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Background: Ordinary Differential Equations and how to solve them
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t)
with t ∈ [0, T], vector field f : Rd × R→ Rd, and initial value y(0) = y0. Goal: “Find y”.

Numerical ODE solvers:

▶ Forward Euler:
ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t)

▶ Backward Euler:
ŷ(t+ h) = ŷ(t) + hf(ŷ(t+ h), t+ h)

▶ Runge–Kutta:
ŷ(t+ h) = ŷ(t) + h

∑s
i=1 bif(ỹi, t+ cih)

▶ Multistep:
ŷ(t+ h) = ŷ(t) + h

∑s−1
i=0 bif(ŷ(t− ih), t− ih)

Forward Euler for different step sizes:
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⇒ It is “correct” only in the limit h→ 0!

Numerical ODE solvers estimate y(t) by evaluating f on a discrete set of points.
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∑s−1
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Probabilistic numerical ODE solvers
or “How to treat ODE solving as the Bayesian state estimation problem that it really is”
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Probabilistic numerical ODE solvers
How to treat ODEs as the state estimation problem that they really are

p
(
y(t)

∣∣∣ y(0) = y0, {ẏ(tn) = f (y(tn), tn)}Nn=1

)
with vector field f : Rd × R→ Rd, initial value y0, and time discretization {tn}Nn=1.

▶ Prior:

y(t) ∼ GP a Gauss–Markov process

▶ Likelihood: (aka “observation model” or “information operator”)

y(0)− y0 = 0, & ẏ(tn)− f(y(tn), tn) = 0.

▶ Inference:

Bayesian filtering and smoothing
Kalman filter, extended Kalman filter, unscented Kalman filter, particle filters, ...
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∣∣∣ y(0) = y0, {ẏ(tn) = f (y(tn), tn)}Nn=1

)
with vector field f : Rd × R→ Rd, initial value y0, and time discretization {tn}Nn=1.

▶ Prior: y(t) ∼ GP a Gauss–Markov process

▶ Likelihood: (aka “observation model” or “information operator”)
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Probabilistic numerical ODE solvers in pictures
From the uninformed prior to the ODE solution posterior

EKF

−−→
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Probabilistic numerical ODE solvers in pictures
From the uninformed prior to the ODE solution posterior

EKF−−→
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Probabilistic numerical ODE solvers in pseudo-code
We can solve ODEs with basically just an extended Kalman filter

Algorithm The extended Kalman ODE filter

1 procedure EXTENDED KALMAN ODE FILTER((µ−
0 ,Σ

−
0 ), (A,Q), (f, y0), {ti}

N
i=1)

2 µ0,Σ0 ← KF_UPDATE(µ−
0 ,Σ

−
0 , E0, 0d×d, y0) � Initial update to fit the initial value

3 for k ∈ {1, . . . ,N} do
4 hk ← tk − tk−1 � Step size

5 µ−
k ,Σ

−
k ← KF_PREDICT(µk−1,Σk−1, A(hk),Q(hk)) � Kalman filter prediction

6 mk(x) := E1x− f(E0x, tk) � Define the non-linear observation model

7 µk,Σk ← EKF_UPDATE(µ−
k ,Σ

−
k ,mk, 0d×d, 0⃗d) � Extended Kalman filter update

8 end for
9 return (µk,Σk)

N
k=1

10 end procedure

EXTENDED KALMAN ODE SMOOTHER: Just run a RTS smoother after the filter!
https://github.com/nathanaelbosch/probnumspringschool2024-tutorial
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Probabilistic numerical ODE solvers in action
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Probabilistic numerical ODE solutions
The solution now contains error estimates!
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The state of filtering-based probabilistic numerical ODE solvers
▶ Properties and features:

▶ Polynomial convergence rates [Kersting et al., 2020b, Tronarp et al., 2021]

▶ A-stability [Tronarp et al., 2019]

▶ L-stable probabilistic exponential integrators [Bosch et al., 2023b]

▶ Connection to multi-step methods in Nordsieck form [Schober et al., 2019]

▶ Complexity: O
(
d3) for the A-stable semi-implicit method,

Complexity: O(d) for an explicit version with coarser covariances [Krämer et al., 2022]

▶ Step-size adaptation [Bosch et al., 2021]

▶ Parallel-in-time formulation with O(log(N)) complexity [Bosch et al., 2023a]

▶ More related differential equation problems:

▶ Higher-order ODEs, DAEs, Hamiltonian systems [Bosch et al., 2022]

▶ Boundary value problems (BVPs) [Krämer and Hennig, 2021]

▶ Partial differential equations (PDEs) via method of lines [Krämer et al., 2022]

▶ Inverse problems

▶ Probabilistic numerics-based parameter inference in ODEs [Kersting et al., 2020a, Tronarp et al., 2022, Beck et al., 2024]

▶ Efficient inference of time-varying latent forces [Schmidt et al., 2021]

Probabilistic Numerics: Computation as Machine Learning
Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022
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ProbNumDiffEq.jl
Probabilistic numerical ODE solvers in Julia
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How to use ProbNumDiffEq.jl
It’s just like OrdinaryDiffEq.jl

OrdinaryDiffEq.jl

using OrdinaryDiffEq

function fitzhughnagumo(du, u, p, t)
a, b, c = p
x, y = u
du[1] = c * (x - x^3 / 3 + y)
du[2] = -(1/c) * (x - a - b * y)

end
u0 = [-1.0, 1.0]
tspan = (0.0, 20.0)
p = (0.2, 0.2, 3.0)
prob = ODEProblem(f, u0, tspan, p)

sol = solve(prob, Tsit5())

ProbNumDiffEq.jl
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Documentation
SciML’s SEO score outperforms my own docs
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Features of ProbNumDiffEq.jl

Standard ODE solver features

⊠ Explicit and implicit solvers:
EK0, EK1, ExpEK, RosenbrockExpEK

⊠ Solvers of different orders:
EK0(1), EK0(2), EK0(3), …

⊠ Step-size adaptation:
Same controllers as OrdinaryDiffEq.jl

⊠ Dense output
⊠ Plot recipes
⊠ Callbacks (including a custom

ManifoldUpdate callback)
□ Support for DAEProblem
□ Adjoint sensitivities

y(
t)

0

1

a. Explicit method

dt = 0.01

y(
t)

0

1

b. Semi-implicit method

dt = 0.25

t
0 3

y(
t)

0

1

c. Exponential integrator

dt = 0.25
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Features of ProbNumDiffEq.jl

Probabilistic numerics-related features

⊠ Numerical error estimates
(shown by the plot recipe!)

⊠ Sampling from the posterior
⊠ Multiple different prior choices
⊠ Probabilistic data likelihoods

(for parameter inference problems)
□ Other filtering algorithms:

UKF, Cubature filters, particle filters…
□ Custom prior interface
□ Latent force inference
□ Parallel-in-time solver (using the time-parallel

iterated extended Kalman smoother)
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Benchmarking ProbNumDiffEq.jl
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Benchmarks: Low-dimensional non-stiff ODE (Lotka-Volterra)
100x slower than Tsit5
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Benchmarks: Low-dimensional stiff ODE (Van-der-Pol)
10x slower than RadauIIA5
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Benchmarks: Medium-dimensional non-stiff ODE (Pleiades)
Same ballpark as Tsit5 !
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Beyond numerical uncertainty quantification
Probabilistic numerics for robust ODE parameter inference

@nathanaelbosch 20



Robust parameter inference in ODEs with ProbNumDiffEq.jl
Filtering and smoothing often helps to escape local optima in oscillatory systems

[Tronarp et al., 2022]
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Robust parameter inference in ODEs with ProbNumDiffEq.jl
Filtering and smoothing often helps to escape local optima in oscillatory systems

[Beck et al., 2024]
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Filtering and smoothing often helps to escape local optima in oscillatory systems

%
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Summary
▶ ODE solving is state estimation⇒ treat initial value problems as state estimation problems
▶ Probablistic numerical ODE solvers solve ODEs with Bayesian filtering and smoothing

Try it out! https://github.com/nathanaelbosch/ProbNumDiffEq.jl
]add ProbNumDiffEq

Contribute!
▶ Try out the package and tell me how it goes!
▶ Open issues, report bugs, give feedback on the package design
▶ Help me improve performance / AD backend compatibility / GPU support / add features…
▶ Tell me about your usecase or show me an example!
▶ Design a logo!

Thanks!
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Probabilistic numerical ODE solvers: The state-estimation problem
This is the actual state estimation problem that we solve

x1x0 x2 x3 . . . xN

z1 z2 z3 zN

Hidden:

Observed:

Initial distribution: x(0) ∼ N
(
x(0);µ−

0 ,Σ
−
0
)

Prior / dynamics model: x(t+ h) | x(t) ∼ N (x(t+ h); A(h)x(t),Q(h))

ODE likelihood: z(ti) | x(ti) ∼ δ (z(ti); E1x(ti)− f(E0x(ti), ti)) , zi ≜ 0

Initial value likelihood: zinit | x(0) ∼ δ
(
zinit; E0x(0)− y0

)
, zinit ≜ 0

x(t) is the /state-space representation/ of y(t); E0x(t) ≜ y(t), E1x(t) ≜ ẏ(t).
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Local calibration and step-size adaptation
Fixed steps — the vanilla way as introduced so far

Calibration
▶ Problem: The Gauss–Markov prior

has hyperparameters. How to
choose them?

▶ Most notably: The diffusion σ
(basically acts as an output scale)

▶ Solution: (Quasi-)MLE
(can be done in closed form here)

Step-size adaptation
▶ Local error estimates from

measurement residuals
▶ Step-size selection with PI-control

(similar as in classic solvers)
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Step-size adaptation
▶ Local error estimates from

measurement residuals
▶ Step-size selection with PI-control

(similar as in classic solvers)

@nathanaelbosch 30



Local calibration and step-size adaptation
Local calibration by estimating a time-varying diffusion model σ(t)

Calibration
▶ Problem: The Gauss–Markov prior

has hyperparameters. How to
choose them?

▶ Most notably: The diffusion σ
(basically acts as an output scale)

▶ Solution: (Quasi-)MLE
(can be done in closed form here)

Step-size adaptation
▶ Local error estimates from

measurement residuals
▶ Step-size selection with PI-control

(similar as in classic solvers)
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Local calibration and step-size adaptation
Adaptive step-size selection via local error estimation from the measurement residuals

Calibration
▶ Problem: The Gauss–Markov prior

has hyperparameters. How to
choose them?

▶ Most notably: The diffusion σ
(basically acts as an output scale)

▶ Solution: (Quasi-)MLE
(can be done in closed form here)

Step-size adaptation
▶ Local error estimates from

measurement residuals
▶ Step-size selection with PI-control

(similar as in classic solvers)
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Prior: The ν-times integrated Wiener process
A very convenient prior with closed-form transition densities

▶ ν-times integrated Wiener process prior: x(t) ∼ IWP(q)

dx(i)(t) = x(i+1)(t)dt, i = 0, . . . , q− 1,

dx(q)(t) = σdW(t),
x(0) ∼ N (µ0,Σ0).

▶ Corresponds to Taylor-polynomial + perturbation:

x(0)(t) =
q∑

m=0

x(m)(0)
tm

m!
+ σ

∫ t

0

t− τ

q!
dW(τ)
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On linearization strategies and their influence on A-Stability
We can actually approximate the Jacobian in the EKF and still get sensible results / algorithms! [Tronarp et al., 2019]

▶ Measurement model: m(x(t), t) = x(1)(t)− f(x(0)(t), t)
▶ A standard extended Kalman filter computes the Jacobian of the measurement mode:

Jm(ξ) = E1 − Jf(E0ξ, t)E0 \⇒ This algorithm is often called EK1.
▶ Turns out the following also works: Jf ≈ 0 and then Jm(ξ) ≈ E1 \⇒ The resulting algorithm is

often called EK0.

A comparison of EK1 and EK0:

Jacobian type A-stable uncertainties speed
EK1 H = E1 − Jf(E0µ

p)E0 semi-implicit yes more expressive slower (O(Nd3q3))
EK0 H = E1 explicit no simpler faster (O(Ndq3))
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