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Background
I Ordinary differential equations and how to solve them
I State estimation with extended Kalman filtering & smoothing

Central statement: ODE solving is state estimation
I “ODE filters”: How to solve ODEs with extended Kalman filtering and smoothing
I Bells and whistles to make ODE filters work even better

I Uncertainty calibration
I Square-root filtering

Fun with ODE filters
I Generalizing ODE filters to other related problems (higher-order ODEs, DAEs, …)
I Latent force inference: Joint GP regression on both ODEs and data
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Background: Ordinary Differential Equations and how to solve them
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẋ(t) = f (x(t), t)
with t ∈ [0, T], vector field f : Rd × R_Rd , and initial value x(0) = x0. Goal: “Find x”.

I Simple example: Logistic ODE

ẋ(t) = x(t) (1− x(t)) , t ∈ [0, 10], x(0) = 0.1.

Numerical ODE solvers:

I Forward Euler:
x̂(t + h) = x̂(t) + hf(x̂(t), t)

I Backward Euler:
x̂(t + h) = x̂(t) + hf(x̂(t + h), t + h)

I Runge–Kutta:
x̂(t + h) = x̂(t) + h

∑s
i=1 bif(x̃i, t + cih)

I Multistep:
x̂(t + h) = x̂(t) + h

∑s−1
i=0 bif(x̂(t − ih), t − ih)

Forward Euler for different step sizes:
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⇒ It is “correct” only in the limit h_ 0!
Numerical ODE solvers estimate x(t) by evaluating f on a discrete set of points.
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ẋ(t) = f (x(t), t)
with t ∈ [0, T], vector field f : Rd × R_Rd , and initial value x(0) = x0. Goal: “Find x”.

Numerical ODE solvers:
I Forward Euler:

x̂(t + h) = x̂(t) + hf(x̂(t), t)

I Backward Euler:
x̂(t + h) = x̂(t) + hf(x̂(t + h), t + h)

I Runge–Kutta:
x̂(t + h) = x̂(t) + h

∑s
i=1 bif(x̃i, t + cih)

I Multistep:
x̂(t + h) = x̂(t) + h

∑s−1
i=0 bif(x̂(t − ih), t − ih)

Forward Euler for different step sizes:

0.0

0.5

1.0

P(
t)

step size = 0.5

0.0

0.5

1.0

P(
t)

step size = 0.1

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
t

0.0

0.5

1.0

P(
t)

step size = 0.01

⇒ It is “correct” only in the limit h_ 0!
Numerical ODE solvers estimate x(t) by evaluating f on a discrete set of points.

@nathanaelbosch 3



Background: Ordinary Differential Equations and how to solve them
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field
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Probabilistic numerical ODE solutions
or “How to treat ODEs as the state estimation problem that they really are”
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Probabilistic numerical ODE solutions
or “How to treat ODEs as the state estimation problem that they really are”

p
(
x(t)

∣∣ x(0) = x0, {ẋ(tn) = f (x(tn), tn)}N
n=1

)
To solve an ODE with Gaussian filtering and smoothing, we need:

1. Prior:
2. Likelihood:
3. Data:
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Prior: General Gauss–Markov processes
See also: Särkkä & Solin, “Applied Stochastic Differential Equations”, 2013

I Continuous Gauss–Markov prior: Let X(t) = [X(0)(t), X(1)(t), . . . , X(q)(t)]> be the solution of a
linear time-invariant (LTI) stochastic differential equation (SDE):

dX(t) = FX(t) dt + Γ dW(t),
X(0) ∼ N (µ0,Σ0),

with F such that dX(i)(t) = X(i+1)(t)dt. Then, we use X(i)(t) to model the i-th derivative of x(t).
Examples: Integrated Wiener process, Integrated Ornstein–Uhlenbeck process, Matérn process.

I Discrete transition densities: X(t) can be described in discrete time with

X(t + h) | X(t) ∼ N (X(t + h); A(h)X(t),Q(h)) ,

where (A(h),Q(h)) are given by

A(h) = exp (Fh) , Q(h) =
∫ h

0

A(h− τ)ΓΓ>A(h− τ)> dτ.

The transition matrices (A(h),Q(h)) can be computed with the “matrix fraction decomposition”;
see for instance Särkkä & Solin, “Applied Stochastic Differential Equations”, 2013.
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Prior: The q-times integrated Wiener process
A very convenient prior with closed-form transition densities

I q-times integrated Wiener process prior: X(t) ∼ IWP(q)

dX(i)(t) = X(i+1)(t) dt, i = 0, . . . , q− 1,

dX(q)(t) = σ dW(t),
X(0) ∼ N (µ0,Σ0).

I Discrete-time transitions:

X(t + h) | X(t) ∼ N
(
X(t + h); A(h)X(t), σ2Q(h)

)
,

[A(h)]ij = Ii≤j
hj−i

(j − i)!
,

[Q(h)]ij =
h2q+1−i−j

(2q+ 1− i − j)(q− i)!(q− j)!
,

for any i, j = 0, . . . , q. (one-dimensional case).
(proof: [Kersting et al., 2020])

I Example: IWP(2)
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Probabilistic numerical ODE solutions
How to treat ODEs as the state estimation problem that they really are

p
(
x(t)

∣∣ x(0) = x0, {ẋ(tn) = f (x(tn), tn)}N
n=1

)
To solve an ODE with Gaussian filtering and smoothing, we need:

1. Prior: q-times integrated Wiener process prior

X(t + h) | X(t) ∼ N
(
X(t + h); A(h)X(t), σ2Q(h)

)
2. Likelihood:
3. Data:
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The likelihood model and the data
The likelihood and data relate the prior to the desired posterior: the numerical ODE solution

I Ideal but intractable goal: Want x(t) to satisfy the ODE

ẋ(t) = f (x(t), t)

using X(t)⇔ X(1)(t) = f
(
X(0)(t), t

)
using x(t)⇔ 0 = X(1)(t)− f

(
X(0)(t), t

)
=: m(X(t), t).

I Easier goal: Satisfy the ODE on a discrete time grid

ẋ(ti) = f(x(ti), ti), ti ∈ T = {ti}N
i=1 ⊂ [0, T],

⇔ m(X(ti), ti) = 0

I This motivates a measurement model and data:

Z(ti) | X(ti) ∼ (m(X(ti), ti))

zi, 0, i = 1, . . . ,N.

where zi is a realization of Z(ti).

(δ is the Dirac distribution)

Example: Logistic ODE ẋ = x(1− x)

(here: Z = X(1) − X(0)(1− X(0)))

Spoiler: This is the thing we want!
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(here: Z = X(1) − X(0)(1− X(0)))

Spoiler: This is the thing we want!

@nathanaelbosch 9



The likelihood model and the data
The likelihood and data relate the prior to the desired posterior: the numerical ODE solution

I Ideal but intractable goal: Want x(t) to satisfy the ODE
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(here: Z = X(1) − X(0)(1− X(0)))

Spoiler: This is the thing we want!

@nathanaelbosch 9



The likelihood model and the data
The likelihood and data relate the prior to the desired posterior: the numerical ODE solution

I Ideal but intractable goal: Want x(t) to satisfy the ODE

ẋ(t) = f (x(t), t)
using X(t)⇔ X(1)(t) = f

(
X(0)(t), t

)
using x(t)⇔ 0 = X(1)(t)− f

(
X(0)(t), t

)
=: m(X(t), t).

I Easier goal: Satisfy the ODE on a discrete time grid
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Probabilistic numerical ODE solutions
How to treat ODEs as the state estimation problem that they really are

p
(
x(t)

∣∣ x(0) = x0, {ẋ(tn) = f (x(tn), tn)}N
n=1

)
To solve an ODE with Gaussian filtering and smoothing, we need:

1. Prior: q-times integrated Wiener process prior:

X(t + h) | X(t) ∼ N (A(h)X(t),Q(h))

2. Likelihood: Z(t) | X(t) ∼ δ
(
X(1)(t)− f(X(0)(t), t)

)
3. Data: DPN = {zi}, with (Z(ti) =)zi = 0 on a discrete time grid ti ∈ T.

This describes a state estimation problem ⇒ solve with EKF/EKS!
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The extended Kalman ODE filter – the state-space model
Bringing the last slides all together

For a given initial value problem ẋ(t) = f(x(t), t) on [0, T] with x(0) = x0, we have:

Initial distribution: X(0) ∼ N (X(0);µ0,Σ0)

Prior / dynamics model: X(t + h) | X(t) ∼ N (X(t + h); A(h)X(t),Q(h))

Likelihood / measurement model: Z(ti) | X(ti) ∼ δ
(
Z(ti); X(1)(ti)− f(X(0)(ti), ti)

)
Data: zi , 0, i = 1, . . . ,N.

One thing is still missing: What about the initial value?? Just add another measurement at t = 0:

Zinit | X(0) ∼ δ
(
Zinit; X(0)(0)

)
, zinit , x0.
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For a given initial value problem ẋ(t) = f(x(t), t) on [0, T] with x(0) = x0, we have:

Initial distribution: X(0) ∼ N (X(0);µ0,Σ0)

Prior / dynamics model: X(t + h) | X(t) ∼ N (X(t + h); A(h)X(t),Q(h))

Likelihood / measurement model: Z(ti) | X(ti) ∼ δ
(
Z(ti); X(1)(ti)− f(X(0)(ti), ti)

)
Data: zi , 0, i = 1, . . . ,N.

One thing is still missing: What about the initial value?? Just add another measurement at t = 0:

Zinit | X(0) ∼ δ
(
Zinit; X(0)(0)

)
, zinit , x0.

@nathanaelbosch 11



The extended Kalman ODE filter
We can solve ODEs with basically just an extended Kalman filter

Algorithm The extended Kalman ODE filter

1 procedure EXTENDED KALMAN ODE FILTER((µ−
0 ,Σ

−
0 ), (A,Q), (f , x0), {ti}N

i=1)
2 µ0,Σ0 ^ KF_UPDATE(µ−

0 ,Σ
−
0 , E0, 0d×d, x0) � Initial update to fit the initial value

3 for k ∈ {1, . . . ,N} do
4 hk ^ tk − tk−1 � Step size

5 µ−
k ,Σ

−
k ^ KF_PREDICT(µk−1,Σk−1, A(hk),Q(hk)) � Kalman filter prediction

6 mk(X) := E1X − f(E0X, tk) � Define the non-linear observation model

7 µk,Σk ^ EKF_UPDATE(µ−
k ,Σ

−
k ,mk, 0d×d,0d) � Extended Kalman filter update

8 end for
9 return (µk,Σk)

N
k=1

10 end procedure

Recall: The state X(t) is a stack of q derivatives X =
[
X(0), X(1), . . . , X(q)]T .

For convenience, define projection matrices Ei to map to the i-th derivative: EiX = X(i).

EXTENDED KALMAN ODE SMOOTHER: Just run a RTS smoother after the filter!
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The extended Kalman ODE filter – building blocks
The well-known predict and update steps for (extended) Kalman filtering

Algorithm Kalman filter prediction
1 procedure KF_PREDICT(µ,Σ, A,Q)
2 µP ^ Aµ � Predict mean

3 ΣP ^ AΣA> + Q � Predict covariance

4 return µP,ΣP

5 end procedure

Algorithm Extended Kalman filter update
1 procedure EKF_UPDATE(µ,Σ, h, R, y)
2 ŷ ^ h(µ) � evaluate the observation model

3 H^ Jh(µ) � Jacobian of the observation model

4 S ^HΣH> + R � Measurement covariance

5 K ^ΣH>S−1 � Kalman gain

6 µF ^µ+ K(y − ŷ) � update mean

7 ΣF ^Σ− KSK> � update covariance

8 return µF ,ΣF

9 end procedure

(KF_UPDATE analog but with affine h)
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DEMO TIME: The extended Kalman ODE filter in code

demo.jl
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Uncertainty calibration or “how to choose prior hyperparameters”
Hyperparameters of the prior have a strong influence on posteriors – so we need to estimate them [Tronarp et al., 2019]

I Problem: The prior hyperparameter σ strongly influences covariances. How to choose it?

I Standard approach: Maximize the marginal likelihood:

σ̂ = arg max p(DPN | σ) = p(z1:N | σ) = p(z1 | σ)
N∏

k=2

p(zk|z1:k−1, σ).

I The EKF provides Gaussian estimates p(zk | z1:k−1) ≈ N (zk; ẑk, Sk).
⇒ Quasi-maximum likelihood estimate:

σ̂ = arg max p(DPN | σ) = arg max
N∑

k=1

log p(zk | z1:k−1, σ)

I In our specific context there is a closed-form solution (proof: [Tronarp et al., 2019]):

σ̂2 =
1

Nd

N∑
i=1

(zi − ẑi)
> S−1

i (zi − ẑi) ,

and we don’t even need to run the filter again! Just adjust the estimated covariances:
Σi ^ σ̂2 · Σi, ∀i ∈ {1, . . . ,N}.
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DEMO TIME: Calibrated vs uncalibrated posteriors

demo.jl
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Numerically stable implementation: Square-root filtering
When steps get small numerical stability suffers — so better work with matrix square-roots directly [Krämer and Hennig, 2020]

I Problem: The computed covariances can have negative eigenvalues due to finite precision
arithmetic and numerical round-off, in particular with small step sizes. Failure example: demo.jl

I It holds: A matrix M ∈ Rd×d is positive semi-definite if and only if there exists a matrix B ∈ Rd×d

such that M = BB>.
I Kalman filtering and smoothing in square-root form — a minimal derivation:

I Central operation in PREDICT/UPDATE/SMOOTH: M = ABA> + C.
I Predict: ΣP = AΣA> + Q
I Update (in Joseph form): Σ = (I − KH)ΣP(I − KH)> + KRK>

I Smooth (in Joseph form): Λ = (I − GA)Σ(I − GA)> + GΛ+G> + GQG>

I This can be formulated on the square-root level: Let M = ML(ML)
>, B = BL(BL)

>, C = CL(CL)
>:

M = ABA> + C,

⇔ ML(ML)
> = ABL(BL)

>A> + CL(CL)
> =

[
ABL CL

]
·
[
ABL CL

]>
doing QR

([
ABL CL

]>)
⇔ = R>Q>QR = R>R. ⇒ ML := R>

⇒ PREDICT/UPDATE/SMOOTH can be formulated directly on square-roots to preserve PSD-ness!

⇒ To solve ODEs in a stable way, use the square-root Kalman filters / smoothers!

@nathanaelbosch 17



Numerically stable implementation: Square-root filtering
When steps get small numerical stability suffers — so better work with matrix square-roots directly [Krämer and Hennig, 2020]

I Problem: The computed covariances can have negative eigenvalues due to finite precision
arithmetic and numerical round-off, in particular with small step sizes. Failure example: demo.jl

I It holds: A matrix M ∈ Rd×d is positive semi-definite if and only if there exists a matrix
B ∈ Rd×d such that M = BB>.

I Kalman filtering and smoothing in square-root form — a minimal derivation:

I Central operation in PREDICT/UPDATE/SMOOTH: M = ABA> + C.
I Predict: ΣP = AΣA> + Q
I Update (in Joseph form): Σ = (I − KH)ΣP(I − KH)> + KRK>

I Smooth (in Joseph form): Λ = (I − GA)Σ(I − GA)> + GΛ+G> + GQG>

I This can be formulated on the square-root level: Let M = ML(ML)
>, B = BL(BL)

>, C = CL(CL)
>:

M = ABA> + C,

⇔ ML(ML)
> = ABL(BL)

>A> + CL(CL)
> =

[
ABL CL

]
·
[
ABL CL

]>
doing QR

([
ABL CL

]>)
⇔ = R>Q>QR = R>R. ⇒ ML := R>

⇒ PREDICT/UPDATE/SMOOTH can be formulated directly on square-roots to preserve PSD-ness!

⇒ To solve ODEs in a stable way, use the square-root Kalman filters / smoothers!

@nathanaelbosch 17



Numerically stable implementation: Square-root filtering
When steps get small numerical stability suffers — so better work with matrix square-roots directly [Krämer and Hennig, 2020]

I Problem: The computed covariances can have negative eigenvalues due to finite precision
arithmetic and numerical round-off, in particular with small step sizes. Failure example: demo.jl

I It holds: A matrix M ∈ Rd×d is positive semi-definite if and only if there exists a matrix B ∈ Rd×d

such that M = BB>.
I Kalman filtering and smoothing in square-root form — a minimal derivation:

I Central operation in PREDICT/UPDATE/SMOOTH: M = ABA> + C.
I Predict: ΣP = AΣA> + Q
I Update (in Joseph form): Σ = (I − KH)ΣP(I − KH)> + KRK>

I Smooth (in Joseph form): Λ = (I − GA)Σ(I − GA)> + GΛ+G> + GQG>

I This can be formulated on the square-root level: Let M = ML(ML)
>, B = BL(BL)

>, C = CL(CL)
>:

M = ABA> + C,

⇔ ML(ML)
> = ABL(BL)

>A> + CL(CL)
> =

[
ABL CL

]
·
[
ABL CL

]>
doing QR

([
ABL CL

]>)
⇔ = R>Q>QR = R>R. ⇒ ML := R>

⇒ PREDICT/UPDATE/SMOOTH can be formulated directly on square-roots to preserve PSD-ness!
⇒ To solve ODEs in a stable way, use the square-root Kalman filters / smoothers!

@nathanaelbosch 17



Numerically stable implementation: Square-root filtering
When steps get small numerical stability suffers — so better work with matrix square-roots directly [Krämer and Hennig, 2020]

I Problem: The computed covariances can have negative eigenvalues due to finite precision
arithmetic and numerical round-off, in particular with small step sizes. Failure example: demo.jl

I It holds: A matrix M ∈ Rd×d is positive semi-definite if and only if there exists a matrix B ∈ Rd×d

such that M = BB>.
I Kalman filtering and smoothing in square-root form — a minimal derivation:

I Central operation in PREDICT/UPDATE/SMOOTH: M = ABA> + C.
I Predict: ΣP = AΣA> + Q
I Update (in Joseph form): Σ = (I − KH)ΣP(I − KH)> + KRK>

I Smooth (in Joseph form): Λ = (I − GA)Σ(I − GA)> + GΛ+G> + GQG>

I This can be formulated on the square-root level: Let M = ML(ML)
>, B = BL(BL)

>, C = CL(CL)
>:

M = ABA> + C,

⇔ ML(ML)
> = ABL(BL)

>A> + CL(CL)
> =

[
ABL CL

]
·
[
ABL CL

]>
doing QR

([
ABL CL

]>)
⇔ = R>Q>QR = R>R. ⇒ ML := R>

⇒ PREDICT/UPDATE/SMOOTH can be formulated directly on square-roots to preserve PSD-ness!
⇒ To solve ODEs in a stable way, use the square-root Kalman filters / smoothers!

@nathanaelbosch 17



Numerically stable implementation: Square-root filtering
When steps get small numerical stability suffers — so better work with matrix square-roots directly [Krämer and Hennig, 2020]

I Problem: The computed covariances can have negative eigenvalues due to finite precision
arithmetic and numerical round-off, in particular with small step sizes. Failure example: demo.jl

I It holds: A matrix M ∈ Rd×d is positive semi-definite if and only if there exists a matrix B ∈ Rd×d

such that M = BB>.
I Kalman filtering and smoothing in square-root form — a minimal derivation:

I Central operation in PREDICT/UPDATE/SMOOTH: M = ABA> + C.
I Predict: ΣP = AΣA> + Q
I Update (in Joseph form): Σ = (I − KH)ΣP(I − KH)> + KRK>

I Smooth (in Joseph form): Λ = (I − GA)Σ(I − GA)> + GΛ+G> + GQG>

I This can be formulated on the square-root level: Let M = ML(ML)
>, B = BL(BL)

>, C = CL(CL)
>:

M = ABA> + C,

⇔ ML(ML)
> = ABL(BL)

>A> + CL(CL)
> =

[
ABL CL

]
·
[
ABL CL

]>
doing QR

([
ABL CL

]>)
⇔ = R>Q>QR = R>R. ⇒ ML := R>

⇒ PREDICT/UPDATE/SMOOTH can be formulated directly on square-roots to preserve PSD-ness!
⇒ To solve ODEs in a stable way, use the square-root Kalman filters / smoothers!

@nathanaelbosch 17



Numerically stable implementation: Square-root filtering
When steps get small numerical stability suffers — so better work with matrix square-roots directly [Krämer and Hennig, 2020]

I Problem: The computed covariances can have negative eigenvalues due to finite precision
arithmetic and numerical round-off, in particular with small step sizes. Failure example: demo.jl

I It holds: A matrix M ∈ Rd×d is positive semi-definite if and only if there exists a matrix B ∈ Rd×d

such that M = BB>.
I Kalman filtering and smoothing in square-root form — a minimal derivation:

I Central operation in PREDICT/UPDATE/SMOOTH: M = ABA> + C.
I Predict: ΣP = AΣA> + Q
I Update (in Joseph form): Σ = (I − KH)ΣP(I − KH)> + KRK>

I Smooth (in Joseph form): Λ = (I − GA)Σ(I − GA)> + GΛ+G> + GQG>

I This can be formulated on the square-root level: Let M = ML(ML)
>, B = BL(BL)

>, C = CL(CL)
>:

M = ABA> + C,

⇔ ML(ML)
> = ABL(BL)

>A> + CL(CL)
>

=
[
ABL CL

]
·
[
ABL CL

]>
doing QR

([
ABL CL

]>)
⇔ = R>Q>QR = R>R. ⇒ ML := R>

⇒ PREDICT/UPDATE/SMOOTH can be formulated directly on square-roots to preserve PSD-ness!
⇒ To solve ODEs in a stable way, use the square-root Kalman filters / smoothers!

@nathanaelbosch 17



Numerically stable implementation: Square-root filtering
When steps get small numerical stability suffers — so better work with matrix square-roots directly [Krämer and Hennig, 2020]

I Problem: The computed covariances can have negative eigenvalues due to finite precision
arithmetic and numerical round-off, in particular with small step sizes. Failure example: demo.jl

I It holds: A matrix M ∈ Rd×d is positive semi-definite if and only if there exists a matrix B ∈ Rd×d

such that M = BB>.
I Kalman filtering and smoothing in square-root form — a minimal derivation:

I Central operation in PREDICT/UPDATE/SMOOTH: M = ABA> + C.
I Predict: ΣP = AΣA> + Q
I Update (in Joseph form): Σ = (I − KH)ΣP(I − KH)> + KRK>

I Smooth (in Joseph form): Λ = (I − GA)Σ(I − GA)> + GΛ+G> + GQG>

I This can be formulated on the square-root level: Let M = ML(ML)
>, B = BL(BL)

>, C = CL(CL)
>:

M = ABA> + C,

⇔ ML(ML)
> = ABL(BL)

>A> + CL(CL)
> =

[
ABL CL

]
·
[
ABL CL

]>

doing QR
([

ABL CL
]>)

⇔ = R>Q>QR = R>R. ⇒ ML := R>

⇒ PREDICT/UPDATE/SMOOTH can be formulated directly on square-roots to preserve PSD-ness!
⇒ To solve ODEs in a stable way, use the square-root Kalman filters / smoothers!

@nathanaelbosch 17



Numerically stable implementation: Square-root filtering
When steps get small numerical stability suffers — so better work with matrix square-roots directly [Krämer and Hennig, 2020]

I Problem: The computed covariances can have negative eigenvalues due to finite precision
arithmetic and numerical round-off, in particular with small step sizes. Failure example: demo.jl

I It holds: A matrix M ∈ Rd×d is positive semi-definite if and only if there exists a matrix B ∈ Rd×d

such that M = BB>.
I Kalman filtering and smoothing in square-root form — a minimal derivation:

I Central operation in PREDICT/UPDATE/SMOOTH: M = ABA> + C.
I Predict: ΣP = AΣA> + Q
I Update (in Joseph form): Σ = (I − KH)ΣP(I − KH)> + KRK>

I Smooth (in Joseph form): Λ = (I − GA)Σ(I − GA)> + GΛ+G> + GQG>

I This can be formulated on the square-root level: Let M = ML(ML)
>, B = BL(BL)

>, C = CL(CL)
>:

M = ABA> + C,

⇔ ML(ML)
> = ABL(BL)

>A> + CL(CL)
> =

[
ABL CL

]
·
[
ABL CL

]>
doing QR

([
ABL CL

]>)
⇔ = R>Q>QR

= R>R. ⇒ ML := R>

⇒ PREDICT/UPDATE/SMOOTH can be formulated directly on square-roots to preserve PSD-ness!
⇒ To solve ODEs in a stable way, use the square-root Kalman filters / smoothers!

@nathanaelbosch 17



Numerically stable implementation: Square-root filtering
When steps get small numerical stability suffers — so better work with matrix square-roots directly [Krämer and Hennig, 2020]

I Problem: The computed covariances can have negative eigenvalues due to finite precision
arithmetic and numerical round-off, in particular with small step sizes. Failure example: demo.jl

I It holds: A matrix M ∈ Rd×d is positive semi-definite if and only if there exists a matrix B ∈ Rd×d

such that M = BB>.
I Kalman filtering and smoothing in square-root form — a minimal derivation:

I Central operation in PREDICT/UPDATE/SMOOTH: M = ABA> + C.
I Predict: ΣP = AΣA> + Q
I Update (in Joseph form): Σ = (I − KH)ΣP(I − KH)> + KRK>

I Smooth (in Joseph form): Λ = (I − GA)Σ(I − GA)> + GΛ+G> + GQG>

I This can be formulated on the square-root level: Let M = ML(ML)
>, B = BL(BL)

>, C = CL(CL)
>:

M = ABA> + C,

⇔ ML(ML)
> = ABL(BL)

>A> + CL(CL)
> =

[
ABL CL

]
·
[
ABL CL

]>
doing QR

([
ABL CL

]>)
⇔ = R>Q>QR = R>R. ⇒ ML := R>

⇒ PREDICT/UPDATE/SMOOTH can be formulated directly on square-roots to preserve PSD-ness!
⇒ To solve ODEs in a stable way, use the square-root Kalman filters / smoothers!

@nathanaelbosch 17



Numerically stable implementation: Square-root filtering
When steps get small numerical stability suffers — so better work with matrix square-roots directly [Krämer and Hennig, 2020]

I Problem: The computed covariances can have negative eigenvalues due to finite precision
arithmetic and numerical round-off, in particular with small step sizes. Failure example: demo.jl

I It holds: A matrix M ∈ Rd×d is positive semi-definite if and only if there exists a matrix B ∈ Rd×d

such that M = BB>.
I Kalman filtering and smoothing in square-root form — a minimal derivation:

I Central operation in PREDICT/UPDATE/SMOOTH: M = ABA> + C.
I Predict: ΣP = AΣA> + Q
I Update (in Joseph form): Σ = (I − KH)ΣP(I − KH)> + KRK>

I Smooth (in Joseph form): Λ = (I − GA)Σ(I − GA)> + GΛ+G> + GQG>

I This can be formulated on the square-root level: Let M = ML(ML)
>, B = BL(BL)

>, C = CL(CL)
>:

M = ABA> + C,

⇔ ML(ML)
> = ABL(BL)

>A> + CL(CL)
> =

[
ABL CL

]
·
[
ABL CL

]>
doing QR

([
ABL CL

]>)
⇔ = R>Q>QR = R>R. ⇒ ML := R>

⇒ PREDICT/UPDATE/SMOOTH can be formulated directly on square-roots to preserve PSD-ness!

⇒ To solve ODEs in a stable way, use the square-root Kalman filters / smoothers!

@nathanaelbosch 17



Numerically stable implementation: Square-root filtering
When steps get small numerical stability suffers — so better work with matrix square-roots directly [Krämer and Hennig, 2020]

I Problem: The computed covariances can have negative eigenvalues due to finite precision
arithmetic and numerical round-off, in particular with small step sizes. Failure example: demo.jl

I It holds: A matrix M ∈ Rd×d is positive semi-definite if and only if there exists a matrix B ∈ Rd×d

such that M = BB>.
I Kalman filtering and smoothing in square-root form — a minimal derivation:

I Central operation in PREDICT/UPDATE/SMOOTH: M = ABA> + C.
I Predict: ΣP = AΣA> + Q
I Update (in Joseph form): Σ = (I − KH)ΣP(I − KH)> + KRK>

I Smooth (in Joseph form): Λ = (I − GA)Σ(I − GA)> + GΛ+G> + GQG>

I This can be formulated on the square-root level: Let M = ML(ML)
>, B = BL(BL)

>, C = CL(CL)
>:

M = ABA> + C,

⇔ ML(ML)
> = ABL(BL)

>A> + CL(CL)
> =

[
ABL CL

]
·
[
ABL CL

]>
doing QR

([
ABL CL

]>)
⇔ = R>Q>QR = R>R. ⇒ ML := R>

⇒ PREDICT/UPDATE/SMOOTH can be formulated directly on square-roots to preserve PSD-ness!
⇒ To solve ODEs in a stable way, use the square-root Kalman filters / smoothers!

@nathanaelbosch 17



DEMO TIME: Solving on extremely small step sizes with
square-root filtering

demo.jl
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Intermediate summary
I ODE solving is state estimation
I We can estimate ODE solutions with extended Kalman filtering/smoothing,

in a stable and calibrated way

Next: Extending ODE filters
1. Flexible information operators: The ODE filter formulation extends to other numerical problems
2. Latent force inference: Joint GP regression on both ODEs and data
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Extending ODE filters to other related differential equation problems
ODE filters can solve much more than the ODEs that we saw so far! [Bosch et al., 2022]

Numerical problems setting: Initial value problem with first-order ODE

ẋ(t) = f(x(t), t), x(0) = x0.

This leads to the probabilistic state estimation problem:

Initial distribution: X(0) ∼ N (X(0);µ0,Σ0)

Prior / dynamics model: X(t + h) | X(t) ∼ N (X(t + h); A(h)X(t),Q(h))

ODE likelihood: Z(ti) | X(ti) ∼ δ
(
Z(ti); X(1)(ti)− f(X(0)(ti), ti)

)
, zi , 0

Initial value likelihood: Zinit | X(0) ∼ δ
(
Zinit; X(0)(0)

)
, zinit , x0

The measurement model provides a very flexible way to easily encode desired properties!
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Numerical problems setting: Initial value problem with first-order ODE and conserved quantities
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)
, zi , 0
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i (ti) | X(ti)∼ δ
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)
, zci , 0

Initial value likelihood: Zinit | X(0) ∼ δ
(
Zinit; X(0)(0)

)
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DEMO TIME: Solving a second-order ODE

demo.jl
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Next: Combine ODEs and GP regression via latent force inference

@nathanaelbosch 22



Latent force inference: GP regression on both ODEs and data
An example we know all too well: COVID-19 Paper: [Schmidt et al., 2021]
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ODE dynamics:

d
dt


S(t)
I(t)
R(t)
D(t)

 =


−β · S(t)I(t)/P

β · S(t)I(t)/P − γI(t)− ηI(t)
γI(t)
ηI(t)


Latent force model: Gauss–Markov prior

β(t + h) | β(t) ∼ N (Aβ(h)β(t),Qβ(h))

Data:

yi | x(ti) ∼ N
(
Hx(ti), σ2I

)

@nathanaelbosch 23



Latent force inference: GP regression on both ODEs and data
An example we know all too well: COVID-19 Paper: [Schmidt et al., 2021]

2020-01 2020-03 2020-05 2020-07 2020-09 2020-11 2021-01 2021-03 2021-05 2021-07
0

1

2

3

4

5

In
fe

ct
ed

ODE dynamics:

d
dt


S(t)
I(t)
R(t)
D(t)

 =


−β · S(t)I(t)/P

β · S(t)I(t)/P − γI(t)− ηI(t)
γI(t)
ηI(t)



Latent force model: Gauss–Markov prior

β(t + h) | β(t) ∼ N (Aβ(h)β(t),Qβ(h))

Data:

yi | x(ti) ∼ N
(
Hx(ti), σ2I

)

@nathanaelbosch 23



Latent force inference: GP regression on both ODEs and data
An example we know all too well: COVID-19 Paper: [Schmidt et al., 2021]

2020-01 2020-03 2020-05 2020-07 2020-09 2020-11 2021-01 2021-03 2021-05 2021-07
0

1

2

3

4

5

In
fe

ct
ed

ODE dynamics with time-varying contact rate:

d
dt


S(t)
I(t)
R(t)
D(t)

 =


−β(t) · S(t)I(t)/P

β(t) · S(t)I(t)/P − γI(t)− ηI(t)
γI(t)
ηI(t)



Latent force model: Gauss–Markov prior

β(t + h) | β(t) ∼ N (Aβ(h)β(t),Qβ(h))

Data:

yi | x(ti) ∼ N
(
Hx(ti), σ2I

)

@nathanaelbosch 23



Latent force inference: GP regression on both ODEs and data
An example we know all too well: COVID-19 Paper: [Schmidt et al., 2021]

2020-01 2020-03 2020-05 2020-07 2020-09 2020-11 2021-01 2021-03 2021-05 2021-07
0

1

2

3

4

5

In
fe

ct
ed

ODE dynamics with time-varying contact rate:

d
dt


S(t)
I(t)
R(t)
D(t)

 =


−β(t) · S(t)I(t)/P

β(t) · S(t)I(t)/P − γI(t)− ηI(t)
γI(t)
ηI(t)


Latent force model: Gauss–Markov prior

β(t + h) | β(t) ∼ N (Aβ(h)β(t),Qβ(h))

Data:

yi | x(ti) ∼ N
(
Hx(ti), σ2I

)
@nathanaelbosch 23



Latent force inference: GP regression on both ODEs and data
Once again we can just build a custom state-space model for the problem setup of interest Paper: [Schmidt et al., 2021]

Initial value problem:

ẋ(t) = f(x(t), t), x(0) = x0.

External observations / data:

yi = Hx(ti) + εi, εi ∼ N (0, σ2).

Latent Gauss–Markov process:

β(t + h) | β(t) ∼ N
(
Aβ(h)β(t), σ2

βQβ(h)
)
.

ODE filter setup:

System State

X0 . . . Xk−1 Xk Xk+1
. . . XT

PN Observations (ODE and initial values)

Zi Z0 . . . Zk−1 Zk Zk+1
. . . ZT

External Data

. . . Yn . . . YN

Latent force

β0 . . . βk−1 βk βk+1 . . . βT

Again: This is just state-space model

⇒ inference with EKF/EKS!
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Latent force inference: Writing down the state estimation problem
Formalities Paper: [Schmidt et al., 2021]

Formally we obtain the probabilistic state estimation problem:

State initial distribution: X(0) ∼ N (µ0,Σ0)

State dynamics: X(t + h) | X(t) ∼ N (A(h)X(t),Q(h))

Latent force initial distribution: β(0) ∼ N
(
µβ
0 ,Σ

β
0

)
Latent force dynamics: β(t + h) | β(t) ∼ N (Aβ(h)β(t),Qβ(h))

ODE likelihood: Z(ti) | X(ti), β(ti) ∼ δ
(
X(1)(ti)− f(X(0)(ti), β(ti), ti)

)
, zi , 0

Initial value likelihood: Zinit | X(0) ∼ δ
(
X(0)(0)

)
, zinit , x0

Data likelihood: Yi | X(ti) ∼ N
(
HX(0)(ti), σ2I

)
, yi ∈ Dy
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Latent force inference: Writing down the state estimation problem
Formalities Paper: [Schmidt et al., 2021]

Formally we obtain the probabilistic state estimation problem, simplified by stacking X̃ = [X, β]:

Initial distribution: X̃(0) ∼ N
(
µ̃0, Σ̃0

)
Prior / dynamics model: X̃(t + h) | X̃(t) ∼ N

(
Ã(h)X̃(t), Q̃(h)

)
ODE likelihood: Z(ti) | X̃(ti) ∼ δ

(
E1X̃(ti)− f(E0X̃(ti), Eβ X̃(ti), ti)

)
, zi , 0

Initial value likelihood: Zinit | X̃(0) ∼ δ
(
E0X̃(0)

)
, zinit , x0

Data likelihood: Yi | X̃(ti) ∼ N
(
HE0X̃(ti), σ2I

)
, yi ∈ Dy

with E0X̃ := X(0), E1X̃ := X(1), Eβ X̃ := β.
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Latent force inference: Results
Posteriors over infections and contact rates in a single forward-backward pass Paper: [Schmidt et al., 2021]
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Outlook
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Other facts and further reading

Probabilistic Numerics: Computation as Machine Learning
Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022

References for topics not covered today:
I ODE filter theory and details:

I Convergence rates: [Kersting et al., 2020, Tronarp et al., 2021]
I Other filtering algorithms (e.g. IEKS and particle filter): [Tronarp et al., 2019, Tronarp et al., 2021]
I Step-size adaptation and more calibration: [Bosch et al., 2021]
I Scaling ODE filters to high dimensions: [Krämer et al., 2022]

I More related differential equation problems:
I Boundary value problems (BVPs): [Krämer and Hennig, 2021]
I Partial differential equations (PDEs): [Krämer et al., 2022]

I Inverse problems
I Parameter inference in ODEs with ODE filters: [Tronarp et al., 2022]
I Efficient latent force inference: [Schmidt et al., 2021]
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Summary
I ODE solving is state estimation

⇒ treat initial value problems as state estimation problems
I “ODE filters”: How to solve ODEs with Bayesian filtering and smoothing
I Bells and whistles: Uncertainty calibration & Square-root filtering
I Flexible information operators to solve more than just standard ODEs
I Latent force inference: Joint GP regression on both ODEs and data

Software packages https://github.com/nathanaelbosch/ProbNumDiffEq.jl
]add ProbNumDiffEq

https://github.com/probabilistic-numerics/probnum

pip install probnum

https://github.com/pnkraemer/probdiffeq
pip install probdiffeq
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Background: Bayesian State Estimation with
Extended Kalman filtering and smoothing

@nathanaelbosch 36



Background: Extended Kalman filtering and smoothing
Bayesian filters and smoothers estimate an unknown state (often continuous) from observations

Non-linear Gaussian state-estimation problem:

Initial distribution: x0 ∼ N (x0;µ0,Σ0) ,

Prior / dynamics: xi+1 | xi ∼ N (xi+1; f(xi),Qi) ,

Likelihood / measurement: yi | xi ∼ N (yi;m(xi), Ri) ,

Data: D = {yi}N
i=1.

The extended Kalman filter/smoother (EKF/EKS) recursively
computes Gaussian approximations:

Predict: p(xi | y1:i−1) ≈ N (xi;µP
i ,Σ

P
i ),

Filter: p(xi | y1:i) ≈ N (xi;µi,Σi),

Smooth: p(xi | y1:N) ≈ N (xi;µS
i ,Σ

S
i ),

Likelihood: p(yi | y1:i−1) ≈ N (yi; ŷi, Si).

PREDICT

µP
i+1 = f(µi),

ΣP
i+1 = Jf(µi)ΣiJf(µi)

> + Qi.

UPDATE

ẑi = m(µP
i ),

Si = Jm(µ
P
i )Σ

P
i Jm(µ

P
i )

> + Ri,

Ki = ΣP
i Jm(µ

P
i )

>S−1
i ,

µi = µP
i + Ki (zi − ẑi) ,

Σi = ΣP
i − KiSiK>

i .

Similarly SMOOTH.
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On linearization strategies and their influence on A-Stability
We can actually approximate the Jacobian in the EKF and still get sensible results / algorithms! [Tronarp et al., 2019]

I Measurement model: m(X(t), t) = X(1)(t)− f(X(0)(t), t)
I A standard extended Kalman filter computes the Jacobian of the measurement mode:

Jm(ξ) = E1 − Jf(E0ξ, t)E0
⇒ This algorithm is often called EK1.

I Turns out the following also works: Jf ≈ 0 and then Jm(ξ) ≈ E1
⇒ The resulting algorithm is often called EK0.

A comparison of EK1 and EK0:

Jacobian type A-stable uncertainties speed
EK1 H = E1 − Jf(E0µp)E0 semi-implicit yes more expressive slower (O(Nd3q3))
EK0 H = E1 explicit no simpler faster (O(Ndq3))
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Prior: The q-times integrated Wiener process
A very convenient prior with closed-form transition densities

I q-times integrated Wiener process prior: X(t) ∼ IWP(q)

dX(i)(t) = X(i+1)(t) dt, i = 0, . . . , q− 1,

dX(q)(t) = σ dW(t),
X(0) ∼ N (µ0,Σ0).

I Corresponds to Taylor-polynomial + perturbation:

X(0)(t) =
q∑

m=0

X(m)(0)
tm

m!
+ σ

∫ t

0

t − τ

q!
dW(τ)
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