eigenvalues due to finite precision arithmetic and numerical round-off, in particular with small step sizes. Failure example: demo.j1
- It holds: A matrix $M \in \mathbb{R}^{d \times d}$ is positive semi-definite if and only if there exists a matrix $B \in \mathbb{R}^{d \times d}$ such that $M=B B^{\top}$.
- Kalman filtering and smoothing in square-root form - a minimal derivation:
- Problem: The computed covariances can have negative eigenvalues due to finite precision arithmetic and numerical round-off, in particular with small step sizes. Failure example: demo.j1
- It holds: A matrix $M \in \mathbb{R}^{d \times d}$ is positive semi-definite if and only if there exists a matrix $B \in \mathbb{R}^{d \times d}$ such that $M=B B^{\top}$.
- Kalman filtering and smoothing in square-root form - a minimal derivation:
- Central operation in PREDICT/UPDATE/SMOOTH: $M=A B A^{\top}+C$.
- Predict: $\Sigma^{P}=A \Sigma A^{\top}+Q$
- Update (in Joseph form): $\Sigma=(I-K H) \Sigma^{P}(I-K H)^{\top}+K R K^{\top}$
- Smooth (in Joseph form): $\Lambda=(I-G A) \Sigma(I-G A)^{\top}+G \Lambda^{+} G^{\top}+G Q G^{\top}$
- Problem: The computed covariances can have negative eigenvalues due to finite precision arithmetic and numerical round-off, in particular with small step sizes. Failure example: demo.j1
- It holds: A matrix $M \in \mathbb{R}^{d \times d}$ is positive semi-definite if and only if there exists a matrix $B \in \mathbb{R}^{d \times d}$ such that $M=B B^{\top}$.
- Kalman filtering and smoothing in square-root form - a minimal derivation:
- Central operation in PREDICT/UPDATE/SMOOTH: $M=A B A^{\top}+C$.
- Predict: $\Sigma^{P}=A \Sigma A^{\top}+Q$
- Update (in Joseph form): $\Sigma=(I-K H) \Sigma^{P}(I-K H)^{\top}+K R K^{\top}$
- Smooth (in Joseph form): $\Lambda=(I-G A) \Sigma(I-G A)^{\top}+G \Lambda^{+} G^{\top}+G Q G^{\top}$
- This can be formulated on the square-root level: Let $M=M_{L}\left(M_{L}\right)^{\top}, B=B_{L}\left(B_{L}\right)^{\top}, C=C_{L}\left(C_{L}\right)^{\top}$:

$$
M=A B A^{\top}+C,
$$

- Problem: The computed covariances can have negative eigenvalues due to finite precision arithmetic and numerical round-off, in particular with small step sizes. Failure example: demo.j1
- It holds: A matrix $M \in \mathbb{R}^{d \times d}$ is positive semi-definite if and only if there exists a matrix $B \in \mathbb{R}^{d \times d}$ such that $M=B B^{\top}$.
- Kalman filtering and smoothing in square-root form - a minimal derivation:
- Central operation in PREDICT/UPDATE/SMOOTH: $M=A B A^{\top}+C$.
- Predict: $\Sigma^{P}=A \Sigma A^{\top}+Q$
- Update (in Joseph form): $\Sigma=(I-K H) \Sigma^{P}(I-K H)^{\top}+K R K^{\top}$
- Smooth (in Joseph form): $\Lambda=(I-G A) \Sigma(I-G A)^{\top}+G \Lambda^{+} G^{\top}+G Q G^{\top}$
- This can be formulated on the square-root level: Let $M=M_{L}\left(M_{L}\right)^{\top}, B=B_{L}\left(B_{L}\right)^{\top}, C=C_{L}\left(C_{L}\right)^{\top}$:

$$
\begin{aligned}
M & =A B A^{\top}+C \\
\Leftrightarrow \quad M_{L}\left(M_{L}\right)^{\top} & =A B_{L}\left(B_{L}\right)^{\top} A^{\top}+C_{L}\left(C_{L}\right)^{\top}
\end{aligned}
$$

- Problem: The computed covariances can have negative eigenvalues due to finite precision arithmetic and numerical round-off, in particular with small step sizes. Failure example: demo.j1
- It holds: A matrix $M \in \mathbb{R}^{d \times d}$ is positive semi-definite if and only if there exists a matrix $B \in \mathbb{R}^{d \times d}$ such that $M=B B^{\top}$.
- Kalman filtering and smoothing in square-root form - a minimal derivation:
- Central operation in PREDICT/UPDATE/SMOOTH: $M=A B A^{\top}+C$.
- Predict: $\Sigma^{P}=A \Sigma A^{\top}+Q$
- Update (in Joseph form): $\Sigma=(I-K H) \Sigma^{P}(I-K H)^{\top}+K R K^{\top}$
- Smooth (in Joseph form): $\Lambda=(I-G A) \Sigma(I-G A)^{\top}+G \Lambda^{+} G^{\top}+G Q G^{\top}$
- This can be formulated on the square-root level: Let $M=M_{L}\left(M_{L}\right)^{\top}, B=B_{L}\left(B_{L}\right)^{\top}, C=C_{L}\left(C_{L}\right)^{\top}$:

$$
\begin{aligned}
& M=A B A^{\top}+C, \\
& \Leftrightarrow \quad M_{L}\left(M_{L}\right)^{\top}=A B_{L}\left(B_{L}\right)^{\top} A^{\top}+C_{L}\left(C_{L}\right)^{\top}=\left[\begin{array}{ll}
A B_{L} & C_{L}
\end{array}\right] \cdot\left[\begin{array}{ll}
A B_{L} & C_{L}
\end{array}\right]^{\top}
\end{aligned}
$$

- Problem: The computed covariances can have negative eigenvalues due to finite precision arithmetic and numerical round-off, in particular with small step sizes. Failure example: demo.j1
- It holds: A matrix $M \in \mathbb{R}^{d \times d}$ is positive semi-definite if and only if there exists a matrix $B \in \mathbb{R}^{d \times d}$ such that $M=B B^{\top}$.
- Kalman filtering and smoothing in square-root form - a minimal derivation:
- Central operation in PREDICT/UPDATE/SMOOTH: $M=A B A^{\top}+C$.
- Predict: $\Sigma^{P}=A \Sigma A^{\top}+Q$
- Update (in Joseph form): $\Sigma=(I-K H) \Sigma^{P}(I-K H)^{\top}+K R K^{\top}$
- Smooth (in Joseph form): $\Lambda=(I-G A) \Sigma(I-G A)^{\top}+G \Lambda^{+} G^{\top}+G Q G^{\top}$
- This can be formulated on the square-root level: Let $M=M_{L}\left(M_{L}\right)^{\top}, B=B_{L}\left(B_{L}\right)^{\top}, C=C_{L}\left(C_{L}\right)^{\top}$:

$$
\begin{aligned}
M & =A B A^{\top}+C \\
\Leftrightarrow \quad M_{L}\left(M_{L}\right)^{\top} & =A B_{L}\left(B_{L}\right)^{\top} A^{\top}+C_{L}\left(C_{L}\right)^{\top}=\left[\begin{array}{ll}
A B_{L} & C_{L}
\end{array}\right] \cdot\left[\begin{array}{ll}
A B_{L} & C_{L}
\end{array}\right]^{\top} \\
\operatorname{doing~} \operatorname{QR}\left(\left[\begin{array}{ll}
A B_{L} & C_{L}
\end{array}\right]^{\top}\right) & =R^{\top} Q^{\top} Q R
\end{aligned}
$$

- Problem: The computed covariances can have negative eigenvalues due to finite precision arithmetic and numerical round-off, in particular with small step sizes. Failure example: demo.j1
- It holds: A matrix $M \in \mathbb{R}^{d \times d}$ is positive semi-definite if and only if there exists a matrix $B \in \mathbb{R}^{d \times d}$ such that $M=B B^{\top}$.
- Kalman filtering and smoothing in square-root form - a minimal derivation:
- Central operation in PREDICT/UPDATE/SMOOTH: $M=A B A^{\top}+C$.
- Predict: $\Sigma^{P}=A \Sigma A^{\top}+Q$
- Update (in Joseph form): $\Sigma=(I-K H) \Sigma^{P}(I-K H)^{\top}+K R K^{\top}$
- Smooth (in Joseph form): $\Lambda=(I-G A) \Sigma(I-G A)^{\top}+G \Lambda^{+} G^{\top}+G Q G^{\top}$
- This can be formulated on the square-root level: Let $M=M_{L}\left(M_{L}\right)^{\top}, B=B_{L}\left(B_{L}\right)^{\top}, C=C_{L}\left(C_{L}\right)^{\top}$:

$$
\begin{aligned}
M & =A B A^{\top}+C, \\
\Leftrightarrow \quad M_{L}\left(M_{L}\right)^{\top} & =A B_{L}\left(B_{L}\right)^{\top} A^{\top}+C_{L}\left(C_{L}\right)^{\top}=\left[\begin{array}{ll}
A B_{L} & C_{L}
\end{array}\right] \cdot\left[\begin{array}{ll}
A B_{L} & C_{L}
\end{array}\right]^{\top} \\
\operatorname{doing~} \operatorname{QR}\left(\left[\begin{array}{ll}
A B_{L} & C_{L}
\end{array}\right]^{\top}\right) & =R^{\top} Q^{\top} Q R=R^{\top} R . \quad \Rightarrow M_{L}:=R^{\top}
\end{aligned}
$$

- Problem: The computed covariances can have negative eigenvalues due to finite precision arithmetic and numerical round-off, in particular with small step sizes. Failure example: demo.j1
- It holds: A matrix $M \in \mathbb{R}^{d \times d}$ is positive semi-definite if and only if there exists a matrix $B \in \mathbb{R}^{d \times d}$ such that $M=B B^{\top}$.
- Kalman filtering and smoothing in square-root form - a minimal derivation:
- Central operation in PREDICT/UPDATE/SMOOTH: $M=A B A^{\top}+C$.
- Predict: $\Sigma^{P}=A \Sigma A^{\top}+Q$
- Update (in Joseph form): $\Sigma=(I-K H) \Sigma^{P}(I-K H)^{\top}+K R K^{\top}$
- Smooth (in Joseph form): $\Lambda=(I-G A) \Sigma(I-G A)^{\top}+G \Lambda^{+} G^{\top}+G Q G^{\top}$
- This can be formulated on the square-root level: Let $M=M_{L}\left(M_{L}\right)^{\top}, B=B_{L}\left(B_{L}\right)^{\top}, C=C_{L}\left(C_{L}\right)^{\top}$:

$$
\begin{aligned}
M & =A B A^{\top}+C, \\
\Leftrightarrow \quad M_{L}\left(M_{L}\right)^{\top} & =A B_{L}\left(B_{L}\right)^{\top} A^{\top}+C_{L}\left(C_{L}\right)^{\top}=\left[\begin{array}{ll}
A B_{L} & C_{L}
\end{array}\right] \cdot\left[\begin{array}{ll}
A B_{L} & C_{L}
\end{array}\right]^{\top} \\
\operatorname{doing~} \operatorname{QR}\left(\left[\begin{array}{ll}
A B_{L} & C_{L}
\end{array}\right]^{\top}\right) \quad & =R^{\top} Q^{\top} Q R=R^{\top} R . \quad \Rightarrow M_{L}:=R^{\top}
\end{aligned}
$$

\Rightarrow PREDICT/UPDATE/SMOOTH can be formulated directly on square-roots to preserve PSD-ness!

- Problem: The computed covariances can have negative eigenvalues due to finite precision arithmetic and numerical round-off, in particular with small step sizes. Failure example: demo.jl
- It holds: A matrix $M \in \mathbb{R}^{d \times d}$ is positive semi-definite if and only if there exists a matrix $B \in \mathbb{R}^{d \times d}$ such that $M=B B^{\top}$.
- Kalman filtering and smoothing in square-root form - a minimal derivation:
- Central operation in PREDICT/UPDATE/SMOOTH: $M=A B A^{\top}+C$.
- Predict: $\Sigma^{P}=A \Sigma A^{\top}+Q$
- Update (in Joseph form): $\Sigma=(I-K H) \Sigma^{P}(I-K H)^{\top}+K R K^{\top}$
- Smooth (in Joseph form): $\Lambda=(I-G A) \Sigma(I-G A)^{\top}+G \Lambda^{+} G^{\top}+G Q G^{\top}$
- This can be formulated on the square-root level: Let $M=M_{L}\left(M_{L}\right)^{\top}, B=B_{L}\left(B_{L}\right)^{\top}, C=C_{L}\left(C_{L}\right)^{\top}$:

$$
\begin{aligned}
M & =A B A^{\top}+C \\
\Leftrightarrow \quad M_{L}\left(M_{L}\right)^{\top} & =A B_{L}\left(B_{L}\right)^{\top} A^{\top}+C_{L}\left(C_{L}\right)^{\top}=\left[\begin{array}{ll}
A B_{L} & C_{L}
\end{array}\right] \cdot\left[\begin{array}{ll}
A B_{L} & C_{L}
\end{array}\right]^{\top} \\
\text { doing } \mathrm{QR}\left(\left[\begin{array}{cc}
A B_{L} & C_{L}
\end{array}\right]^{\top}\right) & =R^{\top} Q^{\top} Q R=R^{\top} R . \quad \Rightarrow M_{L}:=R^{\top}
\end{aligned}
$$

\Rightarrow PREDICT/UPDATE/SMOOTH can be formulated directly on square-roots to preserve PSD-ness!

\Rightarrow To solve ODEs in a stable way, use the square-root Kalman filters / smoothers!

DEMO TIME: Solving on extremely small step sizes with square-root filtering

demo.jl

Intermediate summary

- ODE solving is state estimation
- We can estimate ODE solutions with extended Kalman filtering/smoothing, in a stable and calibrated way

Next: Extending ODE filters

1. Flexible information operators: The ODE filter formulation extends to other numerical problems
2. Latent force inference: Joint GP regression on both ODEs and data

Numerical problems setting: Initial value problem with first-order ODE

$$
\dot{x}(t)=f(x(t), t), \quad x(0)=x_{0} .
$$

This leads to the probabilistic state estimation problem:

Initial distribution:
Prior / dynamics model: ODE likelihood:

Initial value likelihood:

$$
\begin{aligned}
X(0) & \sim \mathcal{N}\left(X(0) ; \mu_{0}, \Sigma_{0}\right) & & \\
X(t+h) \mid X(t) & \sim \mathcal{N}(X(t+h) ; A(h) X(t), Q(h)) & & \\
Z\left(t_{i}\right) \mid X\left(t_{i}\right) & \sim \delta\left(Z\left(t_{i}\right) ; X^{(1)}\left(t_{i}\right)-f\left(X^{(0)}\left(t_{i}\right), t_{i}\right)\right), & & z_{i} \triangleq 0 \\
Z^{\text {init }} \mid X(0) & \sim \delta\left(Z^{\text {init }} ; X^{(0)}(0)\right), & & z^{\text {init }} \triangleq x_{0}
\end{aligned}
$$

Numerical problems setting: Initial value problem with second-order ODE

$$
\ddot{x}(t)=f(\dot{x}(t), x(t), t), \quad x(0)=x_{0}, \quad \dot{x}(0)=\dot{x}_{0} .
$$

This leads to the probabilistic state estimation problem:

Initial distribution:
Prior / dynamics model:
ODE likelihood:
Initial value likelihood:

$$
\begin{aligned}
X(0) & \sim \mathcal{N}\left(X(0) ; \mu_{0}, \Sigma_{0}\right) & & \\
X(t+h) \mid X(t) & \sim \mathcal{N}(X(t+h) ; A(h) X(t), Q(h)) & & \\
Z\left(t_{i}\right) \mid X\left(t_{i}\right) & \sim \delta\left(Z\left(t_{i}\right) ; X^{(1)}\left(t_{i}\right)-f\left(X^{(0)}\left(t_{i}\right), t_{i}\right)\right), & & z_{i} \triangleq 0 \\
Z^{\text {init }} \mid X(0) & \sim \delta\left(Z^{\text {init }} ; X^{(0)}(0)\right), & & Z^{\text {init }} \triangleq x_{0}
\end{aligned}
$$

Extending ODE filters to other related differential equation problems unviewin
Extending ODE filters to other related differential equation problems

Numerical problems setting: Initial value problem with second-order ODE

$$
\ddot{x}(t)=f(\dot{x}(t), x(t), t), \quad x(0)=x_{0}, \quad \dot{x}(0)=\dot{x}_{0} .
$$

This leads to the probabilistic state estimation problem:

Initial distribution:
Prior / dynamics model: ODE likelihood:

Initial value likelihood:
Initial derivative likelihood:

$$
\begin{aligned}
X(0) & \sim \mathcal{N}\left(X(0) ; \mu_{0}, \Sigma_{0}\right) \\
X(t+h) \mid X(t) & \sim \mathcal{N}(X(t+h) ; A(h) X(t), Q(h))
\end{aligned}
$$

$$
Z\left(t_{i}\right) \mid X\left(t_{i}\right) \sim \delta\left(Z\left(t_{i}\right) ; X^{(2)}\left(t_{i}\right)-f\left(X^{(1)}\left(t_{i}\right), X^{(0)}\left(t_{i}\right), t_{i}\right)\right), \quad Z_{i} \triangleq 0
$$

$$
Z^{\text {init }} \mid X(0) \sim \delta\left(Z^{\text {init }} ; X^{(0)}(0)\right)
$$

$$
z^{\text {init }} \triangleq x_{0}
$$

$$
Z_{1}^{\text {init }} \mid X(0) \sim \delta\left(Z_{1}^{\text {init }} ; X^{(1)}(0)\right)
$$

$$
z_{1}^{\text {init }} \triangleq \dot{x}_{0}
$$

Extendino ODE filters to other related differential equation problems unven

Extending ODE filters to other related differential equation problems

[Bosch et al., 2022]

Numerical problems setting: Initial value problem with differential-algebraic equation (DAE) in
mass-matrix form

$$
M \dot{x}(t)=f(x(t), t), \quad x(0)=x_{0} .
$$

This leads to the probabilistic state estimation problem:

Initial distribution:

$$
\begin{aligned}
X(0) & \sim \mathcal{N}\left(X(0) ; \mu_{0}, \Sigma_{0}\right) & & \\
X(t+h) \mid X(t) & \sim \mathcal{N}(X(t+h) ; A(h) X(t), Q(h)) & & \\
Z\left(t_{i}\right) \mid X\left(t_{i}\right) & \sim \delta\left(Z\left(t_{i}\right) ; X^{(1)}\left(t_{i}\right)-f\left(X^{(0)}\left(t_{i}\right), t_{i}\right)\right), & & z_{i} \triangleq 0 \\
Z^{\text {init }} \mid X(0) & \sim \delta\left(Z^{\text {init }} ; X^{(0)}(0)\right), & & z^{\text {init }} \triangleq x_{0}
\end{aligned}
$$

Prior / dynamics model:
ODE likelihood:
Initial value likelihood:

Extendino ODE filters to other related differential equation problems unven

Extending ODE filters to other related differential equation problems ữiscois

Numerical problems setting: Initial value problem with differential-algebraic equation (DAE) in
mass-matrix form

$$
M \dot{x}(t)=f(x(t), t), \quad x(0)=x_{0} .
$$

This leads to the probabilistic state estimation problem:

Initial distribution:

$$
\begin{aligned}
X(0) & \sim \mathcal{N}\left(X(0) ; \mu_{0}, \Sigma_{0}\right) & & \\
X(t+h) \mid X(t) & \sim \mathcal{N}(X(t+h) ; A(h) X(t), Q(h)) & & \\
Z\left(t_{i}\right) \mid X\left(t_{i}\right) & \sim \delta\left(Z\left(t_{i}\right) ; M X^{(1)}\left(t_{i}\right)-f\left(X^{(0)}\left(t_{i}\right), t_{i}\right)\right), & & z_{i} \triangleq 0 \\
Z^{\text {init }} \mid X(0) & \sim \delta\left(Z^{\text {init }} ; X^{(0)}(0)\right), & & z^{\text {init }} \triangleq x_{0}
\end{aligned}
$$

Prior / dynamics model:
DAE likelihood:
Initial value likelihood:

Numerical problems setting: Initial value problem with first-order ODE and conserved quantities

$$
\dot{x}(t)=f(x(t), t), \quad x(0)=x_{0}, \quad g(x(t), \dot{x}(t))=0
$$

This leads to the probabilistic state estimation problem:

Initial distribution:
Prior / dynamics model: ODE likelihood:

Initial value likelihood:

$$
\begin{array}{rlrl}
X(0) & \sim \mathcal{N}\left(X(0) ; \mu_{0}, \Sigma_{0}\right) & \\
X(t+h) \mid X(t) & \sim \mathcal{N}(X(t+h) ; A(h) X(t), Q(h)) & \\
Z\left(t_{i}\right) \mid X\left(t_{i}\right) & \sim \delta\left(Z\left(t_{i}\right) ; X^{(1)}\left(t_{i}\right)-f\left(X^{(0)}\left(t_{i}\right), t_{i}\right)\right), & & z_{i} \triangleq 0 \\
Z^{\text {init }} \mid X(0) & \sim \delta\left(Z^{\text {init }} ; X^{(0)}(0)\right), & & z^{\text {init }} \triangleq x_{0}
\end{array}
$$

Extending ODE filters to other related differential equation problems unviewin
Extending ODE filters to other related differential equation problems

Numerical problems setting: Initial value problem with first-order ODE and conserved quantities

$$
\dot{x}(t)=f(x(t), t), \quad x(0)=x_{0}, \quad g(x(t), \dot{x}(t))=0 .
$$

This leads to the probabilistic state estimation problem:

Initial distribution:
Prior / dynamics model:
ODE likelihood:
Conservation law likelihood:
Initial value likelihood:

$$
\begin{aligned}
X(0) & \sim \mathcal{N}\left(X(0) ; \mu_{0}, \Sigma_{0}\right) \\
X(t+h) \mid X(t) & \sim \mathcal{N}(X(t+h) ; A(h) X(t), Q(h))
\end{aligned}
$$

$$
Z\left(t_{i}\right) \mid X\left(t_{i}\right) \sim \delta\left(Z\left(t_{i}\right) ; X^{(1)}\left(t_{i}\right)-f\left(X^{(0)}\left(t_{i}\right), t_{i}\right)\right), \quad z_{i} \triangleq 0
$$

$$
Z_{i}^{c}\left(t_{i}\right) \mid X\left(t_{i}\right) \sim \delta\left(Z_{i}^{c}\left(t_{i}\right) ; g\left(X^{(0)}(t), X^{(1)}(t)\right)\right), \quad Z_{i}^{c} \triangleq 0
$$

$$
Z^{\text {init }} \mid X(0) \sim \delta\left(Z^{\text {init }} ; X^{(0)}(0)\right)
$$

$$
z^{\text {init }} \triangleq x_{0}
$$

Extending ODE filters to other related differential equation problems uजाvivili ODE filters can solve much more than the ODEs that we saw so far!

Numerical problems setting: Initial value problem with first-order ODE and conserved quantities

Numerical problems setting: Initial value problem with first-order ODE and conserved quantities

$$
\dot{x}(t)=f(x(t), t), \quad x(0)=x_{0}, \quad g(x(t), \dot{x}(t))=0
$$

This leads to the probabilistic state estimation problem:

Initial distribution:
Prior / dynamics model:

> ODE likelihood:

Conservation law likelihood:
Initial value likelihood:

$$
\begin{aligned}
X(0) & \sim \mathcal{N}\left(X(0) ; \mu_{0}, \Sigma_{0}\right) \\
X(t+h) \mid X(t) & \sim \mathcal{N}(X(t+h) ; A(h) X(t), Q(h)) \\
Z\left(t_{i}\right) \mid X\left(t_{i}\right) & \sim \delta\left(Z\left(t_{i}\right) ; X^{(1)}\left(t_{i}\right)-f\left(X^{(0)}\left(t_{i}\right), t_{i}\right)\right), \quad z_{i} \triangleq 0
\end{aligned}
$$

$$
Z_{i}^{C}\left(t_{i}\right) \mid X\left(t_{i}\right) \sim \delta\left(Z_{i}^{C}\left(t_{i}\right) ; g\left(X^{(0)}(t), X^{(1)}(t)\right)\right), \quad Z_{i}^{C} \triangleq 0
$$

$$
Z^{\text {init }} \mid X(0) \sim \delta\left(Z^{\text {init }} ; X^{(0)}(0)\right)
$$

$$
z^{\text {init }} \triangleq x_{0}
$$

The measurement model provides a very flexible way to easily encode desired properties!

DEMO TIME: Solving a second-order ODE

demo.j1

Next: Combine ODEs and GP regression via latent force inference

Latent force inference: GP regression on both ODEs and data

Latent force inference: GP regression on both ODEs and data

ODE dynamics:

$$
\frac{d}{d t}\left[\begin{array}{l}
S(t) \\
I(t) \\
R(t) \\
D(t)
\end{array}\right]=\left[\begin{array}{c}
-\beta \cdot S(t) /(t) / P \\
\beta \cdot S(t) /(t) / P-\gamma /(t)-\eta /(t) \\
\gamma /(t) \\
\eta /(t)
\end{array}\right]
$$

Latent force inference: GP regression on both ODEs and data

ODE dynamics with time-varying contact rate:

$$
\frac{d}{d t}\left[\begin{array}{c}
S(t) \\
I(t) \\
R(t) \\
D(t)
\end{array}\right]=\left[\begin{array}{c}
-\beta(t) \cdot S(t) /(t) / P \\
\beta(t) \cdot S(t) I(t) / P-\gamma I(t)-\eta I(t) \\
\gamma I(t) \\
\eta I(t)
\end{array}\right]
$$

ODE dynamics with time-varying contact rate:

$$
\frac{d}{d t}\left[\begin{array}{l}
S(t) \\
I(t) \\
R(t) \\
D(t)
\end{array}\right]=\left[\begin{array}{c}
-\beta(t) \cdot S(t) /(t) / P \\
\beta(t) \cdot S(t) /(t) / P-\gamma /(t)-\eta I(t) \\
\gamma /(t) \\
\eta /(t)
\end{array}\right]
$$

Latent force model: Gauss-Markov prior

$$
\beta(t+h) \mid \beta(t) \sim \mathcal{N}\left(A_{\beta}(h) \beta(t), Q_{\beta}(h)\right)
$$

Data:

$$
y_{i} \mid x\left(t_{i}\right) \sim \mathcal{N}\left(H x\left(t_{i}\right), \sigma^{2} l\right)
$$

Initial value problem:

$$
\dot{x}(t)=f(x(t), t), \quad x(0)=x_{0} .
$$

ODE filter setup:

Initial value problem:

$$
\dot{x}(t)=f(x(t), t), \quad x(0)=x_{0} .
$$

External observations / data:

$$
y_{i}=H x\left(t_{i}\right)+\epsilon_{i}, \quad \epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right) .
$$

Initial value problem:

$$
\dot{x}(t)=f(x(t), \beta(t), t), \quad x(0)=x_{0} .
$$

External observations / data:

$$
y_{i}=H x\left(t_{i}\right)+\epsilon_{i}, \quad \epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right) .
$$

Latent Gauss-Markov process:
$\beta(t+h) \mid \beta(t) \sim \mathcal{N}\left(A_{\beta}(h) \beta(t), \sigma_{\beta}^{2} Q_{\beta}(h)\right)$.

ODE filter setup:

Latent force inference: GP regression on both ODEs and data

Initial value problem:

$$
\dot{x}(t)=f(x(t), \beta(t), t), \quad x(0)=x_{0}
$$

External observations / data:

$$
y_{i}=H x\left(t_{i}\right)+\epsilon_{i}, \quad \epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

Latent Gauss-Markov process:
$\beta(t+h) \mid \beta(t) \sim \mathcal{N}\left(A_{\beta}(h) \beta(t), \sigma_{\beta}^{2} Q_{\beta}(h)\right)$.

ODE filter setup:

Again: This is just state-space model

Latent force inference: GP regression on both ODEs and data

Initial value problem:

$$
\dot{x}(t)=f(x(t), \beta(t), t), \quad x(0)=x_{0}
$$

External observations / data:

$$
y_{i}=H x\left(t_{i}\right)+\epsilon_{i}, \quad \epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

Latent Gauss-Markov process:
$\beta(t+h) \mid \beta(t) \sim \mathcal{N}\left(A_{\beta}(h) \beta(t), \sigma_{\beta}^{2} Q_{\beta}(h)\right)$.

ODE filter setup:

Again: This is just state-space model \Rightarrow inference with EKF/EKS!

Formally we obtain the probabilistic state estimation problem:

State initial distribution: $\quad X(0) \sim \mathcal{N}\left(\mu_{0}, \Sigma_{0}\right)$
State dynamics: $\quad X(t+h) \mid X(t) \sim \mathcal{N}(A(h) X(t), Q(h))$
Latent force initial distribution:

$$
\beta(0) \sim \mathcal{N}\left(\mu_{0}^{\beta}, \Sigma_{0}^{\beta}\right)
$$

Latent force dynamics:

$$
\beta(t+h) \mid \beta(t) \sim \mathcal{N}\left(A_{\beta}(h) \beta(t), Q_{\beta}(h)\right)
$$

ODE likelihood: $\quad Z\left(t_{i}\right) \mid X\left(t_{i}\right), \beta\left(t_{i}\right) \sim \delta\left(X^{(1)}\left(t_{i}\right)-f\left(X^{(0)}\left(t_{i}\right), \beta\left(t_{i}\right), t_{i}\right)\right), \quad z_{i} \triangleq 0$
Initial value likelihood:

$$
Z^{\text {init }} \mid X(0) \sim \delta\left(X^{(0)}(0)\right)
$$

$$
z^{\text {init }} \triangleq x_{0}
$$

Data likelihood:

$$
Y_{i} \mid X\left(t_{i}\right) \sim \mathcal{N}\left(H X^{(0)}\left(t_{i}\right), \sigma^{2} l\right)
$$

$$
y_{i} \in \mathcal{D}_{y}
$$

Formally we obtain the probabilistic state estimation problem, simplified by stacking $\tilde{X}=[X, \beta]$:

$$
\text { Initial distribution: } \quad \tilde{X}(0) \sim \mathcal{N}\left(\tilde{\mu}_{0}, \tilde{\Sigma}_{0}\right)
$$

Prior / dynamics model: $\quad \tilde{X}(t+h) \mid \tilde{X}(t) \sim \mathcal{N}(\tilde{A}(h) \tilde{X}(t), \tilde{Q}(h))$
ODE likelihood:

$$
Z\left(t_{i}\right) \mid \tilde{X}\left(t_{i}\right) \sim \delta\left(E_{1} \tilde{X}\left(t_{i}\right)-f\left(E_{0} \tilde{X}\left(t_{i}\right), E_{\beta} \tilde{X}\left(t_{i}\right), t_{i}\right)\right), \quad z_{i} \triangleq 0
$$

Initial value likelihood:

$$
z^{\text {init }} \mid \tilde{X}(0) \sim \delta\left(E_{0} \tilde{X}(0)\right)
$$

$$
z^{\text {init }} \triangleq x_{0}
$$

Data likelihood:

$$
\text { with } E_{0} \tilde{X}:=X^{(0)}, E_{1} \tilde{X}:=X^{(1)}, E_{\beta} \tilde{X}:=\beta
$$

$$
Y_{i} \mid \tilde{X}\left(t_{i}\right) \sim \mathcal{N}\left(H E_{0} \tilde{X}\left(t_{i}\right), \sigma^{2} l\right)
$$

$$
y_{i} \in \mathcal{D}_{y}
$$

Latent force inference: Results

Outlook

Probabilistic Numerics: Computation as Machine Learning
 Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022

Probabilistic Numerics: Computation as Machine Learning
 Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022

References for topics not covered today:

- ODE filter theory and details:
- Convergence rates: [Kersting et al., 2020, Tronarp et al., 2021]
- Other filtering algorithms (e.g. IEKS and particle filter): [Tronarp et al., 2019, Tronarp et al., 2021]
- Step-size adaptation and more calibration: [Bosch et al., 2021]
- Scaling ODE filters to high dimensions: [Krämer et al., 2022]
- More related differential equation problems:
- Boundary value problems (BVPs): [Krämer and Hennig, 2021]
- Partial differential equations (PDEs): [Krämer et al., 2022]
- Inverse problems
- Parameter inference in ODEs with ODE filters: [Tronarp et al., 2022]
- Efficient latent force inference: [Schmidt et al., 2021]

Probabilistic Numerics Spring School Tübingen 2023

- ODE solving is state estimation
\Rightarrow treat initial value problems as state estimation problems
- "ODE filters": How to solve ODEs with Bayesian filtering and smoothing
- Bells and whistles: Uncertainty calibration \& Square-root filtering
- Flexible information operators to solve more than just standard ODEs
- Latent force inference: Joint GP regression on both ODEs and data

Software packages
๕
https://github.com/nathanaelbosch/ProbNumDiffEq.jl
]add ProbNumDiffEq
C)
https://github.com/probabilistic-numerics/probnum pip install probnum

https://github.com/pnkraemer/tornadox pip install tornadox

- Bosch, N., Hennig, P., and Tronarp, F. (2021). Calibrated adaptive probabilistic ODE solvers.
In Banerjee, A. and Fukumizu, K., editors, Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine Learning Research, pages 3466-3474. PMLR.
- Bosch, N., Tronarp, F., and Hennig, P. (2022).

Pick-and-mix information operators for probabilistic ODE solvers.
In Camps-Valls, G., Ruiz, F. J. R., and Valera, I., editors, Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, volume 151 of Proceedings of Machine Learning Research, pages 10015-10027. PMLR.

- Kersting, H., Sullivan, T. J., and Hennig, P. (2020). Convergence rates of gaussian ode filters.
Statistics and Computing, 30(6):1791-1816.
- Krämer, N., Bosch, N., Schmidt, J., and Hennig, P. (2022).

Probabilistic ODE solutions in millions of dimensions.
In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., and Sabato, S., editors, Proceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages 11634-11649. PMLR.

- Krämer, N. and Hennig, P. (2020).

Stable implementation of probabilistic ode solvers.
CoRR.

- Krämer, N. and Hennig, P. (2021).

Linear-time probabilistic solution of boundary value problems.
In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W., editors, Advances in Neural Information Processing Systems, volume 34, pages 11160-11171. Curran Associates, Inc.

- Krämer, N., Schmidt, J., and Hennig, P. (2022).

Probabilistic numerical method of lines for time-dependent partial differential equations. In Camps-Valls, G., Ruiz, F. J. R., and Valera, I., editors, Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, volume 151 of Proceedings of Machine Learning Research, pages 625-639. PMLR.

- Schmidt, J., Krämer, N., and Hennig, P. (2021).

A probabilistic state space model for joint inference from differential equations and data.
In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W., editors, Advances in Neural Information Processing Systems, volume 34, pages 12374-12385. Curran Associates, Inc.

- Tronarp, F., Bosch, N., and Hennig, P. (2022).

Fenrir: Physics-enhanced regression for initial value problems.
In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., and Sabato, S., editors, Proceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages 21776-21794. PMLR.

- Tronarp, F., Kersting, H., Särkkä, S., and Hennig, P. (2019).

Probabilistic solutions to ordinary differential equations as nonlinear bayesian filtering: a new perspective.
Stat. Comput., 29(6):1297-1315.

- Tronarp, F., Särkkä, S., and Hennig, P. (2021).

Bayesian ode solvers: the maximum a posteriori estimate. Statistics and Computing, 31(3):23.

BACKUP

Local calibration and step-size adaptation

Local calibration and step-size adaptation

- Measurement model: $m(X(t), t)=X^{(1)}(t)-f\left(X^{(0)}(t), t\right)$
- A standard extended Kalman filter computes the Jacobian of the measurement mode:
$J_{m}(\xi)=E_{1}-J_{f}\left(E_{0} \xi, t\right) E_{0}$
\Rightarrow This algorithm is often called EK1.
- Turns out the following also works: $J_{f} \approx 0$ and then $J_{m}(\xi) \approx E_{1}$
\Rightarrow The resulting algorithm is often called EKO.

A comparison of EK1 and EKO:

	Jacobian	type	A-stable	uncertainties	speed
EK1	$H=E_{1}-J_{f}\left(E_{0} \mu^{p}\right) E_{0}$	semi-implicit	yes	more expressive	slower $\left(0\left(N d^{3} q^{3}\right)\right)$
EK0	$H=E_{1}$	explicit	no	simpler	faster $\left(O\left(N d q^{3}\right)\right)$

ODE dynamics with time-varying contact rate $\beta(t)$:

$$
\dot{S}=-\beta(t) S E, \quad \dot{I}=\beta(t) S E-\gamma I-\eta I, \quad \dot{R}=\gamma I, \quad \dot{D}=\eta l .
$$

Data are the real COVID counts from Germany.
Idea: Just model $\beta(t)$ with a neural network $\beta_{\theta}^{\mathrm{NN}}$, and do parameter inference on θ. Result:

ODE dynamics with time-varying contact rate $\beta(t)$:

$$
\dot{S}=-\beta(t) S E, \quad \dot{I}=\beta(t) S E-\gamma I-\eta I, \quad \dot{R}=\gamma I, \quad \dot{D}=\eta l .
$$

Data are the real COVID counts from Germany. Idea: Just model $\beta(t)$ with a neural network $\beta_{\theta}^{\mathrm{NN}}$, and do parameter inference on θ. Result:

ODE dynamics with time-varying contact rate $\beta(t)$:

$$
\dot{S}=-\beta(t) S E, \quad \dot{I}=\beta(t) S E-\gamma I-\eta I, \quad \dot{R}=\gamma I, \quad \dot{D}=\eta l .
$$

Data are the real COVID counts from Germany.
Idea: Just model $\beta(t)$ with a neural network $\beta_{\theta}^{N N}$, and do parameter inference on θ.
Result:

Disclaimer: I only had limited time and it might very well be possible to do this much better!
-q-times integrated Wiener process prior: $X(t) \sim \operatorname{IWP}(q)$

$$
\begin{aligned}
\mathrm{d} X^{(i)}(t) & =X^{(i+1)}(t) \mathrm{d} t, \quad i=0, \ldots, q-1 \\
\mathrm{~d} X^{(q)}(t) & =\sigma \mathrm{d} W(t) \\
X(0) & \sim \mathcal{N}\left(\mu_{0}, \Sigma_{0}\right)
\end{aligned}
$$

- Corresponds to Taylor-polynomial + perturbation:

$$
X^{(0)}(t)=\sum_{m=0}^{q} X^{(m)}(0) \frac{t^{m}}{m!}+\sigma \int_{0}^{t} \frac{t-\tau}{q!} \mathrm{d} W(\tau)
$$

[^0]:

