
Probabilistic Numerics for Ordinary

Differential Equations

Nathanael Bosch

24. May 2023

some of the presented work is supported
by the European Research Council.

Background
I Ordinary differential equations and how to solve them
I State estimation with extended Kalman filtering & smoothing

Central statement: ODE solving is state estimation
I “ODE filters”: How to solve ODEs with extended Kalman filtering and smoothing
I Bells and whistles to make ODE filters work even better

I Uncertainty calibration
I Square-root filtering

Fun with ODE filters
I Generalizing ODE filters to other related problems (higher-order ODEs, DAEs, …)
I Latent force inference: Joint GP regression on both ODEs and data

@nathanaelbosch 1

Background
I Ordinary differential equations and how to solve them
I State estimation with extended Kalman filtering & smoothing

Central statement: ODE solving is state estimation
I “ODE filters”: How to solve ODEs with extended Kalman filtering and smoothing
I Bells and whistles to make ODE filters work even better

I Uncertainty calibration
I Square-root filtering

Fun with ODE filters
I Generalizing ODE filters to other related problems (higher-order ODEs, DAEs, …)
I Latent force inference: Joint GP regression on both ODEs and data

@nathanaelbosch 1

Background
I Ordinary differential equations and how to solve them
I State estimation with extended Kalman filtering & smoothing

Central statement: ODE solving is state estimation
I “ODE filters”: How to solve ODEs with extended Kalman filtering and smoothing
I Bells and whistles to make ODE filters work even better

I Uncertainty calibration
I Square-root filtering

Fun with ODE filters
I Generalizing ODE filters to other related problems (higher-order ODEs, DAEs, …)
I Latent force inference: Joint GP regression on both ODEs and data

@nathanaelbosch 1

Background: Ordinary Differential Equations
and how to solve them

@nathanaelbosch 2

Background: Ordinary Differential Equations and how to solve them
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẋ(t) = f (x(t), t)
with t ∈ [0, T], vector field f : Rd × R_Rd , and initial value x(0) = x0. Goal: “Find x”.

I Simple example: Logistic ODE

ẋ(t) = x(t) (1− x(t)) , t ∈ [0, 10], x(0) = 0.1.

Numerical ODE solvers:

I Forward Euler:
x̂(t + h) = x̂(t) + hf(x̂(t), t)

I Backward Euler:
x̂(t + h) = x̂(t) + hf(x̂(t + h), t + h)

I Runge–Kutta:
x̂(t + h) = x̂(t) + h

∑s
i=1 bif(x̃i, t + cih)

I Multistep:
x̂(t + h) = x̂(t) + h

∑s−1
i=0 bif(x̂(t − ih), t − ih)

Forward Euler for different step sizes:

0.0

0.5

1.0

P(
t)

step size = 0.5

0.0

0.5

1.0

P(
t)

step size = 0.1

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
t

0.0

0.5

1.0

P(
t)

step size = 0.01

⇒ It is “correct” only in the limit h_ 0!
Numerical ODE solvers estimate x(t) by evaluating f on a discrete set of points.

@nathanaelbosch 3

Background: Ordinary Differential Equations and how to solve them
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẋ(t) = f (x(t), t)
with t ∈ [0, T], vector field f : Rd × R_Rd , and initial value x(0) = x0. Goal: “Find x”.

Numerical ODE solvers:
I Forward Euler:

x̂(t + h) = x̂(t) + hf(x̂(t), t)

I Backward Euler:
x̂(t + h) = x̂(t) + hf(x̂(t + h), t + h)

I Runge–Kutta:
x̂(t + h) = x̂(t) + h

∑s
i=1 bif(x̃i, t + cih)

I Multistep:
x̂(t + h) = x̂(t) + h

∑s−1
i=0 bif(x̂(t − ih), t − ih)

Forward Euler for different step sizes:

0.0

0.5

1.0

P(
t)

step size = 0.5

0.0

0.5

1.0

P(
t)

step size = 0.1

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
t

0.0

0.5

1.0

P(
t)

step size = 0.01

⇒ It is “correct” only in the limit h_ 0!
Numerical ODE solvers estimate x(t) by evaluating f on a discrete set of points.

@nathanaelbosch 3

Background: Ordinary Differential Equations and how to solve them
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẋ(t) = f (x(t), t)
with t ∈ [0, T], vector field f : Rd × R_Rd , and initial value x(0) = x0. Goal: “Find x”.

Numerical ODE solvers:
I Forward Euler:

x̂(t + h) = x̂(t) + hf(x̂(t), t)
I Backward Euler:

x̂(t + h) = x̂(t) + hf(x̂(t + h), t + h)

I Runge–Kutta:
x̂(t + h) = x̂(t) + h

∑s
i=1 bif(x̃i, t + cih)

I Multistep:
x̂(t + h) = x̂(t) + h

∑s−1
i=0 bif(x̂(t − ih), t − ih)

Forward Euler for different step sizes:

0.0

0.5

1.0

P(
t)

step size = 0.5

0.0

0.5

1.0

P(
t)

step size = 0.1

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
t

0.0

0.5

1.0

P(
t)

step size = 0.01

⇒ It is “correct” only in the limit h_ 0!
Numerical ODE solvers estimate x(t) by evaluating f on a discrete set of points.

@nathanaelbosch 3

Background: Ordinary Differential Equations and how to solve them
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẋ(t) = f (x(t), t)
with t ∈ [0, T], vector field f : Rd × R_Rd , and initial value x(0) = x0. Goal: “Find x”.

Numerical ODE solvers:
I Forward Euler:

x̂(t + h) = x̂(t) + hf(x̂(t), t)
I Backward Euler:

x̂(t + h) = x̂(t) + hf(x̂(t + h), t + h)
I Runge–Kutta:

x̂(t + h) = x̂(t) + h
∑s

i=1 bif(x̃i, t + cih)

I Multistep:
x̂(t + h) = x̂(t) + h

∑s−1
i=0 bif(x̂(t − ih), t − ih)

Forward Euler for different step sizes:

0.0

0.5

1.0

P(
t)

step size = 0.5

0.0

0.5

1.0

P(
t)

step size = 0.1

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
t

0.0

0.5

1.0

P(
t)

step size = 0.01

⇒ It is “correct” only in the limit h_ 0!
Numerical ODE solvers estimate x(t) by evaluating f on a discrete set of points.

@nathanaelbosch 3

Background: Ordinary Differential Equations and how to solve them
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẋ(t) = f (x(t), t)
with t ∈ [0, T], vector field f : Rd × R_Rd , and initial value x(0) = x0. Goal: “Find x”.

Numerical ODE solvers:
I Forward Euler:

x̂(t + h) = x̂(t) + hf(x̂(t), t)
I Backward Euler:

x̂(t + h) = x̂(t) + hf(x̂(t + h), t + h)
I Runge–Kutta:

x̂(t + h) = x̂(t) + h
∑s

i=1 bif(x̃i, t + cih)
I Multistep:

x̂(t + h) = x̂(t) + h
∑s−1

i=0 bif(x̂(t − ih), t − ih)

Forward Euler for different step sizes:

0.0

0.5

1.0

P(
t)

step size = 0.5

0.0

0.5

1.0

P(
t)

step size = 0.1

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
t

0.0

0.5

1.0

P(
t)

step size = 0.01

⇒ It is “correct” only in the limit h_ 0!
Numerical ODE solvers estimate x(t) by evaluating f on a discrete set of points.

@nathanaelbosch 3

Background: Ordinary Differential Equations and how to solve them
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẋ(t) = f (x(t), t)
with t ∈ [0, T], vector field f : Rd × R_Rd , and initial value x(0) = x0. Goal: “Find x”.

Numerical ODE solvers:
I Forward Euler:

x̂(t + h) = x̂(t) + hf(x̂(t), t)
I Backward Euler:

x̂(t + h) = x̂(t) + hf(x̂(t + h), t + h)
I Runge–Kutta:

x̂(t + h) = x̂(t) + h
∑s

i=1 bif(x̃i, t + cih)
I Multistep:

x̂(t + h) = x̂(t) + h
∑s−1

i=0 bif(x̂(t − ih), t − ih)

Forward Euler for different step sizes:

0.0

0.5

1.0

P(
t)

step size = 0.5

0.0

0.5

1.0

P(
t)

step size = 0.1

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
t

0.0

0.5

1.0

P(
t)

step size = 0.01

⇒ It is “correct” only in the limit h_ 0!

Numerical ODE solvers estimate x(t) by evaluating f on a discrete set of points.

@nathanaelbosch 3

Background: Ordinary Differential Equations and how to solve them
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẋ(t) = f (x(t), t)
with t ∈ [0, T], vector field f : Rd × R_Rd , and initial value x(0) = x0. Goal: “Find x”.

Numerical ODE solvers:
I Forward Euler:

x̂(t + h) = x̂(t) + hf(x̂(t), t)
I Backward Euler:

x̂(t + h) = x̂(t) + hf(x̂(t + h), t + h)
I Runge–Kutta:

x̂(t + h) = x̂(t) + h
∑s

i=1 bif(x̃i, t + cih)
I Multistep:

x̂(t + h) = x̂(t) + h
∑s−1

i=0 bif(x̂(t − ih), t − ih)

Forward Euler for different step sizes:

0.0

0.5

1.0

P(
t)

step size = 0.5

0.0

0.5

1.0

P(
t)

step size = 0.1

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
t

0.0

0.5

1.0

P(
t)

step size = 0.01

⇒ It is “correct” only in the limit h_ 0!
Numerical ODE solvers estimate x(t) by evaluating f on a discrete set of points.

@nathanaelbosch 3

Probabilistic numerical ODE solutions
or “How to treat ODEs as the state estimation problem that they really are”

@nathanaelbosch 4

Probabilistic numerical ODE solutions
or “How to treat ODEs as the state estimation problem that they really are”

p
(
x(t)

∣∣ x(0) = x0, {ẋ(tn) = f (x(tn), tn)}N
n=1

)
To solve an ODE with Gaussian filtering and smoothing, we need:

1. Prior:
2. Likelihood:
3. Data:

@nathanaelbosch 5

Probabilistic numerical ODE solutions
or “How to treat ODEs as the state estimation problem that they really are”

p
(
x(t)

∣∣ x(0) = x0, {ẋ(tn) = f (x(tn), tn)}N
n=1

)

To solve an ODE with Gaussian filtering and smoothing, we need:

1. Prior:
2. Likelihood:
3. Data:

@nathanaelbosch 5

Probabilistic numerical ODE solutions
or “How to treat ODEs as the state estimation problem that they really are”

p
(
x(t)

∣∣ x(0) = x0, {ẋ(tn) = f (x(tn), tn)}N
n=1

)
To solve an ODE with Gaussian filtering and smoothing, we need:

1. Prior:
2. Likelihood:
3. Data:

@nathanaelbosch 5

Probabilistic numerical ODE solutions
or “How to treat ODEs as the state estimation problem that they really are”

p
(
x(t)

∣∣ x(0) = x0, {ẋ(tn) = f (x(tn), tn)}N
n=1

)
To solve an ODE with Gaussian filtering and smoothing, we need:

1. Prior:
2. Likelihood:
3. Data:

@nathanaelbosch 5

Prior: General Gauss–Markov processes
See also: Särkkä & Solin, “Applied Stochastic Differential Equations”, 2013

I Continuous Gauss–Markov prior: Let X(t) = [X(0)(t), X(1)(t), . . . , X(q)(t)]> be the solution of a
linear time-invariant (LTI) stochastic differential equation (SDE):

dX(t) = FX(t) dt + Γ dW(t),
X(0) ∼ N (µ0,Σ0),

with F such that dX(i)(t) = X(i+1)(t)dt. Then, we use X(i)(t) to model the i-th derivative of x(t).
Examples: Integrated Wiener process, Integrated Ornstein–Uhlenbeck process, Matérn process.

I Discrete transition densities: X(t) can be described in discrete time with

X(t + h) | X(t) ∼ N (X(t + h); A(h)X(t),Q(h)) ,

where (A(h),Q(h)) are given by

A(h) = exp (Fh) , Q(h) =
∫ h

0

A(h− τ)ΓΓ>A(h− τ)> dτ.

The transition matrices (A(h),Q(h)) can be computed with the “matrix fraction decomposition”;
see for instance Särkkä & Solin, “Applied Stochastic Differential Equations”, 2013.

@nathanaelbosch 6

Prior: General Gauss–Markov processes
See also: Särkkä & Solin, “Applied Stochastic Differential Equations”, 2013

I Continuous Gauss–Markov prior: Let X(t) = [X(0)(t), X(1)(t), . . . , X(q)(t)]> be the solution of a
linear time-invariant (LTI) stochastic differential equation (SDE):

dX(t) = FX(t) dt + Γ dW(t),
X(0) ∼ N (µ0,Σ0),

with F such that dX(i)(t) = X(i+1)(t)dt. Then, we use X(i)(t) to model the i-th derivative of x(t).
Examples: Integrated Wiener process, Integrated Ornstein–Uhlenbeck process, Matérn process.

I Discrete transition densities: X(t) can be described in discrete time with

X(t + h) | X(t) ∼ N (X(t + h); A(h)X(t),Q(h)) ,

where (A(h),Q(h)) are given by

A(h) = exp (Fh) , Q(h) =
∫ h

0

A(h− τ)ΓΓ>A(h− τ)> dτ.

The transition matrices (A(h),Q(h)) can be computed with the “matrix fraction decomposition”;
see for instance Särkkä & Solin, “Applied Stochastic Differential Equations”, 2013.

@nathanaelbosch 6

Prior: General Gauss–Markov processes
See also: Särkkä & Solin, “Applied Stochastic Differential Equations”, 2013

I Continuous Gauss–Markov prior: Let X(t) = [X(0)(t), X(1)(t), . . . , X(q)(t)]> be the solution of a
linear time-invariant (LTI) stochastic differential equation (SDE):

dX(t) = FX(t) dt + Γ dW(t),
X(0) ∼ N (µ0,Σ0),

with F such that dX(i)(t) = X(i+1)(t)dt. Then, we use X(i)(t) to model the i-th derivative of x(t).
Examples: Integrated Wiener process, Integrated Ornstein–Uhlenbeck process, Matérn process.

I Discrete transition densities: X(t) can be described in discrete time with

X(t + h) | X(t) ∼ N (X(t + h); A(h)X(t),Q(h)) ,

where (A(h),Q(h)) are given by

A(h) = exp (Fh) , Q(h) =
∫ h

0

A(h− τ)ΓΓ>A(h− τ)> dτ.

The transition matrices (A(h),Q(h)) can be computed with the “matrix fraction decomposition”;
see for instance Särkkä & Solin, “Applied Stochastic Differential Equations”, 2013.

@nathanaelbosch 6

Prior: The q-times integrated Wiener process
A very convenient prior with closed-form transition densities

I q-times integrated Wiener process prior: X(t) ∼ IWP(q)

dX(i)(t) = X(i+1)(t) dt, i = 0, . . . , q− 1,

dX(q)(t) = σ dW(t),
X(0) ∼ N (µ0,Σ0).

I Discrete-time transitions:

X(t + h) | X(t) ∼ N
(
X(t + h); A(h)X(t), σ2Q(h)

)
,

[A(h)]ij = Ii≤j
hj−i

(j − i)!
,

[Q(h)]ij =
h2q+1−i−j

(2q+ 1− i − j)(q− i)!(q− j)!
,

for any i, j = 0, . . . , q. (one-dimensional case).
(proof: [Kersting et al., 2020])

I Example: IWP(2)

@nathanaelbosch 7

Prior: The q-times integrated Wiener process
A very convenient prior with closed-form transition densities

I q-times integrated Wiener process prior: X(t) ∼ IWP(q)

dX(i)(t) = X(i+1)(t) dt, i = 0, . . . , q− 1,

dX(q)(t) = σ dW(t),
X(0) ∼ N (µ0,Σ0).

I Discrete-time transitions:

X(t + h) | X(t) ∼ N
(
X(t + h); A(h)X(t), σ2Q(h)

)
,

[A(h)]ij = Ii≤j
hj−i

(j − i)!
,

[Q(h)]ij =
h2q+1−i−j

(2q+ 1− i − j)(q− i)!(q− j)!
,

for any i, j = 0, . . . , q. (one-dimensional case).
(proof: [Kersting et al., 2020])

I Example: IWP(2)

@nathanaelbosch 7

Prior: The q-times integrated Wiener process
A very convenient prior with closed-form transition densities

I q-times integrated Wiener process prior: X(t) ∼ IWP(q)

dX(i)(t) = X(i+1)(t) dt, i = 0, . . . , q− 1,

dX(q)(t) = σ dW(t),
X(0) ∼ N (µ0,Σ0).

I Discrete-time transitions:

X(t + h) | X(t) ∼ N
(
X(t + h); A(h)X(t), σ2Q(h)

)
,

[A(h)]ij = Ii≤j
hj−i

(j − i)!
,

[Q(h)]ij =
h2q+1−i−j

(2q+ 1− i − j)(q− i)!(q− j)!
,

for any i, j = 0, . . . , q. (one-dimensional case).
(proof: [Kersting et al., 2020])

I Example: IWP(2)

A(h) =

1 h h2
2

0 1 h
0 0 1

 ,

Q(h) =

 h5
20

h4
8

h3
6

h4
8

h3
3

h2
2

h3
6

h2
2 h

 .

@nathanaelbosch 7

Prior: The q-times integrated Wiener process
A very convenient prior with closed-form transition densities

I q-times integrated Wiener process prior: X(t) ∼ IWP(q)

dX(i)(t) = X(i+1)(t) dt, i = 0, . . . , q− 1,

dX(q)(t) = σ dW(t),
X(0) ∼ N (µ0,Σ0).

I Discrete-time transitions:

X(t + h) | X(t) ∼ N
(
X(t + h); A(h)X(t), σ2Q(h)

)
,

[A(h)]ij = Ii≤j
hj−i

(j − i)!
,

[Q(h)]ij =
h2q+1−i−j

(2q+ 1− i − j)(q− i)!(q− j)!
,

for any i, j = 0, . . . , q. (one-dimensional case).
(proof: [Kersting et al., 2020])

I Example: IWP(2)

@nathanaelbosch 7

Prior: The q-times integrated Wiener process
A very convenient prior with closed-form transition densities

I q-times integrated Wiener process prior: X(t) ∼ IWP(q)

dX(i)(t) = X(i+1)(t) dt, i = 0, . . . , q− 1,

dX(q)(t) = σ dW(t),
X(0) ∼ N (µ0,Σ0).

I Discrete-time transitions:

X(t + h) | X(t) ∼ N
(
X(t + h); A(h)X(t), σ2Q(h)

)
,

[A(h)]ij = Ii≤j
hj−i

(j − i)!
,

[Q(h)]ij =
h2q+1−i−j

(2q+ 1− i − j)(q− i)!(q− j)!
,

for any i, j = 0, . . . , q. (one-dimensional case).
(proof: [Kersting et al., 2020])

I Example: IWP(2)

@nathanaelbosch 7

Probabilistic numerical ODE solutions
How to treat ODEs as the state estimation problem that they really are

p
(
x(t)

∣∣ x(0) = x0, {ẋ(tn) = f (x(tn), tn)}N
n=1

)
To solve an ODE with Gaussian filtering and smoothing, we need:

1. Prior: q-times integrated Wiener process prior

X(t + h) | X(t) ∼ N
(
X(t + h); A(h)X(t), σ2Q(h)

)
2. Likelihood:
3. Data:

@nathanaelbosch 8

Probabilistic numerical ODE solutions
How to treat ODEs as the state estimation problem that they really are

p
(
x(t)

∣∣ x(0) = x0, {ẋ(tn) = f (x(tn), tn)}N
n=1

)
To solve an ODE with Gaussian filtering and smoothing, we need:

1. Prior: q-times integrated Wiener process prior

X(t + h) | X(t) ∼ N
(
X(t + h); A(h)X(t), σ2Q(h)

)
2. Likelihood:
3. Data:

@nathanaelbosch 8

The likelihood model and the data
The likelihood and data relate the prior to the desired posterior: the numerical ODE solution

I Ideal but intractable goal: Want x(t) to satisfy the ODE

ẋ(t) = f (x(t), t)

using X(t)⇔ X(1)(t) = f
(
X(0)(t), t

)
using x(t)⇔ 0 = X(1)(t)− f

(
X(0)(t), t

)
=: m(X(t), t).

I Easier goal: Satisfy the ODE on a discrete time grid

ẋ(ti) = f(x(ti), ti), ti ∈ T = {ti}N
i=1 ⊂ [0, T],

⇔ m(X(ti), ti) = 0

I This motivates a measurement model and data:

Z(ti) | X(ti) ∼ (m(X(ti), ti))

zi, 0, i = 1, . . . ,N.

where zi is a realization of Z(ti).

(δ is the Dirac distribution)

Example: Logistic ODE ẋ = x(1− x)

(here: Z = X(1) − X(0)(1− X(0)))

Spoiler: This is the thing we want!

@nathanaelbosch 9

The likelihood model and the data
The likelihood and data relate the prior to the desired posterior: the numerical ODE solution

I Ideal but intractable goal: Want x(t) to satisfy the ODE

ẋ(t) = f (x(t), t)
using X(t)⇔ X(1)(t) = f

(
X(0)(t), t

)

using x(t)⇔ 0 = X(1)(t)− f
(
X(0)(t), t

)
=: m(X(t), t).

I Easier goal: Satisfy the ODE on a discrete time grid

ẋ(ti) = f(x(ti), ti), ti ∈ T = {ti}N
i=1 ⊂ [0, T],

⇔ m(X(ti), ti) = 0

I This motivates a measurement model and data:

Z(ti) | X(ti) ∼ (m(X(ti), ti))

zi, 0, i = 1, . . . ,N.

where zi is a realization of Z(ti).

(δ is the Dirac distribution)

Example: Logistic ODE ẋ = x(1− x)

(here: Z = X(1) − X(0)(1− X(0)))

Spoiler: This is the thing we want!

@nathanaelbosch 9

The likelihood model and the data
The likelihood and data relate the prior to the desired posterior: the numerical ODE solution

I Ideal but intractable goal: Want x(t) to satisfy the ODE

ẋ(t) = f (x(t), t)
using X(t)⇔ X(1)(t) = f

(
X(0)(t), t

)
using x(t)⇔ 0 = X(1)(t)− f

(
X(0)(t), t

)

=: m(X(t), t).

I Easier goal: Satisfy the ODE on a discrete time grid

ẋ(ti) = f(x(ti), ti), ti ∈ T = {ti}N
i=1 ⊂ [0, T],

⇔ m(X(ti), ti) = 0

I This motivates a measurement model and data:

Z(ti) | X(ti) ∼ (m(X(ti), ti))

zi, 0, i = 1, . . . ,N.

where zi is a realization of Z(ti).

(δ is the Dirac distribution)

Example: Logistic ODE ẋ = x(1− x)

(here: Z = X(1) − X(0)(1− X(0)))

Spoiler: This is the thing we want!

@nathanaelbosch 9

The likelihood model and the data
The likelihood and data relate the prior to the desired posterior: the numerical ODE solution

I Ideal but intractable goal: Want x(t) to satisfy the ODE

ẋ(t) = f (x(t), t)
using X(t)⇔ X(1)(t) = f

(
X(0)(t), t

)
using x(t)⇔ 0 = X(1)(t)− f

(
X(0)(t), t

)
=: m(X(t), t).

I Easier goal: Satisfy the ODE on a discrete time grid

ẋ(ti) = f(x(ti), ti), ti ∈ T = {ti}N
i=1 ⊂ [0, T],

⇔ m(X(ti), ti) = 0

I This motivates a measurement model and data:

Z(ti) | X(ti) ∼ (m(X(ti), ti))

zi, 0, i = 1, . . . ,N.

where zi is a realization of Z(ti).

(δ is the Dirac distribution)

Example: Logistic ODE ẋ = x(1− x)

(here: Z = X(1) − X(0)(1− X(0)))

Spoiler: This is the thing we want!

@nathanaelbosch 9

The likelihood model and the data
The likelihood and data relate the prior to the desired posterior: the numerical ODE solution

I Ideal but intractable goal: Want x(t) to satisfy the ODE

ẋ(t) = f (x(t), t)
using X(t)⇔ X(1)(t) = f

(
X(0)(t), t

)
using x(t)⇔ 0 = X(1)(t)− f

(
X(0)(t), t

)
=: m(X(t), t).

I Easier goal: Satisfy the ODE on a discrete time grid

ẋ(ti) = f(x(ti), ti), ti ∈ T = {ti}N
i=1 ⊂ [0, T],

⇔ m(X(ti), ti) = 0

I This motivates a measurement model and data:

Z(ti) | X(ti) ∼ (m(X(ti), ti))

zi, 0, i = 1, . . . ,N.

where zi is a realization of Z(ti).

(δ is the Dirac distribution)

Example: Logistic ODE ẋ = x(1− x)

(here: Z = X(1) − X(0)(1− X(0)))

Spoiler: This is the thing we want!

@nathanaelbosch 9

The likelihood model and the data
The likelihood and data relate the prior to the desired posterior: the numerical ODE solution

I Ideal but intractable goal: Want x(t) to satisfy the ODE

ẋ(t) = f (x(t), t)
using X(t)⇔ X(1)(t) = f

(
X(0)(t), t

)
using x(t)⇔ 0 = X(1)(t)− f

(
X(0)(t), t

)
=: m(X(t), t).

I Easier goal: Satisfy the ODE on a discrete time grid

ẋ(ti) = f(x(ti), ti), ti ∈ T = {ti}N
i=1 ⊂ [0, T],

⇔ m(X(ti), ti) = 0

I This motivates a measurement model and data:

Z(ti) | X(ti) ∼ (m(X(ti), ti))

zi, 0, i = 1, . . . ,N.

where zi is a realization of Z(ti).

(δ is the Dirac distribution)

Example: Logistic ODE ẋ = x(1− x)

(here: Z = X(1) − X(0)(1− X(0)))

Spoiler: This is the thing we want!

@nathanaelbosch 9

The likelihood model and the data
The likelihood and data relate the prior to the desired posterior: the numerical ODE solution

I Ideal but intractable goal: Want x(t) to satisfy the ODE

ẋ(t) = f (x(t), t)
using X(t)⇔ X(1)(t) = f

(
X(0)(t), t

)
using x(t)⇔ 0 = X(1)(t)− f

(
X(0)(t), t

)
=: m(X(t), t).

I Easier goal: Satisfy the ODE on a discrete time grid

ẋ(ti) = f(x(ti), ti), ti ∈ T = {ti}N
i=1 ⊂ [0, T],

⇔ m(X(ti), ti) = 0

I This motivates a measurement model and data:

Z(ti) | X(ti) ∼ N (m(X(ti), ti), R)

zi, 0, i = 1, . . . ,N.

where zi is a realization of Z(ti).

(δ is the Dirac distribution)

Example: Logistic ODE ẋ = x(1− x)

(here: Z = X(1) − X(0)(1− X(0)))

Spoiler: This is the thing we want!

@nathanaelbosch 9

The likelihood model and the data
The likelihood and data relate the prior to the desired posterior: the numerical ODE solution

I Ideal but intractable goal: Want x(t) to satisfy the ODE

ẋ(t) = f (x(t), t)
using X(t)⇔ X(1)(t) = f

(
X(0)(t), t

)
using x(t)⇔ 0 = X(1)(t)− f

(
X(0)(t), t

)
=: m(X(t), t).

I Easier goal: Satisfy the ODE on a discrete time grid

ẋ(ti) = f(x(ti), ti), ti ∈ T = {ti}N
i=1 ⊂ [0, T],

⇔ m(X(ti), ti) = 0

I This motivates a noiseless measurement model and data:

Z(ti) | X(ti) ∼ N (m(X(ti), ti), 0)

zi, 0, i = 1, . . . ,N.

where zi is a realization of Z(ti).

(δ is the Dirac distribution)

Example: Logistic ODE ẋ = x(1− x)

(here: Z = X(1) − X(0)(1− X(0)))

Spoiler: This is the thing we want!

@nathanaelbosch 9

The likelihood model and the data
The likelihood and data relate the prior to the desired posterior: the numerical ODE solution

I Ideal but intractable goal: Want x(t) to satisfy the ODE

ẋ(t) = f (x(t), t)
using X(t)⇔ X(1)(t) = f

(
X(0)(t), t

)
using x(t)⇔ 0 = X(1)(t)− f

(
X(0)(t), t

)
=: m(X(t), t).

I Easier goal: Satisfy the ODE on a discrete time grid

ẋ(ti) = f(x(ti), ti), ti ∈ T = {ti}N
i=1 ⊂ [0, T],

⇔ m(X(ti), ti) = 0

I This motivates a noiseless measurement model and data:

Z(ti) | X(ti) ∼ δ (m(X(ti), ti))

zi, 0, i = 1, . . . ,N.

where zi is a realization of Z(ti).
(δ is the Dirac distribution)

Example: Logistic ODE ẋ = x(1− x)

(here: Z = X(1) − X(0)(1− X(0)))

Spoiler: This is the thing we want!

@nathanaelbosch 9

The likelihood model and the data
The likelihood and data relate the prior to the desired posterior: the numerical ODE solution

I Ideal but intractable goal: Want x(t) to satisfy the ODE

ẋ(t) = f (x(t), t)
using X(t)⇔ X(1)(t) = f

(
X(0)(t), t

)
using x(t)⇔ 0 = X(1)(t)− f

(
X(0)(t), t

)
=: m(X(t), t).

I Easier goal: Satisfy the ODE on a discrete time grid

ẋ(ti) = f(x(ti), ti), ti ∈ T = {ti}N
i=1 ⊂ [0, T],

⇔ m(X(ti), ti) = 0

I This motivates a noiseless measurement model and data:

Z(ti) | X(ti) ∼ δ (m(X(ti), ti))

zi, 0, i = 1, . . . ,N.

where zi is a realization of Z(ti).
(δ is the Dirac distribution)

Example: Logistic ODE ẋ = x(1− x)

(here: Z = X(1) − X(0)(1− X(0)))

Spoiler: This is the thing we want!

@nathanaelbosch 9

The likelihood model and the data
The likelihood and data relate the prior to the desired posterior: the numerical ODE solution

I Ideal but intractable goal: Want x(t) to satisfy the ODE

ẋ(t) = f (x(t), t)
using X(t)⇔ X(1)(t) = f

(
X(0)(t), t

)
using x(t)⇔ 0 = X(1)(t)− f

(
X(0)(t), t

)
=: m(X(t), t).

I Easier goal: Satisfy the ODE on a discrete time grid

ẋ(ti) = f(x(ti), ti), ti ∈ T = {ti}N
i=1 ⊂ [0, T],

⇔ m(X(ti), ti) = 0

I This motivates a noiseless measurement model and data:

Z(ti) | X(ti) ∼ δ (m(X(ti), ti))

zi, 0, i = 1, . . . ,N.

where zi is a realization of Z(ti).
(δ is the Dirac distribution)

Example: Logistic ODE ẋ = x(1− x)

(here: Z = X(1) − X(0)(1− X(0)))

Spoiler: This is the thing we want!

@nathanaelbosch 9

The likelihood model and the data
The likelihood and data relate the prior to the desired posterior: the numerical ODE solution

I Ideal but intractable goal: Want x(t) to satisfy the ODE

ẋ(t) = f (x(t), t)
using X(t)⇔ X(1)(t) = f

(
X(0)(t), t

)
using x(t)⇔ 0 = X(1)(t)− f

(
X(0)(t), t

)
=: m(X(t), t).

I Easier goal: Satisfy the ODE on a discrete time grid

ẋ(ti) = f(x(ti), ti), ti ∈ T = {ti}N
i=1 ⊂ [0, T],

⇔ m(X(ti), ti) = 0

I This motivates a noiseless measurement model and data:

Z(ti) | X(ti) ∼ δ (m(X(ti), ti))

zi, 0, i = 1, . . . ,N.

where zi is a realization of Z(ti).
(δ is the Dirac distribution)

Example: Logistic ODE ẋ = x(1− x)

(here: Z = X(1) − X(0)(1− X(0)))

Spoiler: This is the thing we want!

@nathanaelbosch 9

The likelihood model and the data
The likelihood and data relate the prior to the desired posterior: the numerical ODE solution

I Ideal but intractable goal: Want x(t) to satisfy the ODE

ẋ(t) = f (x(t), t)
using X(t)⇔ X(1)(t) = f

(
X(0)(t), t

)
using x(t)⇔ 0 = X(1)(t)− f

(
X(0)(t), t

)
=: m(X(t), t).

I Easier goal: Satisfy the ODE on a discrete time grid

ẋ(ti) = f(x(ti), ti), ti ∈ T = {ti}N
i=1 ⊂ [0, T],

⇔ m(X(ti), ti) = 0

I This motivates a noiseless measurement model and data:

Z(ti) | X(ti) ∼ δ (m(X(ti), ti))

zi, 0, i = 1, . . . ,N.

where zi is a realization of Z(ti).
(δ is the Dirac distribution)

Example: Logistic ODE ẋ = x(1− x)

(here: Z = X(1) − X(0)(1− X(0)))

Spoiler: This is the thing we want!

@nathanaelbosch 9

The likelihood model and the data
The likelihood and data relate the prior to the desired posterior: the numerical ODE solution

I Ideal but intractable goal: Want x(t) to satisfy the ODE

ẋ(t) = f (x(t), t)
using X(t)⇔ X(1)(t) = f

(
X(0)(t), t

)
using x(t)⇔ 0 = X(1)(t)− f

(
X(0)(t), t

)
=: m(X(t), t).

I Easier goal: Satisfy the ODE on a discrete time grid

ẋ(ti) = f(x(ti), ti), ti ∈ T = {ti}N
i=1 ⊂ [0, T],

⇔ m(X(ti), ti) = 0

I This motivates a noiseless measurement model and data:

Z(ti) | X(ti) ∼ δ (m(X(ti), ti))

zi, 0, i = 1, . . . ,N.

where zi is a realization of Z(ti).
(δ is the Dirac distribution)

Example: Logistic ODE ẋ = x(1− x)

(here: Z = X(1) − X(0)(1− X(0)))
Spoiler: This is the thing we want!@nathanaelbosch 9

Probabilistic numerical ODE solutions
How to treat ODEs as the state estimation problem that they really are

p
(
x(t)

∣∣ x(0) = x0, {ẋ(tn) = f (x(tn), tn)}N
n=1

)
To solve an ODE with Gaussian filtering and smoothing, we need:

1. Prior: q-times integrated Wiener process prior:

X(t + h) | X(t) ∼ N (A(h)X(t),Q(h))

2. Likelihood: Z(t) | X(t) ∼ δ
(
X(1)(t)− f(X(0)(t), t)

)
3. Data: DPN = {zi}, with (Z(ti) =)zi = 0 on a discrete time grid ti ∈ T.

This describes a state estimation problem ⇒ solve with EKF/EKS!

@nathanaelbosch 10

Probabilistic numerical ODE solutions
How to treat ODEs as the state estimation problem that they really are

p
(
x(t)

∣∣ x(0) = x0, {ẋ(tn) = f (x(tn), tn)}N
n=1

)
To solve an ODE with Gaussian filtering and smoothing, we need:

1. Prior: q-times integrated Wiener process prior:

X(t + h) | X(t) ∼ N (A(h)X(t),Q(h))

2. Likelihood: Z(t) | X(t) ∼ δ
(
X(1)(t)− f(X(0)(t), t)

)
3. Data: DPN = {zi}, with (Z(ti) =)zi = 0 on a discrete time grid ti ∈ T.

This describes a state estimation problem

⇒ solve with EKF/EKS!

@nathanaelbosch 10

Probabilistic numerical ODE solutions
How to treat ODEs as the state estimation problem that they really are

p
(
x(t)

∣∣ x(0) = x0, {ẋ(tn) = f (x(tn), tn)}N
n=1

)
To solve an ODE with Gaussian filtering and smoothing, we need:

1. Prior: q-times integrated Wiener process prior:

X(t + h) | X(t) ∼ N (A(h)X(t),Q(h))

2. Likelihood: Z(t) | X(t) ∼ δ
(
X(1)(t)− f(X(0)(t), t)

)
3. Data: DPN = {zi}, with (Z(ti) =)zi = 0 on a discrete time grid ti ∈ T.

This describes a state estimation problem ⇒ solve with EKF/EKS!

@nathanaelbosch 10

The extended Kalman ODE filter – the state-space model
Bringing the last slides all together

For a given initial value problem ẋ(t) = f(x(t), t) on [0, T] with x(0) = x0, we have:

Initial distribution: X(0) ∼ N (X(0);µ0,Σ0)

Prior / dynamics model: X(t + h) | X(t) ∼ N (X(t + h); A(h)X(t),Q(h))

Likelihood / measurement model: Z(ti) | X(ti) ∼ δ
(
Z(ti); X(1)(ti)− f(X(0)(ti), ti)

)
Data: zi , 0, i = 1, . . . ,N.

One thing is still missing: What about the initial value?? Just add another measurement at t = 0:

Zinit | X(0) ∼ δ
(
Zinit; X(0)(0)

)
, zinit , x0.

@nathanaelbosch 11

The extended Kalman ODE filter – the state-space model
Bringing the last slides all together

For a given initial value problem ẋ(t) = f(x(t), t) on [0, T] with x(0) = x0, we have:

Initial distribution: X(0) ∼ N (X(0);µ0,Σ0)

Prior / dynamics model: X(t + h) | X(t) ∼ N (X(t + h); A(h)X(t),Q(h))

Likelihood / measurement model: Z(ti) | X(ti) ∼ δ
(
Z(ti); X(1)(ti)− f(X(0)(ti), ti)

)
Data: zi , 0, i = 1, . . . ,N.

One thing is still missing: What about the initial value?? Just add another measurement at t = 0:

Zinit | X(0) ∼ δ
(
Zinit; X(0)(0)

)
, zinit , x0.

@nathanaelbosch 11

The extended Kalman ODE filter – the state-space model
Bringing the last slides all together

For a given initial value problem ẋ(t) = f(x(t), t) on [0, T] with x(0) = x0, we have:

Initial distribution: X(0) ∼ N (X(0);µ0,Σ0)

Prior / dynamics model: X(t + h) | X(t) ∼ N (X(t + h); A(h)X(t),Q(h))

Likelihood / measurement model: Z(ti) | X(ti) ∼ δ
(
Z(ti); X(1)(ti)− f(X(0)(ti), ti)

)
Data: zi , 0, i = 1, . . . ,N.

One thing is still missing:

What about the initial value?? Just add another measurement at t = 0:

Zinit | X(0) ∼ δ
(
Zinit; X(0)(0)

)
, zinit , x0.

@nathanaelbosch 11

The extended Kalman ODE filter – the state-space model
Bringing the last slides all together

For a given initial value problem ẋ(t) = f(x(t), t) on [0, T] with x(0) = x0, we have:

Initial distribution: X(0) ∼ N (X(0);µ0,Σ0)

Prior / dynamics model: X(t + h) | X(t) ∼ N (X(t + h); A(h)X(t),Q(h))

Likelihood / measurement model: Z(ti) | X(ti) ∼ δ
(
Z(ti); X(1)(ti)− f(X(0)(ti), ti)

)
Data: zi , 0, i = 1, . . . ,N.

One thing is still missing: What about the initial value??

Just add another measurement at t = 0:

Zinit | X(0) ∼ δ
(
Zinit; X(0)(0)

)
, zinit , x0.

@nathanaelbosch 11

The extended Kalman ODE filter – the state-space model
Bringing the last slides all together

For a given initial value problem ẋ(t) = f(x(t), t) on [0, T] with x(0) = x0, we have:

Initial distribution: X(0) ∼ N (X(0);µ0,Σ0)

Prior / dynamics model: X(t + h) | X(t) ∼ N (X(t + h); A(h)X(t),Q(h))

Likelihood / measurement model: Z(ti) | X(ti) ∼ δ
(
Z(ti); X(1)(ti)− f(X(0)(ti), ti)

)
Data: zi , 0, i = 1, . . . ,N.

One thing is still missing: What about the initial value?? Just add another measurement at t = 0:

Zinit | X(0) ∼ δ
(
Zinit; X(0)(0)

)
, zinit , x0.

@nathanaelbosch 11

The extended Kalman ODE filter
We can solve ODEs with basically just an extended Kalman filter

Algorithm The extended Kalman ODE filter

1 procedure EXTENDED KALMAN ODE FILTER((µ−
0 ,Σ

−
0), (A,Q), (f , x0), {ti}N

i=1)
2 µ0,Σ0 ^ KF_UPDATE(µ−

0 ,Σ
−
0 , E0, 0d×d, x0) � Initial update to fit the initial value

3 for k ∈ {1, . . . ,N} do
4 hk ^ tk − tk−1 � Step size

5 µ−
k ,Σ

−
k ^ KF_PREDICT(µk−1,Σk−1, A(hk),Q(hk)) � Kalman filter prediction

6 mk(X) := E1X − f(E0X, tk) � Define the non-linear observation model

7 µk,Σk ^ EKF_UPDATE(µ−
k ,Σ

−
k ,mk, 0d×d,0d) � Extended Kalman filter update

8 end for
9 return (µk,Σk)

N
k=1

10 end procedure

Recall: The state X(t) is a stack of q derivatives X =
[
X(0), X(1), . . . , X(q)]T .

For convenience, define projection matrices Ei to map to the i-th derivative: EiX = X(i).

EXTENDED KALMAN ODE SMOOTHER: Just run a RTS smoother after the filter!

@nathanaelbosch 12

The extended Kalman ODE filter
We can solve ODEs with basically just an extended Kalman filter

Algorithm The extended Kalman ODE filter

1 procedure EXTENDED KALMAN ODE FILTER((µ−
0 ,Σ

−
0), (A,Q), (f , x0), {ti}N

i=1)
2 µ0,Σ0 ^ KF_UPDATE(µ−

0 ,Σ
−
0 , E0, 0d×d, x0) � Initial update to fit the initial value

3 for k ∈ {1, . . . ,N} do
4 hk ^ tk − tk−1 � Step size

5 µ−
k ,Σ

−
k ^ KF_PREDICT(µk−1,Σk−1, A(hk),Q(hk)) � Kalman filter prediction

6 mk(X) := E1X − f(E0X, tk) � Define the non-linear observation model

7 µk,Σk ^ EKF_UPDATE(µ−
k ,Σ

−
k ,mk, 0d×d,0d) � Extended Kalman filter update

8 end for
9 return (µk,Σk)

N
k=1

10 end procedure

Recall: The state X(t) is a stack of q derivatives X =
[
X(0), X(1), . . . , X(q)]T .

For convenience, define projection matrices Ei to map to the i-th derivative: EiX = X(i).
EXTENDED KALMAN ODE SMOOTHER: Just run a RTS smoother after the filter!

@nathanaelbosch 12

The extended Kalman ODE filter – building blocks
The well-known predict and update steps for (extended) Kalman filtering

Algorithm Kalman filter prediction
1 procedure KF_PREDICT(µ,Σ, A,Q)
2 µP ^ Aµ � Predict mean

3 ΣP ^ AΣA> + Q � Predict covariance

4 return µP,ΣP

5 end procedure

Algorithm Extended Kalman filter update
1 procedure EKF_UPDATE(µ,Σ, h, R, y)
2 ŷ ^ h(µ) � evaluate the observation model

3 H^ Jh(µ) � Jacobian of the observation model

4 S ^HΣH> + R � Measurement covariance

5 K ^ΣH>S−1 � Kalman gain

6 µF ^µ+ K(y − ŷ) � update mean

7 ΣF ^Σ− KSK> � update covariance

8 return µF ,ΣF

9 end procedure

(KF_UPDATE analog but with affine h)

@nathanaelbosch 13

DEMO TIME: The extended Kalman ODE filter in code

demo.jl

@nathanaelbosch 14

Uncertainty calibration or “how to choose prior hyperparameters”
Hyperparameters of the prior have a strong influence on posteriors – so we need to estimate them [Tronarp et al., 2019]

I Problem: The prior hyperparameter σ strongly influences covariances. How to choose it?

I Standard approach: Maximize the marginal likelihood:

σ̂ = arg max p(DPN | σ) = p(z1:N | σ) = p(z1 | σ)
N∏

k=2

p(zk|z1:k−1, σ).

I The EKF provides Gaussian estimates p(zk | z1:k−1) ≈ N (zk; ẑk, Sk).
⇒ Quasi-maximum likelihood estimate:

σ̂ = arg max p(DPN | σ) = arg max
N∑

k=1

log p(zk | z1:k−1, σ)

I In our specific context there is a closed-form solution (proof: [Tronarp et al., 2019]):

σ̂2 =
1

Nd

N∑
i=1

(zi − ẑi)
> S−1

i (zi − ẑi) ,

and we don’t even need to run the filter again! Just adjust the estimated covariances:
Σi ^ σ̂2 · Σi, ∀i ∈ {1, . . . ,N}.

@nathanaelbosch 15

Uncertainty calibration or “how to choose prior hyperparameters”
Hyperparameters of the prior have a strong influence on posteriors – so we need to estimate them [Tronarp et al., 2019]

I Problem: The prior hyperparameter σ strongly influences covariances. How to choose it?
I Standard approach: Maximize the marginal likelihood:

σ̂ = arg max p(DPN | σ) = p(z1:N | σ) = p(z1 | σ)
N∏

k=2

p(zk|z1:k−1, σ).

I The EKF provides Gaussian estimates p(zk | z1:k−1) ≈ N (zk; ẑk, Sk).
⇒ Quasi-maximum likelihood estimate:

σ̂ = arg max p(DPN | σ) = arg max
N∑

k=1

log p(zk | z1:k−1, σ)

I In our specific context there is a closed-form solution (proof: [Tronarp et al., 2019]):

σ̂2 =
1

Nd

N∑
i=1

(zi − ẑi)
> S−1

i (zi − ẑi) ,

and we don’t even need to run the filter again! Just adjust the estimated covariances:
Σi ^ σ̂2 · Σi, ∀i ∈ {1, . . . ,N}.

@nathanaelbosch 15

Uncertainty calibration or “how to choose prior hyperparameters”
Hyperparameters of the prior have a strong influence on posteriors – so we need to estimate them [Tronarp et al., 2019]

I Problem: The prior hyperparameter σ strongly influences covariances. How to choose it?
I Standard approach: Maximize the marginal likelihood:

σ̂ = arg max p(DPN | σ) = p(z1:N | σ) = p(z1 | σ)
N∏

k=2

p(zk|z1:k−1, σ).

I The EKF provides Gaussian estimates p(zk | z1:k−1) ≈ N (zk; ẑk, Sk).
⇒ Quasi-maximum likelihood estimate:

σ̂ = arg max p(DPN | σ) = arg max
N∑

k=1

log p(zk | z1:k−1, σ)

I In our specific context there is a closed-form solution (proof: [Tronarp et al., 2019]):

σ̂2 =
1

Nd

N∑
i=1

(zi − ẑi)
> S−1

i (zi − ẑi) ,

and we don’t even need to run the filter again! Just adjust the estimated covariances:
Σi ^ σ̂2 · Σi, ∀i ∈ {1, . . . ,N}.

@nathanaelbosch 15

Uncertainty calibration or “how to choose prior hyperparameters”
Hyperparameters of the prior have a strong influence on posteriors – so we need to estimate them [Tronarp et al., 2019]

I Problem: The prior hyperparameter σ strongly influences covariances. How to choose it?
I Standard approach: Maximize the marginal likelihood:

σ̂ = arg max p(DPN | σ) = p(z1:N | σ) = p(z1 | σ)
N∏

k=2

p(zk|z1:k−1, σ).

I The EKF provides Gaussian estimates p(zk | z1:k−1) ≈ N (zk; ẑk, Sk).
⇒ Quasi-maximum likelihood estimate:

σ̂ = arg max p(DPN | σ) = arg max
N∑

k=1

log p(zk | z1:k−1, σ)

I In our specific context there is a closed-form solution (proof: [Tronarp et al., 2019]):

σ̂2 =
1

Nd

N∑
i=1

(zi − ẑi)
> S−1

i (zi − ẑi) ,

and we don’t even need to run the filter again! Just adjust the estimated covariances:
Σi ^ σ̂2 · Σi, ∀i ∈ {1, . . . ,N}.

@nathanaelbosch 15

DEMO TIME: Calibrated vs uncalibrated posteriors

demo.jl

@nathanaelbosch 16

Numerically stable implementation: Square-root filtering
When steps get small numerical stability suffers — so better work with matrix square-roots directly [Krämer and Hennig, 2020]

I Problem: The computed covariances can have negative eigenvalues due to finite precision
arithmetic and numerical round-off, in particular with small step sizes. Failure example: demo.jl

I It holds: A matrix M ∈ Rd×d is positive semi-definite if and only if there exists a matrix B ∈ Rd×d

such that M = BB>.
I Kalman filtering and smoothing in square-root form — a minimal derivation:

I Central operation in PREDICT/UPDATE/SMOOTH: M = ABA> + C.
I Predict: ΣP = AΣA> + Q
I Update (in Joseph form): Σ = (I − KH)ΣP(I − KH)> + KRK>

I Smooth (in Joseph form): Λ = (I − GA)Σ(I − GA)> + GΛ+G> + GQG>

I This can be formulated on the square-root level: Let M = ML(ML)
>, B = BL(BL)

>, C = CL(CL)
>:

M = ABA> + C,

⇔ ML(ML)
> = ABL(BL)

>A> + CL(CL)
> =

[
ABL CL

]
·
[
ABL CL

]>
doing QR

([
ABL CL

]>)
⇔ = R>Q>QR = R>R. ⇒ ML := R>

⇒ PREDICT/UPDATE/SMOOTH can be formulated directly on square-roots to preserve PSD-ness!

⇒ To solve ODEs in a stable way, use the square-root Kalman filters / smoothers!

@nathanaelbosch 17

Numerically stable implementation: Square-root filtering
When steps get small numerical stability suffers — so better work with matrix square-roots directly [Krämer and Hennig, 2020]

I Problem: The computed covariances can have negative eigenvalues due to finite precision
arithmetic and numerical round-off, in particular with small step sizes. Failure example: demo.jl

I It holds: A matrix M ∈ Rd×d is positive semi-definite if and only if there exists a matrix
B ∈ Rd×d such that M = BB>.

I Kalman filtering and smoothing in square-root form — a minimal derivation:

I Central operation in PREDICT/UPDATE/SMOOTH: M = ABA> + C.
I Predict: ΣP = AΣA> + Q
I Update (in Joseph form): Σ = (I − KH)ΣP(I − KH)> + KRK>

I Smooth (in Joseph form): Λ = (I − GA)Σ(I − GA)> + GΛ+G> + GQG>

I This can be formulated on the square-root level: Let M = ML(ML)
>, B = BL(BL)

>, C = CL(CL)
>:

M = ABA> + C,

⇔ ML(ML)
> = ABL(BL)

>A> + CL(CL)
> =

[
ABL CL

]
·
[
ABL CL

]>
doing QR

([
ABL CL

]>)
⇔ = R>Q>QR = R>R. ⇒ ML := R>

⇒ PREDICT/UPDATE/SMOOTH can be formulated directly on square-roots to preserve PSD-ness!

⇒ To solve ODEs in a stable way, use the square-root Kalman filters / smoothers!

@nathanaelbosch 17

Numerically stable implementation: Square-root filtering
When steps get small numerical stability suffers — so better work with matrix square-roots directly [Krämer and Hennig, 2020]

I Problem: The computed covariances can have negative eigenvalues due to finite precision
arithmetic and numerical round-off, in particular with small step sizes. Failure example: demo.jl

I It holds: A matrix M ∈ Rd×d is positive semi-definite if and only if there exists a matrix B ∈ Rd×d

such that M = BB>.
I Kalman filtering and smoothing in square-root form — a minimal derivation:

I Central operation in PREDICT/UPDATE/SMOOTH: M = ABA> + C.
I Predict: ΣP = AΣA> + Q
I Update (in Joseph form): Σ = (I − KH)ΣP(I − KH)> + KRK>

I Smooth (in Joseph form): Λ = (I − GA)Σ(I − GA)> + GΛ+G> + GQG>

I This can be formulated on the square-root level: Let M = ML(ML)
>, B = BL(BL)

>, C = CL(CL)
>:

M = ABA> + C,

⇔ ML(ML)
> = ABL(BL)

>A> + CL(CL)
> =

[
ABL CL

]
·
[
ABL CL

]>
doing QR

([
ABL CL

]>)
⇔ = R>Q>QR = R>R. ⇒ ML := R>

⇒ PREDICT/UPDATE/SMOOTH can be formulated directly on square-roots to preserve PSD-ness!
⇒ To solve ODEs in a stable way, use the square-root Kalman filters / smoothers!

@nathanaelbosch 17

Numerically stable implementation: Square-root filtering
When steps get small numerical stability suffers — so better work with matrix square-roots directly [Krämer and Hennig, 2020]

I Problem: The computed covariances can have negative eigenvalues due to finite precision
arithmetic and numerical round-off, in particular with small step sizes. Failure example: demo.jl

I It holds: A matrix M ∈ Rd×d is positive semi-definite if and only if there exists a matrix B ∈ Rd×d

such that M = BB>.
I Kalman filtering and smoothing in square-root form — a minimal derivation:

I Central operation in PREDICT/UPDATE/SMOOTH: M = ABA> + C.
I Predict: ΣP = AΣA> + Q
I Update (in Joseph form): Σ = (I − KH)ΣP(I − KH)> + KRK>

I Smooth (in Joseph form): Λ = (I − GA)Σ(I − GA)> + GΛ+G> + GQG>

I This can be formulated on the square-root level: Let M = ML(ML)
>, B = BL(BL)

>, C = CL(CL)
>:

M = ABA> + C,

⇔ ML(ML)
> = ABL(BL)

>A> + CL(CL)
> =

[
ABL CL

]
·
[
ABL CL

]>
doing QR

([
ABL CL

]>)
⇔ = R>Q>QR = R>R. ⇒ ML := R>

⇒ PREDICT/UPDATE/SMOOTH can be formulated directly on square-roots to preserve PSD-ness!
⇒ To solve ODEs in a stable way, use the square-root Kalman filters / smoothers!

@nathanaelbosch 17

Numerically stable implementation: Square-root filtering
When steps get small numerical stability suffers — so better work with matrix square-roots directly [Krämer and Hennig, 2020]

I Problem: The computed covariances can have negative eigenvalues due to finite precision
arithmetic and numerical round-off, in particular with small step sizes. Failure example: demo.jl

I It holds: A matrix M ∈ Rd×d is positive semi-definite if and only if there exists a matrix B ∈ Rd×d

such that M = BB>.
I Kalman filtering and smoothing in square-root form — a minimal derivation:

I Central operation in PREDICT/UPDATE/SMOOTH: M = ABA> + C.
I Predict: ΣP = AΣA> + Q
I Update (in Joseph form): Σ = (I − KH)ΣP(I − KH)> + KRK>

I Smooth (in Joseph form): Λ = (I − GA)Σ(I − GA)> + GΛ+G> + GQG>

I This can be formulated on the square-root level: Let M = ML(ML)
>, B = BL(BL)

>, C = CL(CL)
>:

M = ABA> + C,

⇔ ML(ML)
> = ABL(BL)

>A> + CL(CL)
> =

[
ABL CL

]
·
[
ABL CL

]>
doing QR

([
ABL CL

]>)
⇔ = R>Q>QR = R>R. ⇒ ML := R>

⇒ PREDICT/UPDATE/SMOOTH can be formulated directly on square-roots to preserve PSD-ness!
⇒ To solve ODEs in a stable way, use the square-root Kalman filters / smoothers!

@nathanaelbosch 17

Numerically stable implementation: Square-root filtering
When steps get small numerical stability suffers — so better work with matrix square-roots directly [Krämer and Hennig, 2020]

I Problem: The computed covariances can have negative eigenvalues due to finite precision
arithmetic and numerical round-off, in particular with small step sizes. Failure example: demo.jl

I It holds: A matrix M ∈ Rd×d is positive semi-definite if and only if there exists a matrix B ∈ Rd×d

such that M = BB>.
I Kalman filtering and smoothing in square-root form — a minimal derivation:

I Central operation in PREDICT/UPDATE/SMOOTH: M = ABA> + C.
I Predict: ΣP = AΣA> + Q
I Update (in Joseph form): Σ = (I − KH)ΣP(I − KH)> + KRK>

I Smooth (in Joseph form): Λ = (I − GA)Σ(I − GA)> + GΛ+G> + GQG>

I This can be formulated on the square-root level: Let M = ML(ML)
>, B = BL(BL)

>, C = CL(CL)
>:

M = ABA> + C,

⇔ ML(ML)
> = ABL(BL)

>A> + CL(CL)
>

=
[
ABL CL

]
·
[
ABL CL

]>
doing QR

([
ABL CL

]>)
⇔ = R>Q>QR = R>R. ⇒ ML := R>

⇒ PREDICT/UPDATE/SMOOTH can be formulated directly on square-roots to preserve PSD-ness!
⇒ To solve ODEs in a stable way, use the square-root Kalman filters / smoothers!

@nathanaelbosch 17

Numerically stable implementation: Square-root filtering
When steps get small numerical stability suffers — so better work with matrix square-roots directly [Krämer and Hennig, 2020]

I Problem: The computed covariances can have negative eigenvalues due to finite precision
arithmetic and numerical round-off, in particular with small step sizes. Failure example: demo.jl

I It holds: A matrix M ∈ Rd×d is positive semi-definite if and only if there exists a matrix B ∈ Rd×d

such that M = BB>.
I Kalman filtering and smoothing in square-root form — a minimal derivation:

I Central operation in PREDICT/UPDATE/SMOOTH: M = ABA> + C.
I Predict: ΣP = AΣA> + Q
I Update (in Joseph form): Σ = (I − KH)ΣP(I − KH)> + KRK>

I Smooth (in Joseph form): Λ = (I − GA)Σ(I − GA)> + GΛ+G> + GQG>

I This can be formulated on the square-root level: Let M = ML(ML)
>, B = BL(BL)

>, C = CL(CL)
>:

M = ABA> + C,

⇔ ML(ML)
> = ABL(BL)

>A> + CL(CL)
> =

[
ABL CL

]
·
[
ABL CL

]>

doing QR
([

ABL CL
]>)

⇔ = R>Q>QR = R>R. ⇒ ML := R>

⇒ PREDICT/UPDATE/SMOOTH can be formulated directly on square-roots to preserve PSD-ness!
⇒ To solve ODEs in a stable way, use the square-root Kalman filters / smoothers!

@nathanaelbosch 17

Numerically stable implementation: Square-root filtering
When steps get small numerical stability suffers — so better work with matrix square-roots directly [Krämer and Hennig, 2020]

I Problem: The computed covariances can have negative eigenvalues due to finite precision
arithmetic and numerical round-off, in particular with small step sizes. Failure example: demo.jl

I It holds: A matrix M ∈ Rd×d is positive semi-definite if and only if there exists a matrix B ∈ Rd×d

such that M = BB>.
I Kalman filtering and smoothing in square-root form — a minimal derivation:

I Central operation in PREDICT/UPDATE/SMOOTH: M = ABA> + C.
I Predict: ΣP = AΣA> + Q
I Update (in Joseph form): Σ = (I − KH)ΣP(I − KH)> + KRK>

I Smooth (in Joseph form): Λ = (I − GA)Σ(I − GA)> + GΛ+G> + GQG>

I This can be formulated on the square-root level: Let M = ML(ML)
>, B = BL(BL)

>, C = CL(CL)
>:

M = ABA> + C,

⇔ ML(ML)
> = ABL(BL)

>A> + CL(CL)
> =

[
ABL CL

]
·
[
ABL CL

]>
doing QR

([
ABL CL

]>)
⇔ = R>Q>QR

= R>R. ⇒ ML := R>

⇒ PREDICT/UPDATE/SMOOTH can be formulated directly on square-roots to preserve PSD-ness!
⇒ To solve ODEs in a stable way, use the square-root Kalman filters / smoothers!

@nathanaelbosch 17

Numerically stable implementation: Square-root filtering
When steps get small numerical stability suffers — so better work with matrix square-roots directly [Krämer and Hennig, 2020]

I Problem: The computed covariances can have negative eigenvalues due to finite precision
arithmetic and numerical round-off, in particular with small step sizes. Failure example: demo.jl

I It holds: A matrix M ∈ Rd×d is positive semi-definite if and only if there exists a matrix B ∈ Rd×d

such that M = BB>.
I Kalman filtering and smoothing in square-root form — a minimal derivation:

I Central operation in PREDICT/UPDATE/SMOOTH: M = ABA> + C.
I Predict: ΣP = AΣA> + Q
I Update (in Joseph form): Σ = (I − KH)ΣP(I − KH)> + KRK>

I Smooth (in Joseph form): Λ = (I − GA)Σ(I − GA)> + GΛ+G> + GQG>

I This can be formulated on the square-root level: Let M = ML(ML)
>, B = BL(BL)

>, C = CL(CL)
>:

M = ABA> + C,

⇔ ML(ML)
> = ABL(BL)

>A> + CL(CL)
> =

[
ABL CL

]
·
[
ABL CL

]>
doing QR

([
ABL CL

]>)
⇔ = R>Q>QR = R>R. ⇒ ML := R>

⇒ PREDICT/UPDATE/SMOOTH can be formulated directly on square-roots to preserve PSD-ness!
⇒ To solve ODEs in a stable way, use the square-root Kalman filters / smoothers!

@nathanaelbosch 17

Numerically stable implementation: Square-root filtering
When steps get small numerical stability suffers — so better work with matrix square-roots directly [Krämer and Hennig, 2020]

I Problem: The computed covariances can have negative eigenvalues due to finite precision
arithmetic and numerical round-off, in particular with small step sizes. Failure example: demo.jl

I It holds: A matrix M ∈ Rd×d is positive semi-definite if and only if there exists a matrix B ∈ Rd×d

such that M = BB>.
I Kalman filtering and smoothing in square-root form — a minimal derivation:

I Central operation in PREDICT/UPDATE/SMOOTH: M = ABA> + C.
I Predict: ΣP = AΣA> + Q
I Update (in Joseph form): Σ = (I − KH)ΣP(I − KH)> + KRK>

I Smooth (in Joseph form): Λ = (I − GA)Σ(I − GA)> + GΛ+G> + GQG>

I This can be formulated on the square-root level: Let M = ML(ML)
>, B = BL(BL)

>, C = CL(CL)
>:

M = ABA> + C,

⇔ ML(ML)
> = ABL(BL)

>A> + CL(CL)
> =

[
ABL CL

]
·
[
ABL CL

]>
doing QR

([
ABL CL

]>)
⇔ = R>Q>QR = R>R. ⇒ ML := R>

⇒ PREDICT/UPDATE/SMOOTH can be formulated directly on square-roots to preserve PSD-ness!

⇒ To solve ODEs in a stable way, use the square-root Kalman filters / smoothers!

@nathanaelbosch 17

Numerically stable implementation: Square-root filtering
When steps get small numerical stability suffers — so better work with matrix square-roots directly [Krämer and Hennig, 2020]

I Problem: The computed covariances can have negative eigenvalues due to finite precision
arithmetic and numerical round-off, in particular with small step sizes. Failure example: demo.jl

I It holds: A matrix M ∈ Rd×d is positive semi-definite if and only if there exists a matrix B ∈ Rd×d

such that M = BB>.
I Kalman filtering and smoothing in square-root form — a minimal derivation:

I Central operation in PREDICT/UPDATE/SMOOTH: M = ABA> + C.
I Predict: ΣP = AΣA> + Q
I Update (in Joseph form): Σ = (I − KH)ΣP(I − KH)> + KRK>

I Smooth (in Joseph form): Λ = (I − GA)Σ(I − GA)> + GΛ+G> + GQG>

I This can be formulated on the square-root level: Let M = ML(ML)
>, B = BL(BL)

>, C = CL(CL)
>:

M = ABA> + C,

⇔ ML(ML)
> = ABL(BL)

>A> + CL(CL)
> =

[
ABL CL

]
·
[
ABL CL

]>
doing QR

([
ABL CL

]>)
⇔ = R>Q>QR = R>R. ⇒ ML := R>

⇒ PREDICT/UPDATE/SMOOTH can be formulated directly on square-roots to preserve PSD-ness!
⇒ To solve ODEs in a stable way, use the square-root Kalman filters / smoothers!

@nathanaelbosch 17

DEMO TIME: Solving on extremely small step sizes with
square-root filtering

demo.jl

@nathanaelbosch 18

Intermediate summary
I ODE solving is state estimation
I We can estimate ODE solutions with extended Kalman filtering/smoothing,

in a stable and calibrated way

Next: Extending ODE filters
1. Flexible information operators: The ODE filter formulation extends to other numerical problems
2. Latent force inference: Joint GP regression on both ODEs and data

@nathanaelbosch 19

Extending ODE filters to other related differential equation problems
ODE filters can solve much more than the ODEs that we saw so far! [Bosch et al., 2022]

Numerical problems setting: Initial value problem with first-order ODE

ẋ(t) = f(x(t), t), x(0) = x0.

This leads to the probabilistic state estimation problem:

Initial distribution: X(0) ∼ N (X(0);µ0,Σ0)

Prior / dynamics model: X(t + h) | X(t) ∼ N (X(t + h); A(h)X(t),Q(h))

ODE likelihood: Z(ti) | X(ti) ∼ δ
(
Z(ti); X(1)(ti)− f(X(0)(ti), ti)

)
, zi , 0

Initial value likelihood: Zinit | X(0) ∼ δ
(
Zinit; X(0)(0)

)
, zinit , x0

The measurement model provides a very flexible way to easily encode desired properties!

@nathanaelbosch 20

Extending ODE filters to other related differential equation problems
ODE filters can solve much more than the ODEs that we saw so far! [Bosch et al., 2022]

Numerical problems setting: Initial value problem with second-order ODE

ẍ(t) = f(ẋ(t), x(t), t), x(0) = x0, ẋ(0) = ẋ0.

This leads to the probabilistic state estimation problem:

Initial distribution: X(0) ∼ N (X(0);µ0,Σ0)

Prior / dynamics model: X(t + h) | X(t) ∼ N (X(t + h); A(h)X(t),Q(h))

ODE likelihood: Z(ti) | X(ti) ∼ δ
(
Z(ti); X(1)(ti)− f(X(0)(ti), ti)

)
, zi , 0

Initial value likelihood: Zinit | X(0) ∼ δ
(
Zinit; X(0)(0)

)
, zinit , x0

The measurement model provides a very flexible way to easily encode desired properties!

@nathanaelbosch 20

Extending ODE filters to other related differential equation problems
ODE filters can solve much more than the ODEs that we saw so far! [Bosch et al., 2022]

Numerical problems setting: Initial value problem with second-order ODE

ẍ(t) = f(ẋ(t), x(t), t), x(0) = x0, ẋ(0) = ẋ0.

This leads to the probabilistic state estimation problem:

Initial distribution: X(0) ∼ N (X(0);µ0,Σ0)

Prior / dynamics model: X(t + h) | X(t) ∼ N (X(t + h); A(h)X(t),Q(h))

ODE likelihood: Z(ti) | X(ti) ∼ δ
(
Z(ti); X(2)(ti)− f(X(1)(ti), X(0)(ti), ti)

)
, zi , 0

Initial value likelihood: Zinit | X(0) ∼ δ
(
Zinit; X(0)(0)

)
, zinit , x0

Initial derivative likelihood: Zinit
1 | X(0)∼ δ

(
Zinit
1 ; X(1)(0)

)
, zinit1 , ẋ0

The measurement model provides a very flexible way to easily encode desired properties!

@nathanaelbosch 20

Extending ODE filters to other related differential equation problems
ODE filters can solve much more than the ODEs that we saw so far! [Bosch et al., 2022]

Numerical problems setting: Initial value problem with differential-algebraic equation (DAE) in
mass-matrix form

Mẋ(t) = f(x(t), t), x(0) = x0.

This leads to the probabilistic state estimation problem:

Initial distribution: X(0) ∼ N (X(0);µ0,Σ0)

Prior / dynamics model: X(t + h) | X(t) ∼ N (X(t + h); A(h)X(t),Q(h))

ODE likelihood: Z(ti) | X(ti) ∼ δ
(
Z(ti); X(1)(ti)− f(X(0)(ti), ti)

)
, zi , 0

Initial value likelihood: Zinit | X(0) ∼ δ
(
Zinit; X(0)(0)

)
, zinit , x0

The measurement model provides a very flexible way to easily encode desired properties!

@nathanaelbosch 20

Extending ODE filters to other related differential equation problems
ODE filters can solve much more than the ODEs that we saw so far! [Bosch et al., 2022]

Numerical problems setting: Initial value problem with differential-algebraic equation (DAE) in
mass-matrix form

Mẋ(t) = f(x(t), t), x(0) = x0.

This leads to the probabilistic state estimation problem:

Initial distribution: X(0) ∼ N (X(0);µ0,Σ0)

Prior / dynamics model: X(t + h) | X(t) ∼ N (X(t + h); A(h)X(t),Q(h))

DAE likelihood: Z(ti) | X(ti) ∼ δ
(
Z(ti);MX(1)(ti)− f(X(0)(ti), ti)

)
, zi , 0

Initial value likelihood: Zinit | X(0) ∼ δ
(
Zinit; X(0)(0)

)
, zinit , x0

The measurement model provides a very flexible way to easily encode desired properties!

@nathanaelbosch 20

Extending ODE filters to other related differential equation problems
ODE filters can solve much more than the ODEs that we saw so far! [Bosch et al., 2022]

Numerical problems setting: Initial value problem with first-order ODE and conserved quantities

ẋ(t) = f(x(t), t), x(0) = x0, g(x(t), ẋ(t)) = 0.

This leads to the probabilistic state estimation problem:

Initial distribution: X(0) ∼ N (X(0);µ0,Σ0)

Prior / dynamics model: X(t + h) | X(t) ∼ N (X(t + h); A(h)X(t),Q(h))

ODE likelihood: Z(ti) | X(ti) ∼ δ
(
Z(ti); X(1)(ti)− f(X(0)(ti), ti)

)
, zi , 0

Initial value likelihood: Zinit | X(0) ∼ δ
(
Zinit; X(0)(0)

)
, zinit , x0

The measurement model provides a very flexible way to easily encode desired properties!

@nathanaelbosch 20

Extending ODE filters to other related differential equation problems
ODE filters can solve much more than the ODEs that we saw so far! [Bosch et al., 2022]

Numerical problems setting: Initial value problem with first-order ODE and conserved quantities

ẋ(t) = f(x(t), t), x(0) = x0, g(x(t), ẋ(t)) = 0.

This leads to the probabilistic state estimation problem:

Initial distribution: X(0) ∼ N (X(0);µ0,Σ0)

Prior / dynamics model: X(t + h) | X(t) ∼ N (X(t + h); A(h)X(t),Q(h))

ODE likelihood: Z(ti) | X(ti) ∼ δ
(
Z(ti); X(1)(ti)− f(X(0)(ti), ti)

)
, zi , 0

Conservation law likelihood: Zc
i (ti) | X(ti)∼ δ

(
Zc
i (ti); g(X

(0)(t), X(1)(t))
)
, zci , 0

Initial value likelihood: Zinit | X(0) ∼ δ
(
Zinit; X(0)(0)

)
, zinit , x0

The measurement model provides a very flexible way to easily encode desired properties!

@nathanaelbosch 20

Extending ODE filters to other related differential equation problems
ODE filters can solve much more than the ODEs that we saw so far! [Bosch et al., 2022]

Numerical problems setting: Initial value problem with first-order ODE and conserved quantities

ẋ(t) = f(x(t), t), x(0) = x0, g(x(t), ẋ(t)) = 0.

This leads to the probabilistic state estimation problem:

Initial distribution: X(0) ∼ N (X(0);µ0,Σ0)

Prior / dynamics model: X(t + h) | X(t) ∼ N (X(t + h); A(h)X(t),Q(h))

ODE likelihood: Z(ti) | X(ti) ∼ δ
(
Z(ti); X(1)(ti)− f(X(0)(ti), ti)

)
, zi , 0

Conservation law likelihood: Zc
i (ti) | X(ti)∼ δ

(
Zc
i (ti); g(X

(0)(t), X(1)(t))
)
, zci , 0

Initial value likelihood: Zinit | X(0) ∼ δ
(
Zinit; X(0)(0)

)
, zinit , x0

The measurement model provides a very flexible way to easily encode desired properties!

@nathanaelbosch 20

Extending ODE filters to other related differential equation problems
ODE filters can solve much more than the ODEs that we saw so far! [Bosch et al., 2022]

Numerical problems setting: Initial value problem with first-order ODE and conserved quantities

ẋ(t) = f(x(t), t), x(0) = x0, g(x(t), ẋ(t)) = 0.

This leads to the probabilistic state estimation problem:

Initial distribution: X(0) ∼ N (X(0);µ0,Σ0)

Prior / dynamics model: X(t + h) | X(t) ∼ N (X(t + h); A(h)X(t),Q(h))

ODE likelihood: Z(ti) | X(ti) ∼ δ
(
Z(ti); X(1)(ti)− f(X(0)(ti), ti)

)
, zi , 0

Conservation law likelihood: Zc
i (ti) | X(ti)∼ δ

(
Zc
i (ti); g(X

(0)(t), X(1)(t))
)
, zci , 0

Initial value likelihood: Zinit | X(0) ∼ δ
(
Zinit; X(0)(0)

)
, zinit , x0

The measurement model provides a very flexible way to easily encode desired properties!
@nathanaelbosch 20

DEMO TIME: Solving a second-order ODE

demo.jl

@nathanaelbosch 21

Next: Combine ODEs and GP regression via latent force inference

@nathanaelbosch 22

Latent force inference: GP regression on both ODEs and data
An example we know all too well: COVID-19 Paper: [Schmidt et al., 2021]

2020-01 2020-03 2020-05 2020-07 2020-09 2020-11 2021-01 2021-03 2021-05 2021-07
0

1

2

3

4

5

In
fe

ct
ed

ODE dynamics:

d
dt

S(t)
I(t)
R(t)
D(t)

 =

−β · S(t)I(t)/P

β · S(t)I(t)/P − γI(t)− ηI(t)
γI(t)
ηI(t)

Latent force model: Gauss–Markov prior

β(t + h) | β(t) ∼ N (Aβ(h)β(t),Qβ(h))

Data:

yi | x(ti) ∼ N
(
Hx(ti), σ2I

)

@nathanaelbosch 23

Latent force inference: GP regression on both ODEs and data
An example we know all too well: COVID-19 Paper: [Schmidt et al., 2021]

2020-01 2020-03 2020-05 2020-07 2020-09 2020-11 2021-01 2021-03 2021-05 2021-07
0

1

2

3

4

5

In
fe

ct
ed

ODE dynamics:

d
dt

S(t)
I(t)
R(t)
D(t)

 =

−β · S(t)I(t)/P

β · S(t)I(t)/P − γI(t)− ηI(t)
γI(t)
ηI(t)

Latent force model: Gauss–Markov prior

β(t + h) | β(t) ∼ N (Aβ(h)β(t),Qβ(h))

Data:

yi | x(ti) ∼ N
(
Hx(ti), σ2I

)

@nathanaelbosch 23

Latent force inference: GP regression on both ODEs and data
An example we know all too well: COVID-19 Paper: [Schmidt et al., 2021]

2020-01 2020-03 2020-05 2020-07 2020-09 2020-11 2021-01 2021-03 2021-05 2021-07
0

1

2

3

4

5

In
fe

ct
ed

ODE dynamics with time-varying contact rate:

d
dt

S(t)
I(t)
R(t)
D(t)

 =

−β(t) · S(t)I(t)/P

β(t) · S(t)I(t)/P − γI(t)− ηI(t)
γI(t)
ηI(t)

Latent force model: Gauss–Markov prior

β(t + h) | β(t) ∼ N (Aβ(h)β(t),Qβ(h))

Data:

yi | x(ti) ∼ N
(
Hx(ti), σ2I

)

@nathanaelbosch 23

Latent force inference: GP regression on both ODEs and data
An example we know all too well: COVID-19 Paper: [Schmidt et al., 2021]

2020-01 2020-03 2020-05 2020-07 2020-09 2020-11 2021-01 2021-03 2021-05 2021-07
0

1

2

3

4

5

In
fe

ct
ed

ODE dynamics with time-varying contact rate:

d
dt

S(t)
I(t)
R(t)
D(t)

 =

−β(t) · S(t)I(t)/P

β(t) · S(t)I(t)/P − γI(t)− ηI(t)
γI(t)
ηI(t)

Latent force model: Gauss–Markov prior

β(t + h) | β(t) ∼ N (Aβ(h)β(t),Qβ(h))

Data:

yi | x(ti) ∼ N
(
Hx(ti), σ2I

)
@nathanaelbosch 23

Latent force inference: GP regression on both ODEs and data
Once again we can just build a custom state-space model for the problem setup of interest Paper: [Schmidt et al., 2021]

Initial value problem:

ẋ(t) = f(x(t), t), x(0) = x0.

External observations / data:

yi = Hx(ti) + εi, εi ∼ N (0, σ2).

Latent Gauss–Markov process:

β(t + h) | β(t) ∼ N
(
Aβ(h)β(t), σ2

βQβ(h)
)
.

ODE filter setup:

System State

X0 . . . Xk−1 Xk Xk+1
. . . XT

PN Observations (ODE and initial values)

Zi Z0 . . . Zk−1 Zk Zk+1
. . . ZT

External Data

. . . Yn . . . YN

Latent force

β0 . . . βk−1 βk βk+1 . . . βT

Again: This is just state-space model

⇒ inference with EKF/EKS!

@nathanaelbosch 24

Latent force inference: GP regression on both ODEs and data
Once again we can just build a custom state-space model for the problem setup of interest Paper: [Schmidt et al., 2021]

Initial value problem:

ẋ(t) = f(x(t), t), x(0) = x0.

External observations / data:

yi = Hx(ti) + εi, εi ∼ N (0, σ2).

Latent Gauss–Markov process:

β(t + h) | β(t) ∼ N
(
Aβ(h)β(t), σ2

βQβ(h)
)
.

ODE filter setup:

System State

X0 . . . Xk−1 Xk Xk+1
. . . XT

PN Observations (ODE and initial values)

Zi Z0 . . . Zk−1 Zk Zk+1
. . . ZT

External Data

. . . Yn . . . YN

Latent force

β0 . . . βk−1 βk βk+1 . . . βT

Again: This is just state-space model

⇒ inference with EKF/EKS!

@nathanaelbosch 24

Latent force inference: GP regression on both ODEs and data
Once again we can just build a custom state-space model for the problem setup of interest Paper: [Schmidt et al., 2021]

Initial value problem:

ẋ(t) = f(x(t), β(t), t), x(0) = x0.

External observations / data:

yi = Hx(ti) + εi, εi ∼ N (0, σ2).

Latent Gauss–Markov process:

β(t + h) | β(t) ∼ N
(
Aβ(h)β(t), σ2

βQβ(h)
)
.

ODE filter setup:

System State

X0 . . . Xk−1 Xk Xk+1
. . . XT

PN Observations (ODE and initial values)

Zi Z0 . . . Zk−1 Zk Zk+1
. . . ZT

External Data

. . . Yn . . . YN

Latent force

β0 . . . βk−1 βk βk+1 . . . βT

Again: This is just state-space model

⇒ inference with EKF/EKS!

@nathanaelbosch 24

Latent force inference: GP regression on both ODEs and data
Once again we can just build a custom state-space model for the problem setup of interest Paper: [Schmidt et al., 2021]

Initial value problem:

ẋ(t) = f(x(t), β(t), t), x(0) = x0.

External observations / data:

yi = Hx(ti) + εi, εi ∼ N (0, σ2).

Latent Gauss–Markov process:

β(t + h) | β(t) ∼ N
(
Aβ(h)β(t), σ2

βQβ(h)
)
.

ODE filter setup:

System State

X0 . . . Xk−1 Xk Xk+1
. . . XT

PN Observations (ODE and initial values)

Zi Z0 . . . Zk−1 Zk Zk+1
. . . ZT

External Data

. . . Yn . . . YN

Latent force

β0 . . . βk−1 βk βk+1 . . . βT

Again: This is just state-space model

⇒ inference with EKF/EKS!

@nathanaelbosch 24

Latent force inference: GP regression on both ODEs and data
Once again we can just build a custom state-space model for the problem setup of interest Paper: [Schmidt et al., 2021]

Initial value problem:

ẋ(t) = f(x(t), β(t), t), x(0) = x0.

External observations / data:

yi = Hx(ti) + εi, εi ∼ N (0, σ2).

Latent Gauss–Markov process:

β(t + h) | β(t) ∼ N
(
Aβ(h)β(t), σ2

βQβ(h)
)
.

ODE filter setup:

System State

X0 . . . Xk−1 Xk Xk+1
. . . XT

PN Observations (ODE and initial values)

Zi Z0 . . . Zk−1 Zk Zk+1
. . . ZT

External Data

. . . Yn . . . YN

Latent force

β0 . . . βk−1 βk βk+1 . . . βT

Again: This is just state-space model ⇒ inference with EKF/EKS!

@nathanaelbosch 24

Latent force inference: Writing down the state estimation problem
Formalities Paper: [Schmidt et al., 2021]

Formally we obtain the probabilistic state estimation problem:

State initial distribution: X(0) ∼ N (µ0,Σ0)

State dynamics: X(t + h) | X(t) ∼ N (A(h)X(t),Q(h))

Latent force initial distribution: β(0) ∼ N
(
µβ
0 ,Σ

β
0

)
Latent force dynamics: β(t + h) | β(t) ∼ N (Aβ(h)β(t),Qβ(h))

ODE likelihood: Z(ti) | X(ti), β(ti) ∼ δ
(
X(1)(ti)− f(X(0)(ti), β(ti), ti)

)
, zi , 0

Initial value likelihood: Zinit | X(0) ∼ δ
(
X(0)(0)

)
, zinit , x0

Data likelihood: Yi | X(ti) ∼ N
(
HX(0)(ti), σ2I

)
, yi ∈ Dy

@nathanaelbosch 25

Latent force inference: Writing down the state estimation problem
Formalities Paper: [Schmidt et al., 2021]

Formally we obtain the probabilistic state estimation problem, simplified by stacking X̃ = [X, β]:

Initial distribution: X̃(0) ∼ N
(
µ̃0, Σ̃0

)
Prior / dynamics model: X̃(t + h) | X̃(t) ∼ N

(
Ã(h)X̃(t), Q̃(h)

)
ODE likelihood: Z(ti) | X̃(ti) ∼ δ

(
E1X̃(ti)− f(E0X̃(ti), Eβ X̃(ti), ti)

)
, zi , 0

Initial value likelihood: Zinit | X̃(0) ∼ δ
(
E0X̃(0)

)
, zinit , x0

Data likelihood: Yi | X̃(ti) ∼ N
(
HE0X̃(ti), σ2I

)
, yi ∈ Dy

with E0X̃ := X(0), E1X̃ := X(1), Eβ X̃ := β.

@nathanaelbosch 26

Latent force inference: Results
Posteriors over infections and contact rates in a single forward-backward pass Paper: [Schmidt et al., 2021]

0

5

Co
un

ts
 I

[c
pt

]

Jan May Aug Nov Feb Jun
0.0

0.6

β

@nathanaelbosch 27

Outlook

@nathanaelbosch 28

Other facts and further reading

Probabilistic Numerics: Computation as Machine Learning
Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022

References for topics not covered today:
I ODE filter theory and details:

I Convergence rates: [Kersting et al., 2020, Tronarp et al., 2021]
I Other filtering algorithms (e.g. IEKS and particle filter): [Tronarp et al., 2019, Tronarp et al., 2021]
I Step-size adaptation and more calibration: [Bosch et al., 2021]
I Scaling ODE filters to high dimensions: [Krämer et al., 2022]

I More related differential equation problems:
I Boundary value problems (BVPs): [Krämer and Hennig, 2021]
I Partial differential equations (PDEs): [Krämer et al., 2022]

I Inverse problems
I Parameter inference in ODEs with ODE filters: [Tronarp et al., 2022]
I Efficient latent force inference: [Schmidt et al., 2021]

@nathanaelbosch 29

Other facts and further reading

Probabilistic Numerics: Computation as Machine Learning
Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022

References for topics not covered today:
I ODE filter theory and details:

I Convergence rates: [Kersting et al., 2020, Tronarp et al., 2021]
I Other filtering algorithms (e.g. IEKS and particle filter): [Tronarp et al., 2019, Tronarp et al., 2021]
I Step-size adaptation and more calibration: [Bosch et al., 2021]
I Scaling ODE filters to high dimensions: [Krämer et al., 2022]

I More related differential equation problems:
I Boundary value problems (BVPs): [Krämer and Hennig, 2021]
I Partial differential equations (PDEs): [Krämer et al., 2022]

I Inverse problems
I Parameter inference in ODEs with ODE filters: [Tronarp et al., 2022]
I Efficient latent force inference: [Schmidt et al., 2021]

@nathanaelbosch 29

Summary
I ODE solving is state estimation

⇒ treat initial value problems as state estimation problems
I “ODE filters”: How to solve ODEs with Bayesian filtering and smoothing
I Bells and whistles: Uncertainty calibration & Square-root filtering
I Flexible information operators to solve more than just standard ODEs
I Latent force inference: Joint GP regression on both ODEs and data

Software packages https://github.com/nathanaelbosch/ProbNumDiffEq.jl
]add ProbNumDiffEq

https://github.com/probabilistic-numerics/probnum

pip install probnum

https://github.com/pnkraemer/probdiffeq
pip install probdiffeq

@nathanaelbosch 30

https://github.com/nathanaelbosch/ProbNumDiffEq.jl
https://github.com/probabilistic-numerics/probnum
https://github.com/pnkraemer/probdiffeq

Bibliography I

I Bosch, N., Hennig, P., and Tronarp, F. (2021).
Calibrated adaptive probabilistic ODE solvers.
In Banerjee, A. and Fukumizu, K., editors, Proceedings of The 24th International Conference on Artificial
Intelligence and Statistics, volume 130 of Proceedings of Machine Learning Research, pages
3466–3474. PMLR.

I Bosch, N., Tronarp, F., and Hennig, P. (2022).
Pick-and-mix information operators for probabilistic ODE solvers.
In Camps-Valls, G., Ruiz, F. J. R., and Valera, I., editors, Proceedings of The 25th International
Conference on Artificial Intelligence and Statistics, volume 151 of Proceedings of Machine Learning
Research, pages 10015–10027. PMLR.

I Kersting, H., Sullivan, T. J., and Hennig, P. (2020).
Convergence rates of gaussian ode filters.
Statistics and Computing, 30(6):1791–1816.

@nathanaelbosch 31

Bibliography II

I Krämer, N., Bosch, N., Schmidt, J., and Hennig, P. (2022).
Probabilistic ODE solutions in millions of dimensions.
In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., and Sabato, S., editors, Proceedings of the
39th International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pages 11634–11649. PMLR.

I Krämer, N. and Hennig, P. (2020).
Stable implementation of probabilistic ode solvers.
CoRR.

I Krämer, N. and Hennig, P. (2021).
Linear-time probabilistic solution of boundary value problems.
In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W., editors, Advances in Neural
Information Processing Systems, volume 34, pages 11160–11171. Curran Associates, Inc.

@nathanaelbosch 32

Bibliography III

I Krämer, N., Schmidt, J., and Hennig, P. (2022).
Probabilistic numerical method of lines for time-dependent partial differential equations.
In Camps-Valls, G., Ruiz, F. J. R., and Valera, I., editors, Proceedings of The 25th International
Conference on Artificial Intelligence and Statistics, volume 151 of Proceedings of Machine Learning
Research, pages 625–639. PMLR.

I Schmidt, J., Krämer, N., and Hennig, P. (2021).
A probabilistic state space model for joint inference from differential equations and data.
In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W., editors, Advances in Neural
Information Processing Systems, volume 34, pages 12374–12385. Curran Associates, Inc.

I Tronarp, F., Bosch, N., and Hennig, P. (2022).
Fenrir: Physics-enhanced regression for initial value problems.
In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., and Sabato, S., editors, Proceedings of the
39th International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pages 21776–21794. PMLR.

@nathanaelbosch 33

Bibliography IV

I Tronarp, F., Kersting, H., Särkkä, S., and Hennig, P. (2019).
Probabilistic solutions to ordinary differential equations as nonlinear bayesian filtering: a new
perspective.
Stat. Comput., 29(6):1297–1315.

I Tronarp, F., Särkkä, S., and Hennig, P. (2021).
Bayesian ode solvers: the maximum a posteriori estimate.
Statistics and Computing, 31(3):23.

@nathanaelbosch 34

BACKUP

@nathanaelbosch 35

Background: Bayesian State Estimation with
Extended Kalman filtering and smoothing

@nathanaelbosch 36

Background: Extended Kalman filtering and smoothing
Bayesian filters and smoothers estimate an unknown state (often continuous) from observations

Non-linear Gaussian state-estimation problem:

Initial distribution: x0 ∼ N (x0;µ0,Σ0) ,

Prior / dynamics: xi+1 | xi ∼ N (xi+1; f(xi),Qi) ,

Likelihood / measurement: yi | xi ∼ N (yi;m(xi), Ri) ,

Data: D = {yi}N
i=1.

The extended Kalman filter/smoother (EKF/EKS) recursively
computes Gaussian approximations:

Predict: p(xi | y1:i−1) ≈ N (xi;µP
i ,Σ

P
i),

Filter: p(xi | y1:i) ≈ N (xi;µi,Σi),

Smooth: p(xi | y1:N) ≈ N (xi;µS
i ,Σ

S
i),

Likelihood: p(yi | y1:i−1) ≈ N (yi; ŷi, Si).

PREDICT

µP
i+1 = f(µi),

ΣP
i+1 = Jf(µi)ΣiJf(µi)

> + Qi.

UPDATE

ẑi = m(µP
i),

Si = Jm(µ
P
i)Σ

P
i Jm(µ

P
i)

> + Ri,

Ki = ΣP
i Jm(µ

P
i)

>S−1
i ,

µi = µP
i + Ki (zi − ẑi) ,

Σi = ΣP
i − KiSiK>

i .

Similarly SMOOTH.

@nathanaelbosch 37

Background: Extended Kalman filtering and smoothing
Bayesian filters and smoothers estimate an unknown state (often continuous) from observations

Non-linear Gaussian state-estimation problem:

Initial distribution: x0 ∼ N (x0;µ0,Σ0) ,

Prior / dynamics: xi+1 | xi ∼ N (xi+1; f(xi),Qi) ,

Likelihood / measurement: yi | xi ∼ N (yi;m(xi), Ri) ,

Data: D = {yi}N
i=1.

The extended Kalman filter/smoother (EKF/EKS) recursively
computes Gaussian approximations:

Predict: p(xi | y1:i−1) ≈ N (xi;µP
i ,Σ

P
i),

Filter: p(xi | y1:i) ≈ N (xi;µi,Σi),

Smooth: p(xi | y1:N) ≈ N (xi;µS
i ,Σ

S
i),

Likelihood: p(yi | y1:i−1) ≈ N (yi; ŷi, Si).

PREDICT

µP
i+1 = f(µi),

ΣP
i+1 = Jf(µi)ΣiJf(µi)

> + Qi.

UPDATE

ẑi = m(µP
i),

Si = Jm(µ
P
i)Σ

P
i Jm(µ

P
i)

> + Ri,

Ki = ΣP
i Jm(µ

P
i)

>S−1
i ,

µi = µP
i + Ki (zi − ẑi) ,

Σi = ΣP
i − KiSiK>

i .

Similarly SMOOTH.

@nathanaelbosch 37

Background: Extended Kalman filtering and smoothing
Bayesian filters and smoothers estimate an unknown state (often continuous) from observations

Non-linear Gaussian state-estimation problem:

Initial distribution: x0 ∼ N (x0;µ0,Σ0) ,

Prior / dynamics: xi+1 | xi ∼ N (xi+1; f(xi),Qi) ,

Likelihood / measurement: yi | xi ∼ N (yi;m(xi), Ri) ,

Data: D = {yi}N
i=1.

The extended Kalman filter/smoother (EKF/EKS) recursively
computes Gaussian approximations:

Predict: p(xi | y1:i−1) ≈ N (xi;µP
i ,Σ

P
i),

Filter: p(xi | y1:i) ≈ N (xi;µi,Σi),

Smooth: p(xi | y1:N) ≈ N (xi;µS
i ,Σ

S
i),

Likelihood: p(yi | y1:i−1) ≈ N (yi; ŷi, Si).

PREDICT

µP
i+1 = f(µi),

ΣP
i+1 = Jf(µi)ΣiJf(µi)

> + Qi.

UPDATE

ẑi = m(µP
i),

Si = Jm(µ
P
i)Σ

P
i Jm(µ

P
i)

> + Ri,

Ki = ΣP
i Jm(µ

P
i)

>S−1
i ,

µi = µP
i + Ki (zi − ẑi) ,

Σi = ΣP
i − KiSiK>

i .

Similarly SMOOTH.

@nathanaelbosch 37

Background: Extended Kalman filtering and smoothing
Bayesian filters and smoothers estimate an unknown state (often continuous) from observations

Non-linear Gaussian state-estimation problem:

Initial distribution: x0 ∼ N (x0;µ0,Σ0) ,

Prior / dynamics: xi+1 | xi ∼ N (xi+1; f(xi),Qi) ,

Likelihood / measurement: yi | xi ∼ N (yi;m(xi), Ri) ,

Data: D = {yi}N
i=1.

The extended Kalman filter/smoother (EKF/EKS) recursively
computes Gaussian approximations:

Predict: p(xi | y1:i−1) ≈ N (xi;µP
i ,Σ

P
i),

Filter: p(xi | y1:i) ≈ N (xi;µi,Σi),

Smooth: p(xi | y1:N) ≈ N (xi;µS
i ,Σ

S
i),

Likelihood: p(yi | y1:i−1) ≈ N (yi; ŷi, Si).

PREDICT

µP
i+1 = f(µi),

ΣP
i+1 = Jf(µi)ΣiJf(µi)

> + Qi.

UPDATE

ẑi = m(µP
i),

Si = Jm(µ
P
i)Σ

P
i Jm(µ

P
i)

> + Ri,

Ki = ΣP
i Jm(µ

P
i)

>S−1
i ,

µi = µP
i + Ki (zi − ẑi) ,

Σi = ΣP
i − KiSiK>

i .

Similarly SMOOTH.

@nathanaelbosch 37

Background: Extended Kalman filtering and smoothing
Bayesian filters and smoothers estimate an unknown state (often continuous) from observations

Non-linear Gaussian state-estimation problem:

Initial distribution: x0 ∼ N (x0;µ0,Σ0) ,

Prior / dynamics: xi+1 | xi ∼ N (xi+1; f(xi),Qi) ,

Likelihood / measurement: yi | xi ∼ N (yi;m(xi), Ri) ,

Data: D = {yi}N
i=1.

The extended Kalman filter/smoother (EKF/EKS) recursively
computes Gaussian approximations:

Predict: p(xi | y1:i−1) ≈ N (xi;µP
i ,Σ

P
i),

Filter: p(xi | y1:i) ≈ N (xi;µi,Σi),

Smooth: p(xi | y1:N) ≈ N (xi;µS
i ,Σ

S
i),

Likelihood: p(yi | y1:i−1) ≈ N (yi; ŷi, Si).

PREDICT

µP
i+1 = f(µi),

ΣP
i+1 = Jf(µi)ΣiJf(µi)

> + Qi.

UPDATE

ẑi = m(µP
i),

Si = Jm(µ
P
i)Σ

P
i Jm(µ

P
i)

> + Ri,

Ki = ΣP
i Jm(µ

P
i)

>S−1
i ,

µi = µP
i + Ki (zi − ẑi) ,

Σi = ΣP
i − KiSiK>

i .

Similarly SMOOTH.
@nathanaelbosch 37

On linearization strategies and their influence on A-Stability
We can actually approximate the Jacobian in the EKF and still get sensible results / algorithms! [Tronarp et al., 2019]

I Measurement model: m(X(t), t) = X(1)(t)− f(X(0)(t), t)
I A standard extended Kalman filter computes the Jacobian of the measurement mode:

Jm(ξ) = E1 − Jf(E0ξ, t)E0
⇒ This algorithm is often called EK1.

I Turns out the following also works: Jf ≈ 0 and then Jm(ξ) ≈ E1
⇒ The resulting algorithm is often called EK0.

A comparison of EK1 and EK0:

Jacobian type A-stable uncertainties speed
EK1 H = E1 − Jf(E0µp)E0 semi-implicit yes more expressive slower (O(Nd3q3))
EK0 H = E1 explicit no simpler faster (O(Ndq3))

@nathanaelbosch 38

Prior: The q-times integrated Wiener process
A very convenient prior with closed-form transition densities

I q-times integrated Wiener process prior: X(t) ∼ IWP(q)

dX(i)(t) = X(i+1)(t) dt, i = 0, . . . , q− 1,

dX(q)(t) = σ dW(t),
X(0) ∼ N (µ0,Σ0).

I Corresponds to Taylor-polynomial + perturbation:

X(0)(t) =
q∑

m=0

X(m)(0)
tm

m!
+ σ

∫ t

0

t − τ

q!
dW(τ)

@nathanaelbosch 39

