
Fast probabilistic inference for ODEs
with ProbNumDiffEq.jl

JuliaCon 2024

Nathanael Bosch

11. July 2024

some of the presented work is supported
by the European Research Council.

@nathanaelbosch 1



Background: Ordinary Differential Equations
and how to solve them

@nathanaelbosch 2



Background: Ordinary Differential Equations and how to solve them
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t)
with t ∈ [0, T], vector field f : Rd × R→ Rd, and initial value y(0) = y0. Goal: “Find y”.

Numerical ODE solvers:

▶ Forward Euler:
ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t)

▶ Backward Euler:
ŷ(t+ h) = ŷ(t) + hf(ŷ(t+ h), t+ h)

▶ Runge–Kutta:
ŷ(t+ h) = ŷ(t) + h

∑s
i=1 bif(ỹi, t+ cih)

▶ Multistep:
ŷ(t+ h) = ŷ(t) + h

∑s−1
i=0 bif(ŷ(t− ih), t− ih)

Forward Euler for different step sizes:

0.0

0.5

1.0

P(
t)

step size = 0.5

0.0

0.5

1.0

P(
t)

step size = 0.1

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
t

0.0

0.5

1.0

P(
t)

step size = 0.01

⇒ It is “correct” only in the limit h→ 0!

Numerical ODE solvers estimate y(t) by evaluating f on a discrete set of points.

@nathanaelbosch 3



Background: Ordinary Differential Equations and how to solve them
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t)
with t ∈ [0, T], vector field f : Rd × R→ Rd, and initial value y(0) = y0. Goal: “Find y”.

▶ Simple example: Logistic ODE

ẏ(t) = y(t) (1− y(t)) , t ∈ [0, 10], y(0) = 0.1.

Numerical ODE solvers:

▶ Forward Euler:
ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t)

▶ Backward Euler:
ŷ(t+ h) = ŷ(t) + hf(ŷ(t+ h), t+ h)

▶ Runge–Kutta:
ŷ(t+ h) = ŷ(t) + h

∑s
i=1 bif(ỹi, t+ cih)

▶ Multistep:
ŷ(t+ h) = ŷ(t) + h

∑s−1
i=0 bif(ŷ(t− ih), t− ih)

Forward Euler for different step sizes:

0.0

0.5

1.0

P(
t)

step size = 0.5

0.0

0.5

1.0

P(
t)

step size = 0.1

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
t

0.0

0.5

1.0

P(
t)

step size = 0.01

⇒ It is “correct” only in the limit h→ 0!

Numerical ODE solvers estimate y(t) by evaluating f on a discrete set of points.

@nathanaelbosch 3



Background: Ordinary Differential Equations and how to solve them
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t)
with t ∈ [0, T], vector field f : Rd × R→ Rd, and initial value y(0) = y0. Goal: “Find y”.

Numerical ODE solvers:
▶ Forward Euler:

ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t)

▶ Backward Euler:
ŷ(t+ h) = ŷ(t) + hf(ŷ(t+ h), t+ h)

▶ Runge–Kutta:
ŷ(t+ h) = ŷ(t) + h

∑s
i=1 bif(ỹi, t+ cih)

▶ Multistep:
ŷ(t+ h) = ŷ(t) + h

∑s−1
i=0 bif(ŷ(t− ih), t− ih)

Forward Euler for different step sizes:

0.0

0.5

1.0

P(
t)

step size = 0.5

0.0

0.5

1.0

P(
t)

step size = 0.1

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
t

0.0

0.5

1.0

P(
t)

step size = 0.01

⇒ It is “correct” only in the limit h→ 0!

Numerical ODE solvers estimate y(t) by evaluating f on a discrete set of points.

@nathanaelbosch 3



Background: Ordinary Differential Equations and how to solve them
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t)
with t ∈ [0, T], vector field f : Rd × R→ Rd, and initial value y(0) = y0. Goal: “Find y”.

Numerical ODE solvers:
▶ Forward Euler:

ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t)
▶ Backward Euler:

ŷ(t+ h) = ŷ(t) + hf(ŷ(t+ h), t+ h)

▶ Runge–Kutta:
ŷ(t+ h) = ŷ(t) + h

∑s
i=1 bif(ỹi, t+ cih)

▶ Multistep:
ŷ(t+ h) = ŷ(t) + h

∑s−1
i=0 bif(ŷ(t− ih), t− ih)

Forward Euler for different step sizes:

0.0

0.5

1.0

P(
t)

step size = 0.5

0.0

0.5

1.0

P(
t)

step size = 0.1

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
t

0.0

0.5

1.0

P(
t)

step size = 0.01

⇒ It is “correct” only in the limit h→ 0!

Numerical ODE solvers estimate y(t) by evaluating f on a discrete set of points.

@nathanaelbosch 3



Background: Ordinary Differential Equations and how to solve them
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t)
with t ∈ [0, T], vector field f : Rd × R→ Rd, and initial value y(0) = y0. Goal: “Find y”.

Numerical ODE solvers:
▶ Forward Euler:

ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t)
▶ Backward Euler:

ŷ(t+ h) = ŷ(t) + hf(ŷ(t+ h), t+ h)
▶ Runge–Kutta:

ŷ(t+ h) = ŷ(t) + h
∑s

i=1 bif(ỹi, t+ cih)

▶ Multistep:
ŷ(t+ h) = ŷ(t) + h

∑s−1
i=0 bif(ŷ(t− ih), t− ih)

Forward Euler for different step sizes:

0.0

0.5

1.0

P(
t)

step size = 0.5

0.0

0.5

1.0

P(
t)

step size = 0.1

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
t

0.0

0.5

1.0

P(
t)

step size = 0.01

⇒ It is “correct” only in the limit h→ 0!

Numerical ODE solvers estimate y(t) by evaluating f on a discrete set of points.

@nathanaelbosch 3



Background: Ordinary Differential Equations and how to solve them
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t)
with t ∈ [0, T], vector field f : Rd × R→ Rd, and initial value y(0) = y0. Goal: “Find y”.

Numerical ODE solvers:
▶ Forward Euler:

ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t)
▶ Backward Euler:

ŷ(t+ h) = ŷ(t) + hf(ŷ(t+ h), t+ h)
▶ Runge–Kutta:

ŷ(t+ h) = ŷ(t) + h
∑s

i=1 bif(ỹi, t+ cih)
▶ Multistep:

ŷ(t+ h) = ŷ(t) + h
∑s−1

i=0 bif(ŷ(t− ih), t− ih)

Forward Euler for different step sizes:

0.0

0.5

1.0

P(
t)

step size = 0.5

0.0

0.5

1.0

P(
t)

step size = 0.1

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
t

0.0

0.5

1.0

P(
t)

step size = 0.01

⇒ It is “correct” only in the limit h→ 0!

Numerical ODE solvers estimate y(t) by evaluating f on a discrete set of points.

@nathanaelbosch 3



Background: Ordinary Differential Equations and how to solve them
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t)
with t ∈ [0, T], vector field f : Rd × R→ Rd, and initial value y(0) = y0. Goal: “Find y”.

Numerical ODE solvers:
▶ Forward Euler:

ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t)
▶ Backward Euler:

ŷ(t+ h) = ŷ(t) + hf(ŷ(t+ h), t+ h)
▶ Runge–Kutta:

ŷ(t+ h) = ŷ(t) + h
∑s

i=1 bif(ỹi, t+ cih)
▶ Multistep:

ŷ(t+ h) = ŷ(t) + h
∑s−1

i=0 bif(ŷ(t− ih), t− ih)

Forward Euler for different step sizes:

0.0

0.5

1.0

P(
t)

step size = 0.5

0.0

0.5

1.0

P(
t)

step size = 0.1

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
t

0.0

0.5

1.0

P(
t)

step size = 0.01

⇒ It is “correct” only in the limit h→ 0!

Numerical ODE solvers estimate y(t) by evaluating f on a discrete set of points.

@nathanaelbosch 3



Background: Ordinary Differential Equations and how to solve them
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t)
with t ∈ [0, T], vector field f : Rd × R→ Rd, and initial value y(0) = y0. Goal: “Find y”.

Numerical ODE solvers:
▶ Forward Euler:

ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t)
▶ Backward Euler:

ŷ(t+ h) = ŷ(t) + hf(ŷ(t+ h), t+ h)
▶ Runge–Kutta:

ŷ(t+ h) = ŷ(t) + h
∑s

i=1 bif(ỹi, t+ cih)
▶ Multistep:

ŷ(t+ h) = ŷ(t) + h
∑s−1

i=0 bif(ŷ(t− ih), t− ih)

Forward Euler for different step sizes:

0.0

0.5

1.0

P(
t)

step size = 0.5

0.0

0.5

1.0

P(
t)

step size = 0.1

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
t

0.0

0.5

1.0

P(
t)

step size = 0.01

⇒ It is “correct” only in the limit h→ 0!

Numerical ODE solvers estimate y(t) by evaluating f on a discrete set of points.
@nathanaelbosch 3



Probabilistic numerical ODE solvers
or “How to treat ODE solving as the Bayesian state estimation problem that it really is”

@nathanaelbosch 4



Probabilistic numerical ODE solvers
How to treat ODEs as the state estimation problem that they really are

p
(
y(t)

∣∣∣ y(0) = y0, {ẏ(tn) = f (y(tn), tn)}Nn=1

)
with vector field f : Rd × R→ Rd, initial value y0, and time discretization {tn}Nn=1.

▶ Prior:

y(t) ∼ GP a Gauss–Markov process

▶ Likelihood: (aka “observation model” or “information operator”)

y(0)− y0 = 0, & ẏ(tn)− f(y(tn), tn) = 0.

▶ Inference:

Bayesian filtering and smoothing
Kalman filter, extended Kalman filter, unscented Kalman filter, particle filters, ...

@nathanaelbosch 5



Probabilistic numerical ODE solvers
How to treat ODEs as the state estimation problem that they really are

p
(
y(t)

∣∣∣ y(0) = y0, {ẏ(tn) = f (y(tn), tn)}Nn=1

)
with vector field f : Rd × R→ Rd, initial value y0, and time discretization {tn}Nn=1.

@nathanaelbosch 5



Probabilistic numerical ODE solvers
How to treat ODEs as the state estimation problem that they really are

p
(
y(t)

∣∣∣ y(0) = y0, {ẏ(tn) = f (y(tn), tn)}Nn=1

)
with vector field f : Rd × R→ Rd, initial value y0, and time discretization {tn}Nn=1.

▶ Prior:

y(t) ∼ GP a Gauss–Markov process
▶ Likelihood: (aka “observation model” or “information operator”)

y(0)− y0 = 0, & ẏ(tn)− f(y(tn), tn) = 0.

▶ Inference:

Bayesian filtering and smoothing
Kalman filter, extended Kalman filter, unscented Kalman filter, particle filters, ...

@nathanaelbosch 5



Probabilistic numerical ODE solvers
How to treat ODEs as the state estimation problem that they really are

p
(
y(t)

∣∣∣ y(0) = y0, {ẏ(tn) = f (y(tn), tn)}Nn=1

)
with vector field f : Rd × R→ Rd, initial value y0, and time discretization {tn}Nn=1.

▶ Prior: y(t) ∼ GP a Gauss–Markov process

▶ Likelihood: (aka “observation model” or “information operator”)

y(0)− y0 = 0, & ẏ(tn)− f(y(tn), tn) = 0.

▶ Inference:

Bayesian filtering and smoothing
Kalman filter, extended Kalman filter, unscented Kalman filter, particle filters, ...

@nathanaelbosch 5



Probabilistic numerical ODE solvers
How to treat ODEs as the state estimation problem that they really are

p
(
y(t)

∣∣∣ y(0) = y0, {ẏ(tn) = f (y(tn), tn)}Nn=1

)
with vector field f : Rd × R→ Rd, initial value y0, and time discretization {tn}Nn=1.

▶ Prior: y(t) ∼ GP a Gauss–Markov process
▶ Likelihood: (aka “observation model” or “information operator”)

y(0)− y0 = 0, & ẏ(tn)− f(y(tn), tn) = 0.

▶ Inference:

Bayesian filtering and smoothing
Kalman filter, extended Kalman filter, unscented Kalman filter, particle filters, ...

@nathanaelbosch 5



Probabilistic numerical ODE solvers
How to treat ODEs as the state estimation problem that they really are

p
(
y(t)

∣∣∣ y(0) = y0, {ẏ(tn) = f (y(tn), tn)}Nn=1

)
with vector field f : Rd × R→ Rd, initial value y0, and time discretization {tn}Nn=1.

▶ Prior: y(t) ∼ GP a Gauss–Markov process
▶ Likelihood: (aka “observation model” or “information operator”)

y(0)− y0 = 0, & ẏ(tn)− f(y(tn), tn) = 0.

▶ Inference:

Bayesian filtering and smoothing
Kalman filter, extended Kalman filter, unscented Kalman filter, particle filters, ...

@nathanaelbosch 5



Probabilistic numerical ODE solvers
How to treat ODEs as the state estimation problem that they really are

p
(
y(t)

∣∣∣ y(0) = y0, {ẏ(tn) = f (y(tn), tn)}Nn=1

)
with vector field f : Rd × R→ Rd, initial value y0, and time discretization {tn}Nn=1.

▶ Prior: y(t) ∼ GP a Gauss–Markov process
▶ Likelihood: (aka “observation model” or “information operator”)

y(0)− y0 = 0, & ẏ(tn)− f(y(tn), tn) = 0.

▶ Inference: Bayesian filtering and smoothing
Kalman filter, extended Kalman filter, unscented Kalman filter, particle filters, ...

@nathanaelbosch 5



Probabilistic numerical ODE solvers in pictures
From the uninformed prior to the ODE solution posterior

EKF

−−→

@nathanaelbosch 6



Probabilistic numerical ODE solvers in pictures
From the uninformed prior to the ODE solution posterior

EKF

−−→

@nathanaelbosch 6



Probabilistic numerical ODE solvers in pictures
From the uninformed prior to the ODE solution posterior

EKF

−−→

@nathanaelbosch 6



Probabilistic numerical ODE solvers in pictures
From the uninformed prior to the ODE solution posterior

EKF−−→

@nathanaelbosch 6



Probabilistic numerical ODE solvers in pseudo-code
We can solve ODEs with basically just an extended Kalman filter

Algorithm The extended Kalman ODE filter

1 procedure EXTENDED KALMAN ODE FILTER((µ−
0 ,Σ

−
0 ), (A,Q), (f, y0), {ti}

N
i=1)

2 µ0,Σ0 ← KF_UPDATE(µ−
0 ,Σ

−
0 , E0, 0d×d, y0) � Initial update to fit the initial value

3 for k ∈ {1, . . . ,N} do
4 hk ← tk − tk−1 � Step size

5 µ−
k ,Σ

−
k ← KF_PREDICT(µk−1,Σk−1, A(hk),Q(hk)) � Kalman filter prediction

6 mk(x) := E1x− f(E0x, tk) � Define the non-linear observation model

7 µk,Σk ← EKF_UPDATE(µ−
k ,Σ

−
k ,mk, 0d×d, 0⃗d) � Extended Kalman filter update

8 end for
9 return (µk,Σk)

N
k=1

10 end procedure

EXTENDED KALMAN ODE SMOOTHER: Just run a RTS smoother after the filter!
https://github.com/nathanaelbosch/probnumspringschool2024-tutorial

@nathanaelbosch 7

https://github.com/nathanaelbosch/probnumspringschool2024-tutorial


Probabilistic numerical ODE solvers in action

@nathanaelbosch 8



Probabilistic numerical ODE solutions
The solution now contains error estimates!

@nathanaelbosch 9



The state of filtering-based probabilistic numerical ODE solvers
▶ Properties and features:

▶ Polynomial convergence rates [Kersting et al., 2020b, Tronarp et al., 2021]

▶ A-stability [Tronarp et al., 2019]

▶ L-stable probabilistic exponential integrators [Bosch et al., 2023b]

▶ Connection to multi-step methods in Nordsieck form [Schober et al., 2019]

▶ Complexity: O
(
d3) for the A-stable semi-implicit method,

Complexity: O(d) for an explicit version with coarser covariances [Krämer et al., 2022]

▶ Step-size adaptation [Bosch et al., 2021]

▶ Parallel-in-time formulation with O(log(N)) complexity [Bosch et al., 2023a]

▶ More related differential equation problems:

▶ Higher-order ODEs, DAEs, Hamiltonian systems [Bosch et al., 2022]

▶ Boundary value problems (BVPs) [Krämer and Hennig, 2021]

▶ Partial differential equations (PDEs) via method of lines [Krämer et al., 2022]

▶ Inverse problems

▶ Probabilistic numerics-based parameter inference in ODEs [Kersting et al., 2020a, Tronarp et al., 2022, Beck et al., 2024]

▶ Efficient inference of time-varying latent forces [Schmidt et al., 2021]

Probabilistic Numerics: Computation as Machine Learning
Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022

@nathanaelbosch 10



The state of filtering-based probabilistic numerical ODE solvers
▶ Properties and features:

▶ Polynomial convergence rates [Kersting et al., 2020b, Tronarp et al., 2021]

▶ A-stability [Tronarp et al., 2019]

▶ L-stable probabilistic exponential integrators [Bosch et al., 2023b]

▶ Connection to multi-step methods in Nordsieck form [Schober et al., 2019]

▶ Complexity: O
(
d3) for the A-stable semi-implicit method,

Complexity: O(d) for an explicit version with coarser covariances [Krämer et al., 2022]

▶ Step-size adaptation [Bosch et al., 2021]

▶ Parallel-in-time formulation with O(log(N)) complexity [Bosch et al., 2023a]

▶ More related differential equation problems:

▶ Higher-order ODEs, DAEs, Hamiltonian systems [Bosch et al., 2022]

▶ Boundary value problems (BVPs) [Krämer and Hennig, 2021]

▶ Partial differential equations (PDEs) via method of lines [Krämer et al., 2022]

▶ Inverse problems

▶ Probabilistic numerics-based parameter inference in ODEs [Kersting et al., 2020a, Tronarp et al., 2022, Beck et al., 2024]

▶ Efficient inference of time-varying latent forces [Schmidt et al., 2021]

Probabilistic Numerics: Computation as Machine Learning
Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022

@nathanaelbosch 10



The state of filtering-based probabilistic numerical ODE solvers
▶ Properties and features:

▶ Polynomial convergence rates [Kersting et al., 2020b, Tronarp et al., 2021]

▶ A-stability [Tronarp et al., 2019]

▶ L-stable probabilistic exponential integrators [Bosch et al., 2023b]

▶ Connection to multi-step methods in Nordsieck form [Schober et al., 2019]

▶ Complexity: O
(
d3) for the A-stable semi-implicit method,

Complexity: O(d) for an explicit version with coarser covariances [Krämer et al., 2022]

▶ Step-size adaptation [Bosch et al., 2021]

▶ Parallel-in-time formulation with O(log(N)) complexity [Bosch et al., 2023a]

▶ More related differential equation problems:

▶ Higher-order ODEs, DAEs, Hamiltonian systems [Bosch et al., 2022]

▶ Boundary value problems (BVPs) [Krämer and Hennig, 2021]

▶ Partial differential equations (PDEs) via method of lines [Krämer et al., 2022]

▶ Inverse problems

▶ Probabilistic numerics-based parameter inference in ODEs [Kersting et al., 2020a, Tronarp et al., 2022, Beck et al., 2024]

▶ Efficient inference of time-varying latent forces [Schmidt et al., 2021]

Probabilistic Numerics: Computation as Machine Learning
Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022

@nathanaelbosch 10



The state of filtering-based probabilistic numerical ODE solvers
▶ Properties and features:

▶ Polynomial convergence rates [Kersting et al., 2020b, Tronarp et al., 2021]

▶ A-stability [Tronarp et al., 2019]

▶ L-stable probabilistic exponential integrators [Bosch et al., 2023b]

▶ Connection to multi-step methods in Nordsieck form [Schober et al., 2019]

▶ Complexity: O
(
d3) for the A-stable semi-implicit method,

Complexity: O(d) for an explicit version with coarser covariances [Krämer et al., 2022]

▶ Step-size adaptation [Bosch et al., 2021]

▶ Parallel-in-time formulation with O(log(N)) complexity [Bosch et al., 2023a]

▶ More related differential equation problems:

▶ Higher-order ODEs, DAEs, Hamiltonian systems [Bosch et al., 2022]

▶ Boundary value problems (BVPs) [Krämer and Hennig, 2021]

▶ Partial differential equations (PDEs) via method of lines [Krämer et al., 2022]

▶ Inverse problems

▶ Probabilistic numerics-based parameter inference in ODEs [Kersting et al., 2020a, Tronarp et al., 2022, Beck et al., 2024]

▶ Efficient inference of time-varying latent forces [Schmidt et al., 2021]

Probabilistic Numerics: Computation as Machine Learning
Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022

@nathanaelbosch 10



The state of filtering-based probabilistic numerical ODE solvers
▶ Properties and features:

▶ Polynomial convergence rates [Kersting et al., 2020b, Tronarp et al., 2021]

▶ A-stability [Tronarp et al., 2019]

▶ L-stable probabilistic exponential integrators [Bosch et al., 2023b]

▶ Connection to multi-step methods in Nordsieck form [Schober et al., 2019]

▶ Complexity: O
(
d3) for the A-stable semi-implicit method,

Complexity: O(d) for an explicit version with coarser covariances [Krämer et al., 2022]

▶ Step-size adaptation [Bosch et al., 2021]

▶ Parallel-in-time formulation with O(log(N)) complexity [Bosch et al., 2023a]

▶ More related differential equation problems:

▶ Higher-order ODEs, DAEs, Hamiltonian systems [Bosch et al., 2022]

▶ Boundary value problems (BVPs) [Krämer and Hennig, 2021]

▶ Partial differential equations (PDEs) via method of lines [Krämer et al., 2022]

▶ Inverse problems

▶ Probabilistic numerics-based parameter inference in ODEs [Kersting et al., 2020a, Tronarp et al., 2022, Beck et al., 2024]

▶ Efficient inference of time-varying latent forces [Schmidt et al., 2021]

Probabilistic Numerics: Computation as Machine Learning
Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022

@nathanaelbosch 10



The state of filtering-based probabilistic numerical ODE solvers
▶ Properties and features:

▶ Polynomial convergence rates [Kersting et al., 2020b, Tronarp et al., 2021]

▶ A-stability [Tronarp et al., 2019]

▶ L-stable probabilistic exponential integrators [Bosch et al., 2023b]

▶ Connection to multi-step methods in Nordsieck form [Schober et al., 2019]

▶ Complexity: O
(
d3) for the A-stable semi-implicit method,

Complexity: O(d) for an explicit version with coarser covariances [Krämer et al., 2022]

▶ Step-size adaptation [Bosch et al., 2021]

▶ Parallel-in-time formulation with O(log(N)) complexity [Bosch et al., 2023a]

▶ More related differential equation problems:

▶ Higher-order ODEs, DAEs, Hamiltonian systems [Bosch et al., 2022]

▶ Boundary value problems (BVPs) [Krämer and Hennig, 2021]

▶ Partial differential equations (PDEs) via method of lines [Krämer et al., 2022]

▶ Inverse problems

▶ Probabilistic numerics-based parameter inference in ODEs [Kersting et al., 2020a, Tronarp et al., 2022, Beck et al., 2024]

▶ Efficient inference of time-varying latent forces [Schmidt et al., 2021]

Probabilistic Numerics: Computation as Machine Learning
Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022

@nathanaelbosch 10



The state of filtering-based probabilistic numerical ODE solvers
▶ Properties and features:

▶ Polynomial convergence rates [Kersting et al., 2020b, Tronarp et al., 2021]

▶ A-stability [Tronarp et al., 2019]

▶ L-stable probabilistic exponential integrators [Bosch et al., 2023b]

▶ Connection to multi-step methods in Nordsieck form [Schober et al., 2019]

▶ Complexity: O
(
d3) for the A-stable semi-implicit method,

Complexity: O(d) for an explicit version with coarser covariances [Krämer et al., 2022]

▶ Step-size adaptation [Bosch et al., 2021]

▶ Parallel-in-time formulation with O(log(N)) complexity [Bosch et al., 2023a]

▶ More related differential equation problems:

▶ Higher-order ODEs, DAEs, Hamiltonian systems [Bosch et al., 2022]

▶ Boundary value problems (BVPs) [Krämer and Hennig, 2021]

▶ Partial differential equations (PDEs) via method of lines [Krämer et al., 2022]

▶ Inverse problems

▶ Probabilistic numerics-based parameter inference in ODEs [Kersting et al., 2020a, Tronarp et al., 2022, Beck et al., 2024]

▶ Efficient inference of time-varying latent forces [Schmidt et al., 2021]

Probabilistic Numerics: Computation as Machine Learning
Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022

@nathanaelbosch 10



The state of filtering-based probabilistic numerical ODE solvers
▶ Properties and features:

▶ Polynomial convergence rates [Kersting et al., 2020b, Tronarp et al., 2021]

▶ A-stability [Tronarp et al., 2019]

▶ L-stable probabilistic exponential integrators [Bosch et al., 2023b]

▶ Connection to multi-step methods in Nordsieck form [Schober et al., 2019]

▶ Complexity: O
(
d3) for the A-stable semi-implicit method,

Complexity: O(d) for an explicit version with coarser covariances [Krämer et al., 2022]

▶ Step-size adaptation [Bosch et al., 2021]

▶ Parallel-in-time formulation with O(log(N)) complexity [Bosch et al., 2023a]

▶ More related differential equation problems:
▶ Higher-order ODEs, DAEs, Hamiltonian systems [Bosch et al., 2022]

▶ Boundary value problems (BVPs) [Krämer and Hennig, 2021]

▶ Partial differential equations (PDEs) via method of lines [Krämer et al., 2022]

▶ Inverse problems

▶ Probabilistic numerics-based parameter inference in ODEs [Kersting et al., 2020a, Tronarp et al., 2022, Beck et al., 2024]

▶ Efficient inference of time-varying latent forces [Schmidt et al., 2021]

Probabilistic Numerics: Computation as Machine Learning
Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022

@nathanaelbosch 10



The state of filtering-based probabilistic numerical ODE solvers
▶ Properties and features:

▶ Polynomial convergence rates [Kersting et al., 2020b, Tronarp et al., 2021]

▶ A-stability [Tronarp et al., 2019]

▶ L-stable probabilistic exponential integrators [Bosch et al., 2023b]

▶ Connection to multi-step methods in Nordsieck form [Schober et al., 2019]

▶ Complexity: O
(
d3) for the A-stable semi-implicit method,

Complexity: O(d) for an explicit version with coarser covariances [Krämer et al., 2022]

▶ Step-size adaptation [Bosch et al., 2021]

▶ Parallel-in-time formulation with O(log(N)) complexity [Bosch et al., 2023a]

▶ More related differential equation problems:
▶ Higher-order ODEs, DAEs, Hamiltonian systems [Bosch et al., 2022]

▶ Boundary value problems (BVPs) [Krämer and Hennig, 2021]

▶ Partial differential equations (PDEs) via method of lines [Krämer et al., 2022]

▶ Inverse problems
▶ Probabilistic numerics-based parameter inference in ODEs [Kersting et al., 2020a, Tronarp et al., 2022, Beck et al., 2024]

▶ Efficient inference of time-varying latent forces [Schmidt et al., 2021]

Probabilistic Numerics: Computation as Machine Learning
Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022

@nathanaelbosch 10



The state of filtering-based probabilistic numerical ODE solvers
▶ Properties and features:

▶ Polynomial convergence rates [Kersting et al., 2020b, Tronarp et al., 2021]

▶ A-stability [Tronarp et al., 2019]

▶ L-stable probabilistic exponential integrators [Bosch et al., 2023b]

▶ Connection to multi-step methods in Nordsieck form [Schober et al., 2019]

▶ Complexity: O
(
d3) for the A-stable semi-implicit method,

Complexity: O(d) for an explicit version with coarser covariances [Krämer et al., 2022]

▶ Step-size adaptation [Bosch et al., 2021]

▶ Parallel-in-time formulation with O(log(N)) complexity [Bosch et al., 2023a]

▶ More related differential equation problems:
▶ Higher-order ODEs, DAEs, Hamiltonian systems [Bosch et al., 2022]

▶ Boundary value problems (BVPs) [Krämer and Hennig, 2021]

▶ Partial differential equations (PDEs) via method of lines [Krämer et al., 2022]

▶ Inverse problems
▶ Probabilistic numerics-based parameter inference in ODEs [Kersting et al., 2020a, Tronarp et al., 2022, Beck et al., 2024]

▶ Efficient inference of time-varying latent forces [Schmidt et al., 2021]

Probabilistic Numerics: Computation as Machine Learning
Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022

@nathanaelbosch 10



ProbNumDiffEq.jl
Probabilistic numerical ODE solvers in Julia

@nathanaelbosch 11



How to use ProbNumDiffEq.jl
It’s just like OrdinaryDiffEq.jl

OrdinaryDiffEq.jl

using OrdinaryDiffEq

function fitzhughnagumo(du, u, p, t)
a, b, c = p
x, y = u
du[1] = c * (x - x^3 / 3 + y)
du[2] = -(1/c) * (x - a - b * y)

end
u0 = [-1.0, 1.0]
tspan = (0.0, 20.0)
p = (0.2, 0.2, 3.0)
prob = ODEProblem(f, u0, tspan, p)

sol = solve(prob, Tsit5())

ProbNumDiffEq.jl

using ProbNumDiffEq

function fitzhughnagumo(du, u, p, t)
a, b, c = p
x, y = u
du[1] = c * (x - x^3 / 3 + y)
du[2] = -(1/c) * (x - a - b * y)

end
u0 = [-1.0, 1.0]
tspan = (0.0, 20.0)
p = (0.2, 0.2, 3.0)
prob = ODEProblem(f, u0, tspan, p)

sol = solve(prob, EK1())

@nathanaelbosch 12



How to use ProbNumDiffEq.jl
It’s just like OrdinaryDiffEq.jl

OrdinaryDiffEq.jl

using OrdinaryDiffEq

function fitzhughnagumo(du, u, p, t)
a, b, c = p
x, y = u
du[1] = c * (x - x^3 / 3 + y)
du[2] = -(1/c) * (x - a - b * y)

end
u0 = [-1.0, 1.0]
tspan = (0.0, 20.0)
p = (0.2, 0.2, 3.0)
prob = ODEProblem(f, u0, tspan, p)

sol = solve(prob, Tsit5())

ProbNumDiffEq.jl

using ProbNumDiffEq

function fitzhughnagumo(du, u, p, t)
a, b, c = p
x, y = u
du[1] = c * (x - x^3 / 3 + y)
du[2] = -(1/c) * (x - a - b * y)

end
u0 = [-1.0, 1.0]
tspan = (0.0, 20.0)
p = (0.2, 0.2, 3.0)
prob = ODEProblem(f, u0, tspan, p)

sol = solve(prob, EK1())
@nathanaelbosch 12



Documentation

@nathanaelbosch 13



Documentation

@nathanaelbosch 13



Documentation
SciML’s SEO score outperforms my own docs

@nathanaelbosch 14



Features of ProbNumDiffEq.jl

Standard ODE solver features

⊠ Explicit and implicit solvers:
EK0, EK1, ExpEK, RosenbrockExpEK

⊠ Solvers of different orders:
EK0(1), EK0(2), EK0(3), …

⊠ Step-size adaptation:
Same controllers as OrdinaryDiffEq.jl

⊠ Dense output
⊠ Plot recipes
⊠ Callbacks (including a custom

ManifoldUpdate callback)
□ Support for DAEProblem
□ Adjoint sensitivities

y(
t)

0

1

a. Explicit method

dt = 0.01

y(
t)

0

1

b. Semi-implicit method

dt = 0.25

t
0 3

y(
t)

0

1

c. Exponential integrator

dt = 0.25

@nathanaelbosch 15



Features of ProbNumDiffEq.jl

Standard ODE solver features

⊠ Explicit and implicit solvers:
EK0, EK1, ExpEK, RosenbrockExpEK

⊠ Solvers of different orders:
EK0(1), EK0(2), EK0(3), …

⊠ Step-size adaptation:
Same controllers as OrdinaryDiffEq.jl

⊠ Dense output
⊠ Plot recipes
⊠ Callbacks (including a custom

ManifoldUpdate callback)
□ Support for DAEProblem
□ Adjoint sensitivities

@nathanaelbosch 15



Features of ProbNumDiffEq.jl

Standard ODE solver features

⊠ Explicit and implicit solvers:
EK0, EK1, ExpEK, RosenbrockExpEK

⊠ Solvers of different orders:
EK0(1), EK0(2), EK0(3), …

⊠ Step-size adaptation:
Same controllers as OrdinaryDiffEq.jl

⊠ Dense output
⊠ Plot recipes
⊠ Callbacks (including a custom

ManifoldUpdate callback)
□ Support for DAEProblem
□ Adjoint sensitivities

@nathanaelbosch 15



Features of ProbNumDiffEq.jl

Standard ODE solver features

⊠ Explicit and implicit solvers:
EK0, EK1, ExpEK, RosenbrockExpEK

⊠ Solvers of different orders:
EK0(1), EK0(2), EK0(3), …

⊠ Step-size adaptation:
Same controllers as OrdinaryDiffEq.jl

⊠ Dense output

⊠ Plot recipes
⊠ Callbacks (including a custom

ManifoldUpdate callback)
□ Support for DAEProblem
□ Adjoint sensitivities

@nathanaelbosch 15



Features of ProbNumDiffEq.jl

Standard ODE solver features

⊠ Explicit and implicit solvers:
EK0, EK1, ExpEK, RosenbrockExpEK

⊠ Solvers of different orders:
EK0(1), EK0(2), EK0(3), …

⊠ Step-size adaptation:
Same controllers as OrdinaryDiffEq.jl

⊠ Dense output
⊠ Plot recipes

⊠ Callbacks (including a custom
ManifoldUpdate callback)

□ Support for DAEProblem
□ Adjoint sensitivities

@nathanaelbosch 15



Features of ProbNumDiffEq.jl

Standard ODE solver features

⊠ Explicit and implicit solvers:
EK0, EK1, ExpEK, RosenbrockExpEK

⊠ Solvers of different orders:
EK0(1), EK0(2), EK0(3), …

⊠ Step-size adaptation:
Same controllers as OrdinaryDiffEq.jl

⊠ Dense output
⊠ Plot recipes
⊠ Callbacks (including a custom

ManifoldUpdate callback)

□ Support for DAEProblem
□ Adjoint sensitivities

@nathanaelbosch 15



Features of ProbNumDiffEq.jl

Probabilistic numerics-related features

⊠ Numerical error estimates
(shown by the plot recipe!)

⊠ Sampling from the posterior
⊠ Multiple different prior choices
⊠ Probabilistic data likelihoods

(for parameter inference problems)
□ Other filtering algorithms:

UKF, Cubature filters, particle filters…
□ Custom prior interface
□ Latent force inference
□ Parallel-in-time solver (using the time-parallel

iterated extended Kalman smoother)

@nathanaelbosch 15



Features of ProbNumDiffEq.jl

Probabilistic numerics-related features

⊠ Numerical error estimates
(shown by the plot recipe!)

⊠ Sampling from the posterior

⊠ Multiple different prior choices
⊠ Probabilistic data likelihoods

(for parameter inference problems)
□ Other filtering algorithms:

UKF, Cubature filters, particle filters…
□ Custom prior interface
□ Latent force inference
□ Parallel-in-time solver (using the time-parallel

iterated extended Kalman smoother)

@nathanaelbosch 15



Features of ProbNumDiffEq.jl

Probabilistic numerics-related features

⊠ Numerical error estimates
(shown by the plot recipe!)

⊠ Sampling from the posterior
⊠ Multiple different prior choices

⊠ Probabilistic data likelihoods
(for parameter inference problems)

□ Other filtering algorithms:
UKF, Cubature filters, particle filters…

□ Custom prior interface
□ Latent force inference
□ Parallel-in-time solver (using the time-parallel

iterated extended Kalman smoother)

@nathanaelbosch 15



Features of ProbNumDiffEq.jl

0

1

0 100

0

1

S

E

I

R

Probabilistic numerics-related features

⊠ Numerical error estimates
(shown by the plot recipe!)

⊠ Sampling from the posterior
⊠ Multiple different prior choices
⊠ Probabilistic data likelihoods

(for parameter inference problems)

□ Other filtering algorithms:
UKF, Cubature filters, particle filters…

□ Custom prior interface
□ Latent force inference
□ Parallel-in-time solver (using the time-parallel

iterated extended Kalman smoother)

@nathanaelbosch 15



Features of ProbNumDiffEq.jl

Standard ODE solver features

⊠ Explicit and implicit solvers:
EK0, EK1, ExpEK, RosenbrockExpEK

⊠ Solvers of different orders:
EK0(1), EK0(2), EK0(3), …

⊠ Step-size adaptation:
Same controllers as OrdinaryDiffEq.jl

⊠ Dense output
⊠ Plot recipes
⊠ Callbacks (including a custom

ManifoldUpdate callback)
□ Support for DAEProblem
□ Adjoint sensitivities

Probabilistic numerics-related features

⊠ Numerical error estimates
(shown by the plot recipe!)

⊠ Sampling from the posterior
⊠ Multiple different prior choices
⊠ Probabilistic data likelihoods

(for parameter inference problems)

□ Other filtering algorithms:
UKF, Cubature filters, particle filters…

□ Custom prior interface
□ Latent force inference
□ Parallel-in-time solver (using the time-parallel

iterated extended Kalman smoother)

@nathanaelbosch 15



Features of ProbNumDiffEq.jl

Standard ODE solver features

⊠ Explicit and implicit solvers:
EK0, EK1, ExpEK, RosenbrockExpEK

⊠ Solvers of different orders:
EK0(1), EK0(2), EK0(3), …

⊠ Step-size adaptation:
Same controllers as OrdinaryDiffEq.jl

⊠ Dense output
⊠ Plot recipes
⊠ Callbacks (including a custom

ManifoldUpdate callback)
□ Support for DAEProblem
□ Adjoint sensitivities

Probabilistic numerics-related features

⊠ Numerical error estimates
(shown by the plot recipe!)

⊠ Sampling from the posterior
⊠ Multiple different prior choices
⊠ Probabilistic data likelihoods

(for parameter inference problems)
□ Other filtering algorithms:

UKF, Cubature filters, particle filters…
□ Custom prior interface
□ Latent force inference
□ Parallel-in-time solver (using the time-parallel

iterated extended Kalman smoother)

@nathanaelbosch 15



Features of ProbNumDiffEq.jl

Standard ODE solver features

⊠ Explicit and implicit solvers:
EK0, EK1, ExpEK, RosenbrockExpEK

⊠ Solvers of different orders:
EK0(1), EK0(2), EK0(3), …

⊠ Step-size adaptation:
Same controllers as OrdinaryDiffEq.jl

⊠ Dense output
⊠ Plot recipes
⊠ Callbacks (including a custom

ManifoldUpdate callback)
□ Support for DAEProblem
□ Adjoint sensitivities

Probabilistic numerics-related features

⊠ Numerical error estimates
(shown by the plot recipe!)

⊠ Sampling from the posterior
⊠ Multiple different prior choices
⊠ Probabilistic data likelihoods

(for parameter inference problems)
□ Other filtering algorithms:

UKF, Cubature filters, particle filters…
□ Custom prior interface
□ Latent force inference
□ Parallel-in-time solver (using the time-parallel

iterated extended Kalman smoother)

@nathanaelbosch 15



Benchmarking ProbNumDiffEq.jl

@nathanaelbosch 16



Benchmarks: Low-dimensional non-stiff ODE (Lotka-Volterra)
100x slower than Tsit5

@nathanaelbosch 17



Benchmarks: Low-dimensional stiff ODE (Van-der-Pol)
10x slower than RadauIIA5

@nathanaelbosch 18



Benchmarks: Medium-dimensional non-stiff ODE (Pleiades)
Same ballpark as Tsit5 !

@nathanaelbosch 19



Beyond numerical uncertainty quantification
Probabilistic numerics for robust ODE parameter inference

@nathanaelbosch 20



Robust parameter inference in ODEs with ProbNumDiffEq.jl
Filtering and smoothing often helps to escape local optima in oscillatory systems

[Tronarp et al., 2022]

@nathanaelbosch 21



Robust parameter inference in ODEs with ProbNumDiffEq.jl
Filtering and smoothing often helps to escape local optima in oscillatory systems

[Beck et al., 2024]

@nathanaelbosch 21



Robust parameter inference in ODEs with ProbNumDiffEq.jl
Filtering and smoothing often helps to escape local optima in oscillatory systems

%
@nathanaelbosch 21



Summary
▶ ODE solving is state estimation⇒ treat initial value problems as state estimation problems
▶ Probablistic numerical ODE solvers solve ODEs with Bayesian filtering and smoothing

Try it out! https://github.com/nathanaelbosch/ProbNumDiffEq.jl
]add ProbNumDiffEq

Contribute!
▶ Try out the package and tell me how it goes!
▶ Open issues, report bugs, give feedback on the package design
▶ Help me improve performance / AD backend compatibility / GPU support / add features…
▶ Tell me about your usecase or show me an example!
▶ Design a logo!

Thanks!

@nathanaelbosch 22

https://github.com/nathanaelbosch/ProbNumDiffEq.jl


Summary
▶ ODE solving is state estimation⇒ treat initial value problems as state estimation problems
▶ Probablistic numerical ODE solvers solve ODEs with Bayesian filtering and smoothing

Try it out! https://github.com/nathanaelbosch/ProbNumDiffEq.jl
]add ProbNumDiffEq

Contribute!
▶ Try out the package and tell me how it goes!
▶ Open issues, report bugs, give feedback on the package design
▶ Help me improve performance / AD backend compatibility / GPU support / add features…
▶ Tell me about your usecase or show me an example!
▶ Design a logo!

Thanks!

@nathanaelbosch 22

https://github.com/nathanaelbosch/ProbNumDiffEq.jl


Summary
▶ ODE solving is state estimation⇒ treat initial value problems as state estimation problems
▶ Probablistic numerical ODE solvers solve ODEs with Bayesian filtering and smoothing

Try it out! https://github.com/nathanaelbosch/ProbNumDiffEq.jl
]add ProbNumDiffEq

Contribute!
▶ Try out the package and tell me how it goes!
▶ Open issues, report bugs, give feedback on the package design
▶ Help me improve performance / AD backend compatibility / GPU support / add features…
▶ Tell me about your usecase or show me an example!
▶ Design a logo!

Thanks!

@nathanaelbosch 22

https://github.com/nathanaelbosch/ProbNumDiffEq.jl


Summary
▶ ODE solving is state estimation⇒ treat initial value problems as state estimation problems
▶ Probablistic numerical ODE solvers solve ODEs with Bayesian filtering and smoothing

Try it out! https://github.com/nathanaelbosch/ProbNumDiffEq.jl
]add ProbNumDiffEq

Contribute!
▶ Try out the package and tell me how it goes!
▶ Open issues, report bugs, give feedback on the package design
▶ Help me improve performance / AD backend compatibility / GPU support / add features…
▶ Tell me about your usecase or show me an example!
▶ Design a logo!

Thanks!
@nathanaelbosch 22

https://github.com/nathanaelbosch/ProbNumDiffEq.jl


Bibliography I

▶ Beck, J., Bosch, N., Deistler, M., Kadhim, K. L., Macke, J. H., Hennig, P., and Berens, P. (2024).
Diffusion tempering improves parameter estimation with probabilistic integrators for ordinary
differential equations.
In Forty-first International Conference on Machine Learning.

▶ Bosch, N., Corenflos, A., Yaghoobi, F., Tronarp, F., Hennig, P., and Särkkä, S. (2023a).
Parallel-in-time probabilistic numerical ODE solvers.

▶ Bosch, N., Hennig, P., and Tronarp, F. (2021).
Calibrated adaptive probabilistic ODE solvers.
In Banerjee, A. and Fukumizu, K., editors, Proceedings of The 24th International Conference on
Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine Learning Research, pages
3466–3474. PMLR.

▶ Bosch, N., Hennig, P., and Tronarp, F. (2023b).
Probabilistic exponential integrators.
In Thirty-seventh Conference on Neural Information Processing Systems.

@nathanaelbosch 23



Bibliography II

▶ Bosch, N., Tronarp, F., and Hennig, P. (2022).
Pick-and-mix information operators for probabilistic ODE solvers.
In Camps-Valls, G., Ruiz, F. J. R., and Valera, I., editors, Proceedings of The 25th International
Conference on Artificial Intelligence and Statistics, volume 151 of Proceedings of Machine Learning
Research, pages 10015–10027. PMLR.

▶ Kersting, H., Krämer, N., Schiegg, M., Daniel, C., Tiemann, M., and Hennig, P. (2020a).
Differentiable likelihoods for fast inversion of ’Likelihood-free’ dynamical systems.
In III, H. D. and Singh, A., editors, Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pages 5198–5208. PMLR.

▶ Kersting, H., Sullivan, T. J., and Hennig, P. (2020b).
Convergence rates of gaussian ode filters.
Statistics and Computing, 30(6):1791–1816.

@nathanaelbosch 24



Bibliography III

▶ Krämer, N., Bosch, N., Schmidt, J., and Hennig, P. (2022).
Probabilistic ODE solutions in millions of dimensions.
In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., and Sabato, S., editors, Proceedings of
the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine
Learning Research, pages 11634–11649. PMLR.

▶ Krämer, N. and Hennig, P. (2021).
Linear-time probabilistic solution of boundary value problems.
In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W., editors, Advances in Neural
Information Processing Systems, volume 34, pages 11160–11171. Curran Associates, Inc.

▶ Krämer, N., Schmidt, J., and Hennig, P. (2022).
Probabilistic numerical method of lines for time-dependent partial differential equations.
In Camps-Valls, G., Ruiz, F. J. R., and Valera, I., editors, Proceedings of The 25th International
Conference on Artificial Intelligence and Statistics, volume 151 of Proceedings of Machine Learning
Research, pages 625–639. PMLR.

@nathanaelbosch 25



Bibliography IV

▶ Schmidt, J., Krämer, N., and Hennig, P. (2021).
A probabilistic state space model for joint inference from differential equations and data.
In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W., editors, Advances in Neural
Information Processing Systems, volume 34, pages 12374–12385. Curran Associates, Inc.

▶ Schober, M., Särkkä, S., and Hennig, P. (2019).
A probabilistic model for the numerical solution of initial value problems.
Statistics and Computing, 29(1):99–122.

▶ Tronarp, F., Bosch, N., and Hennig, P. (2022).
Fenrir: Physics-enhanced regression for initial value problems.
In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., and Sabato, S., editors, Proceedings of
the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine
Learning Research, pages 21776–21794. PMLR.

@nathanaelbosch 26



Bibliography V

▶ Tronarp, F., Kersting, H., Särkkä, S., and Hennig, P. (2019).
Probabilistic solutions to ordinary differential equations as nonlinear Bayesian filtering: a new
perspective.
Statistics and Computing, 29(6):1297–1315.

▶ Tronarp, F., Särkkä, S., and Hennig, P. (2021).
Bayesian ode solvers: the maximum a posteriori estimate.
Statistics and Computing, 31(3):23.

@nathanaelbosch 27



BACKUP

@nathanaelbosch 28



Probabilistic numerical ODE solvers: The state-estimation problem
This is the actual state estimation problem that we solve

x1x0 x2 x3 . . . xN

z1 z2 z3 zN

Hidden:

Observed:

Initial distribution: x(0) ∼ N
(
x(0);µ−

0 ,Σ
−
0
)

Prior / dynamics model: x(t+ h) | x(t) ∼ N (x(t+ h); A(h)x(t),Q(h))

ODE likelihood: z(ti) | x(ti) ∼ δ (z(ti); E1x(ti)− f(E0x(ti), ti)) , zi ≜ 0

Initial value likelihood: zinit | x(0) ∼ δ
(
zinit; E0x(0)− y0

)
, zinit ≜ 0

x(t) is the /state-space representation/ of y(t); E0x(t) ≜ y(t), E1x(t) ≜ ẏ(t).
@nathanaelbosch 29



Local calibration and step-size adaptation
Fixed steps — the vanilla way as introduced so far

Calibration
▶ Problem: The Gauss–Markov prior

has hyperparameters. How to
choose them?

▶ Most notably: The diffusion σ
(basically acts as an output scale)

▶ Solution: (Quasi-)MLE
(can be done in closed form here)

Step-size adaptation
▶ Local error estimates from

measurement residuals
▶ Step-size selection with PI-control

(similar as in classic solvers)

@nathanaelbosch 30



Local calibration and step-size adaptation
Fixed steps — the vanilla way as introduced so far

Calibration
▶ Problem: The Gauss–Markov prior

has hyperparameters. How to
choose them?

▶ Most notably: The diffusion σ
(basically acts as an output scale)

▶ Solution: (Quasi-)MLE
(can be done in closed form here)

Step-size adaptation
▶ Local error estimates from

measurement residuals
▶ Step-size selection with PI-control

(similar as in classic solvers)

@nathanaelbosch 30



Local calibration and step-size adaptation
Local calibration by estimating a time-varying diffusion model σ(t)

Calibration
▶ Problem: The Gauss–Markov prior

has hyperparameters. How to
choose them?

▶ Most notably: The diffusion σ
(basically acts as an output scale)

▶ Solution: (Quasi-)MLE
(can be done in closed form here)

Step-size adaptation
▶ Local error estimates from

measurement residuals
▶ Step-size selection with PI-control

(similar as in classic solvers)

@nathanaelbosch 30



Local calibration and step-size adaptation
Adaptive step-size selection via local error estimation from the measurement residuals

Calibration
▶ Problem: The Gauss–Markov prior

has hyperparameters. How to
choose them?

▶ Most notably: The diffusion σ
(basically acts as an output scale)

▶ Solution: (Quasi-)MLE
(can be done in closed form here)

Step-size adaptation
▶ Local error estimates from

measurement residuals
▶ Step-size selection with PI-control

(similar as in classic solvers)

@nathanaelbosch 30



Prior: The ν-times integrated Wiener process
A very convenient prior with closed-form transition densities

▶ ν-times integrated Wiener process prior: x(t) ∼ IWP(q)

dx(i)(t) = x(i+1)(t)dt, i = 0, . . . , q− 1,

dx(q)(t) = σdW(t),
x(0) ∼ N (µ0,Σ0).

▶ Corresponds to Taylor-polynomial + perturbation:

x(0)(t) =
q∑

m=0

x(m)(0)
tm

m!
+ σ

∫ t

0

t− τ

q!
dW(τ)

@nathanaelbosch 31



On linearization strategies and their influence on A-Stability
We can actually approximate the Jacobian in the EKF and still get sensible results / algorithms! [Tronarp et al., 2019]

▶ Measurement model: m(x(t), t) = x(1)(t)− f(x(0)(t), t)
▶ A standard extended Kalman filter computes the Jacobian of the measurement mode:

Jm(ξ) = E1 − Jf(E0ξ, t)E0 \⇒ This algorithm is often called EK1.
▶ Turns out the following also works: Jf ≈ 0 and then Jm(ξ) ≈ E1 \⇒ The resulting algorithm is

often called EK0.

A comparison of EK1 and EK0:

Jacobian type A-stable uncertainties speed
EK1 H = E1 − Jf(E0µ

p)E0 semi-implicit yes more expressive slower (O(Nd3q3))
EK0 H = E1 explicit no simpler faster (O(Ndq3))

@nathanaelbosch 32


