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Background: Ordinary Differential Equations
and how to solve them



Background: Ordinary Differential Equations and how to solve them "

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

y(t) = F(y(1),1)

with t € [0, T], vector field f : RY x R — RY, and initial value y(0) = y,. Goal: “Find y".
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Background: Ordinary Differential Equations and how to solve them

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field
y(t) =1 (y(t). 1)
with t € [0, T], vector field f : RY x R — RY, and initial value y(0) = y,. Goal: “Find y".

Simple example: Logistic ODE
yt)=y®)(1=y), te[0,10,  y(0)=0.1.

@ initial condition
true solution
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Background: Ordinary Differential Equations and how to solve them "

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

y(t) = F(y(1),1)

with t € [0, T], vector field f : RY x R — RY, and initial value y(0) = y,. Goal: “Find y".

Numerical ODE solvers:

Forward Euler:
J(t+h) = §(t) + hf(F(1), 1)
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Background: Ordinary Differential Equations and how to solve them "

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

y(t) = F(y(1),1)

with t € [0, T], vector field f : RY x R — RY, and initial value y(0) = y,. Goal: “Find y".

Numerical ODE solvers:
Forward Euler:
§(t+h) = (1) + A1), 1)
Backward Euler:
J(t+h) =J(t) + hf((t +h),t+h)
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Background: Ordinary Differential Equations and how to solve them "

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

y(t) = F(y(1),1)

with t € [0, T], vector field f : RY x R — RY, and initial value y(0) = y,. Goal: “Find y".

Numerical ODE solvers:
Forward Euler:
§(t+h) = (1) + A1), 1)
Backward Euler:
J(t+h) =J(t) + hf((t +h),t+h)
Runge-Kutta:
J(t+h)=9(t) +h > bif(7i, t + cih)
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Background: Ordinary Differential Equations and how to solve them "

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

y(t) = F(y(1),1)

with t € [0, T], vector field f : RY x R — RY, and initial value y(0) = y,. Goal: “Find y".

Numerical ODE solvers:
Forward Euler:
§(t+h) = (1) + A1), 1)
Backward Euler:
J(t+h) =J(t) + hf((t +h),t+h)
Runge-Kutta:
J(t+h)=9(t) +h > bif(7i, t + cih)
Multistep:
Jt+h) = J(t) +h 275 bf((t — ih), t — ih)
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Background: Ordinary Differential Equations and how to solve them i

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field
y(t) =1 (y(t). 1)
with t € [0, T], vector field f : RY x R — RY, and initial value y(0) = y,. Goal: “Find y".

Numerical ODE solvers: Forward Euler for different step sizes:

P(t)
\\

P(t)

= Itis “correct’ onlytin the limit h — 0!
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Numerical ODE sol

y(t) = F(y(1),1)

with t € [0, T], vector field f : RY x R — RY, and initial value y(0) = y,. Goal: “Find y".

Numerical ODE solvers: Forward Euler for different step sizes:

P(t)
\ :

P(t)
\

P(t)
& ;
-3 \

= Itis “correct” only in the limith — 0!

Numerical ODE solvers estimate y(t) by evaluating f on a discrete set of points.




Probabilistic numerical ODE solvers

or “How to treat ODE solving as the Bayesian state estimation problem that it really is"



Probabilistic numerical ODE solvers

How to treat ODEs as the state estimation problem that they really are

p(1(0) [ ¥(0) = yo, {i(t) = F (1), 1)} )

with vector field f : R? x R — RY, initial value yo, and time discretization {t,}\,.
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Probabilistic numerical ODE solvers

How to treat ODEs as the state estimation problem that they really are

p(1(0) | ¥(0) = yo, {i(t) = F (1), 1)} )

with vector field f : R? x R — RY, initial value yp, and time discretization {t,}_,.
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Probabilistic numerical ODE solvers

How to treat ODEs as the state estimation problem that they really are

p(1(0) [ ¥(0) = yo, {i(t) = F (1), 1)} )

with vector field f : R? x R — RY, initial value yo, and time discretization {t,}\,.

Prior:
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Probabilistic numerical ODE solvers

How to treat ODEs as the state estimation problem that they really are

p(1(0) [ ¥(0) = yo, {i(t) = F (1), 1)} )

with vector field f : R? x R — RY, initial value yo, and time discretization {t,}\,.

Prior: y(t) ~ G'P a Gauss—Markov process
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Probabilistic numerical ODE solvers

How to treat ODEs as the state estimation problem that they really are

p(1(0) [ ¥(0) = yo, {i(t) = F (1), 1)} )

with vector field f : RY x R — RY, initial value yp, and time discretization {t,}"_,.

Prior: y(t) ~ GP a Gauss—Markov process
Likelihood: (aka “observation model” or “information operator”)
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Probabilistic numerical ODE solvers

How to treat ODEs as the state estimation problem that they really are
. N
p(¥(1) | ¥(0) = yo. {3(t) = F (1), ) 1)
with vector field f : RY x R — RY, initial value yp, and time discretization {t,}"_,.

Prior: y(t) ~ GP a Gauss—Markov process
Likelihood: (aka “observation model” or “information operator”)

y0)—yo=0, &  y(ta) —f(y(ta),ta) = 0.
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Probabilistic numerical ODE solvers

How to treat ODEs as the state estimation problem that they really are

p(1(0) [ ¥(0) = yo, {i(t) = F (1), 1)} )

with vector field f : RY x R — RY, initial value yp, and time discretization {t,}"_,.

Prior: y(t) ~ GP a Gauss—Markov process
Likelihood: (aka “observation model” or “information operator”)

y0)—yo=0, &  y(ta) —f(y(ta),ta) = 0.

Inference: Bayesian filtering and smoothing
Kalman filter, extended Kalman filter, unscented Kalman filter, particle filters, ...
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Probabilistic numerical ODE solvers in pictures

From the uninformed prior to the ODE solution posterior
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Probabilistic numerical ODE solvers in pictures

From the uninformed prior to the ODE solution posterior

y._ f(y7 t)
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Probabilistic numerical ODE solvers in pictures

From the uninformed prior to the ODE solution posterior

Posterior
g =
\q\/coo-oo-ocoo T.....'.'...
l@ =N
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Probabilistic numerical ODE solvers in pictures

From the uninformed prior to the ODE solution posterior

@nathanaelbosch

y._ f(y7 t)

y_f(yat)

Posterior

/




Probabilistic numerical ODE solvers in pseudo-code

We can solve ODEs with basically just an extended Kalman filter

Algorithm The extended Kalman ODE filter
1 procedure EXTENDED KALMAN ODE FILTER((115 , £ ), (A, Q). (f, yo), {ti},)

2 o, 20— KF_UPDATE(,LLO 720 ,Eo, ded,yo) // Initial update to fit the initial value
s | forke {1,...,N}do

4 he <t — tq / Stepsize
5 My s 27 < KF_PREDICT (pg—1, Xx_1,A(hx), Q(hy)) /| Kalman filter prediction
6 mk( ) =FEx — f(EoX fk) // Define the non-linear observation model
7 tk, Ty <— EKF_UPDATE (s, » Xi Mk Ogseqs Od) /| Extended Kalman filter update
8 end for

s | return (g, TN,

o end procedure

EXTENDED KALMAN ODE SMOOTHER: Just run a RTS smoother after the filter!
https://github.com/nathanaelbosch/probnumspringschool2024-tutorial
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EBERHARD KARL!

Probabilistic numerical ODE solvers in action VbR

Y(t)
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Probabilistic numerical ODE solutions

The solution now contains error estimates!

u(t)

0.00100

0.00075

0.00050

0.00025

standard-deviation

0.00000
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The state of filtering-based probabilistic numerical ODE solvers s T

Properties and features:
Polynomial convergence rates ikersting et al, 20206, Tronarp et al, 2021]
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The state of filtering-based probabilistic numerical ODE solvers s T

Properties and features:

A'Stablllty [Tronarp et al.,, 2019]
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The state of filtering-based probabilistic numerical ODE solvers s T

Properties and features:

L-stable probabilistic exponential integrators fosen et al, 2023}
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The state of filtering-based probabilistic numerical ODE solvers s T

Properties and features:

Connection to multi-step methods in Nordsieck form ischoberetal, 20191
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The state of filtering-based probabilistic numerical ODE solvers UM

Properties and features:

Complexity: O (d®) for the A-stable semi-implicit method,
O(d) for an explicit version with coarser covariances imeretal, 2022
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The state of filtering-based probabilistic numerical ODE solvers s T

Properties and features:

Step-size adaptation [oschetal, 2021]
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The state of filtering-based probabilistic numerical ODE solvers s T

Properties and features:

Parallel-in-time formulation with O(log(N)) complexity sosen et 20234]
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EBERHARD KARLS

The state of filtering-based probabilistic numerical ODE solvers UNIYERSIIY

More related differential equation problems:
Higher-order ODEs, DAEs, Hamiltonian systems (soschetal, 2022)
BOUndary Value pl’oblems (BVPS) [Kramer and Hennig, 2021]
Partial differential equations (PDEs) via method of lines wemeretal, 20221
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EBERHARD KARLS

The state of filtering-based probabilistic numerical ODE solvers UNIYERSIIY

Inverse problems
PI’ObabiHStiC nUmeriCS'based parameter mference m ODES [Kersting et al., 2020a, Tronarp et al., 2022, Beck et al., 2024]
Efficient inference of time-varying latent forces isehmictetal, 2021
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The state of filtering-based probabilistic numerical ODE solvers i

Probabilistic Numerics: Computation as Machine Learning
Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022

(@nathanaelbosety 10



ProbNumbDiffEq.jl

Probabilistic numerical ODE solvers in Julia



How to use ProbNumDiffEq.jl

It's just like OrdinaryDiffEq.jl

OrdinaryDiffEq.jl

using OrdinaryDiffEq

function fitzhughnagumo(du, u, p, t)

a, b, c=p

X, y=u

duf1] = c * (x - x°3 / 3 +y)

dul2] = -(1/c) * (x - a - b * y)
end

u0 = [-1.0, 1.0]

tspan = (0.0, 20.0)

p = (0.2, 0.2, 3.0)

prob = ODEProblem(f, uO, tspan, p)

sol = solve(prob, Tsit5Q0))
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How to use ProbNumDiffEq.jl

It's just like OrdinaryDiffEq.jl

ProbNumbDiffEq.jl

@nathanaelbosch

using ProbNumDiffEq

function fitzhughnagumo(du, u, p, t)

a, b, c=p
X, y=u
duf1] = c * (x - x73/ 3 +y)

dul[2]
end
u0 = [-1.0, 1.0]
tspan = (0.0, 20.0)
p = (0.2, 0.2, 3.0)
prob = ODEProblem(f, uO, tspan, p)

-(1/c) * (x —a - b * y)

sol = solve(prob, EK1())
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Documentation UNIVERSIT
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Getting Started with Dierental Equations in Jufa oGt & & A

Getting Started with Differential Equations in Julia
DifferentialEquations.jl s

material,

Video tutorial walks through thi

Example 1 : Solving Scalar Equations

CRTEETTD I this example, we will olve the equation

Additonal Festures
ey
acobian, Gt e G =S

DiffEq:Specific Array Types on the time interval

0,1) where f (u, p, ) = au. Here, i the current state variabl, p is our parameter

e variable (containing things lie a eaction rate orthe constant of gravty), and t i the current time.
o — (I our example, that the solution = ugexp(at), but we wil use
Specitying (NorlLinear Solvrs and s notknown)
Preconditioners
bl d

The full code for

Functions

using D1fferentialEquations
e T, 1) =100 s u
wi1y2

tepan - (0.0, 1.0

/0 Saving and Loading Solution PTOb = COEProbLen(, w0, tspan)

o <ol » solve(prob, TeLts(), reltol » 1e-8, avstol » 1e-8)

Parallel Ensemble Simulations

Reduced Compile Time, Optimizing ustng Plo
Runtime, and Low Dependency Usage  PLOY(<0L, Linewtdth = 5.
Tine (1

titte

olution to the Lincar ODE with a thick Line'
U(t) (1n pm)", label = "My Thick Line1”) ¢ i
)s o <~ idash, Label - *True Solution

xoxss - , yaxt:
Progress Bar Integration Ploti(sol.t, t -> 0.5 + exp(1.01t

Detailed Solver APIs Solution to the linear ODE with a thick line
Sundiaisii

DASKR]!

Extra Details

Timestepping Method Descriptions

@nathanaelbosch



EBERHARD KARLS

Documentation VbR

ProbNumDiffEq.jl Tutorials | Getting Started OGitHb @ & A
Getting Started with Differential Equations in Julia OGitHb & & ~ — . " P .
® “ @ Solving ODEs with Probabilistic Numerics
. o X L. . Gettingstarted
Getting Started with Differential Equations in Julia ) "
’ dditionally  video tutorial walks through ti it e s sgrhn
DifferentialEquations.l 05 « Step 1:Deine teproblem
 Step 2: Solve the problem i check out their 13 Julia"
Example 1 : Solving Scalar Equations - tutoral problems and soitsagreat
< st s startingpoin. Most of from -t
e In this example, we will solve the equation th:
Additional Features. P ::;’:;z’::’ CTETT
B fapt) Inthistutoril,we consider aFtzhughNaguro model described by an ODE o the form
Lol so o dat Differential Algebraic Equations
DiffEq:Specific Array Types on the time interval £ € [0, 1] where f(u, p, ) = au. Here, u is the current state variable, p is our parameter Probabistic Exponential Integrators ih=cly — ? +m)
) vaisble (conaining things e  eaction rateor the constant f gravity and ¢ s the current ime
oieacpertors arametrference PR PR
Noise e (In our example, that the solution = ugexp(at), butwe wil use e .
ioise Processes il Solvers and Options
Speiting Mol S nd s not known.) oners onatimespant & [0, 7], with initial value y(0) = . In the following, we
Precondioner ; . .
bl d The full code for s L intialval d
2 solve theproblemwith our ODE ikers,and

Functions nitaizaton

3.visualize the results and the corresponding uncertainies.

using DifferentislEquations
Calback Library U e

' Difusion modelz and calbration

Paralle Ensemble Simulations a8 BTt TL;DR: Just use DifferentialEquations.jl with the Ek1
e e ikelinoo 1sorith

- Seing e oy Sabiion Brob = ODEPropLent’, u0, tspan) senchre algorithm

oo 20l = zolve(prob, T=its(), reltol « le-8, abstol  1e-8) nchmarks

R S using ProbiusDiffEa, Plote

Reduced Compil Time, Optinizing using Plots
i, o Dependncy g PLOR(e0L urendth 5, it - sitution to e Ve 06 xth o ik i, Non-stif ODEs 5| | e . v b0
ine (1)", yaxt y Thick Linet®) & 9 a b, c
Progress ar ntegrtion Ploti(solets € > 0.5 + exp(1-610)s dashs abel = "True Solutiont®) stif 0DEs > @lt] = ¢ x (u[1] - U113 / 3+ u2])
dul2] = =1/ ©) » (ul2] - & - b x ul2])
Detalled Solver APls Solution to the linear ODE with a thick line ‘Second-order ODEs > end
u0 = [-1.0; 1.0]
Sundialsil ittt | - 01, 2 9
(oAs) 2,
DASKRjI SoePromten(Titz, ub, tapan, 5)
Internals
Eeafrs 2o solve (pran, £
Fiteing and Smoothing iy e e
Timestepping Method Descriptions

Implementation via OrdinaryDifiEQ

@nathanaelbosch 13



Documentation

SciMLs SEQ score outperforms my own docs

HOME ~ MODELING ~

PLOTS AND VISUALIZATION

Ma

Tutorials
Getting Started

Second Order ODEs and Energy
Preservation

Differential Algebraic Equations

Probabilistic Exponential Integrators

NING ~  DEVELOPERT

PARAMETER ANALYSIS THIRD-PARTY PARAMETER UNCERTAINTY

ModelAna ANALYSIS QUANTIFICATION
tvity Dynami Chaos
Structurallden Bifurcationkit SMLEx

Re.

ProbNumDIffEql provides probabilistic numerical solvers to the DifferentialEquations i ecosystem. The
implemented ODE filters solve differential equations via Bayesian filtering and smoothing and compute not justa
single point estimate of the true solution, but a posterior distribution that contains an estimate of its numerical

Solvers and Options

Solvers.

Priors.

Initialization

Diffusion models and calibration
Data Likellhoods
Benchmarks

Multi-Language Wrapper Benchmark

Non-stiff ODEs >

Stiff ODEs. >

error.

Fora short intro video, check out our poster presentation at JuliaCon2021.

Installation
Run Julia, enter ] to bring up Julia's package manager, and add the ProbNumDIffEq,jl package:

julia> ]
(v1.10) pkg> add ProblumDiffEq

Getting Started

For a quick introduction check out the "Solving ODES with Probabilistic Numerics" tutorial.

Features

(@athaae et i

EBERHARD KARLS
UNIVERSIT;
TUBINGEN

THIRD-PARTY UNCERTAINTY
QUANTIFICATION
Measurements
MonteCarloMe:

ProbNumDIffEq




Features of ProbNumDiffEq.l

Explicit and implicit solvers:
EKO, EK1, ExpEK, RosenbrockExpEK

a. Explicit method

c. Exponential integrator

1',.
= B\ dt=0.25
04

0 3
t
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Features of ProbNumDiffEq.l

Standard ODE solver features

@nathanaelbosch

Solvers of different orders:
EKO (1), EKO(2),EK0(3), ..

Time (s)

-
10

0?

107 10"
Error (final)

1w’ 1wt




Features of ProbNumDiffEq.l

: m"‘*f&f—o [*ooeo
Step-size adaptation: \,..m
Same controllers as OrdinaryDiffEq.jl 0o
y q.J e
—@—ul2]
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Features of ProbNumDiffEq.l

Dense output

@nathanaelbosch 15



Features of ProbNumDiffEq,jl T

Standard ODE solver features

Plot recipes

@nathanaelbosch 15



Features of ProbNumDiffEq.l

Standard ODE solver features

0.4

02

ul4]

Callbacks (including a custom
ManifoldUpdate callback)

-0.4 |
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Features of ProbNumDiffEq.l

Numerical error estimates
(shown by the plot recipe!)
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Features of ProbNumDiffEq.l

@nathanaelbosch

UNIVERSITA
TUBINGEN

Probabilistic numerics-related features

Sampling from the posterior



Features of ProbNumDiffEq,jl T

IWP Probabilistic numerics-related features

I0UP Multiple different prior choices

Matern

@nathanaelbosch 15



Features of ProbNumDiffEq.l

.‘J'..'.:.~,-a‘u-.s‘

@nathanaelbosch

Probabilistic numerics-related features

Probabilistic data likelihoods
(for parameter inference problems)



Features of ProbNumDiffEq.l P

Standard ODE solver features Probabilistic numerics-related features

Support for DAEProblem
Adjoint sensitivities

@nathanaelbosch 15



EBERHARD KARLS

Features of ProbNumDiffEq.l RN

Standard ODE solver features Probabilistic numerics-related features

Other filtering algorithms:
UKF, Cubature filters, particle filters...

Custom prior interface
Latent force inference

Support for DAEProblem Parallel-in-time solver (using the time-parallel
Adjoint sensitivities iterated extended Kalman smoother)

@nathanaelbosch



Features of ProbNumDiffEq.l

EBERHARD KARLS

UNIVERSIT;

TUBINGEN

Standard ODE solver features Probabilistic numerics-related features

Explicit and implicit solvers:
EKO, EK1, ExpEK, RosenbrockExpEK

Solvers of different orders:
EKO (1), EKO(2),EK0(3), ..

Step-size adaptation:
Same controllers as OrdinaryDiffEq.jl

Dense output
Plot recipes

Callbacks (including a custom
ManifoldUpdate callback)

Support for DAEProblem
Adjoint sensitivities

@nathanaelbosch

Numerical error estimates
(shown by the plot recipe!)

Sampling from the posterior
Multiple different prior choices

Probabilistic data likelihoods
(for parameter inference problems)

Other filtering algorithms:
UKF, Cubature filters, particle filters...

Custom prior interface
Latent force inference

Parallel-in-time solver (using the time-parallel
iterated extended Kalman smoother)



Benchmarking ProbNumDiffEq.jl



EBERHA
UNIVER

Benchmarks: Low-dimensional non-stiff ODE (Lotka-Volterra) TUBINGIN

100x slower than Tsit5

f=— EKO(order=2
D= EKO(order=3
== EKO(order=4
> EKU(onder 5

(

(

(

Ld1L]

)

J— EK1 3

5 =@ EKI(order= 3)
10 3

=@ EKI1(order=4
EK1(order=5
== <= = Tsith

= @- = Vern7

== ©- = RadaullA5

Time (s)

10~ <+

107° 107" 107
Error (final)
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Benchmarks: Low-dimensional stiff ODE (Van-der-Pol)

10x slower than RadaullA5

©- = Rosenbrock23
©- = RodasdP
-_— RadaulTA5

—
w
2
g 10 ]
Q
I o
|
®
- ®
e
A
1 ° ®
5 L
10 - s \
L | o
1 1 1 1 1 1 1 ® 1
10" 10? 108 1077 10°° 10° 107 10°
Error (final)
18
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Benchmarks: Medium-dimensional non-stiff ODE (Pleiades)

Same ballpark as Tsit5!

Time (s)

=== EKO0(3) (1st order ODE

==@-— EKO(5) (1st order ODE

== = EKO0(4) (2nd order ODE)
=== = EKO0(6) (2nd order ODE)
== EK1(3) (1st order ODE)
=—@— EKI(5) (Ist order ODE)
=@~ = EK1(4) (2nd order ODE)

=== = EK1(6) (2nd order ODE)
=== Classic: Tsit5

w@— Classic: RadaullA5

== @©- = Classic: DPRKN6

@nathanaelbosch
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Beyond numerical uncertainty quantification

Probabilistic numerics for robust ODE parameter inference



Robust parameter inference in ODEs with ProbNumDiffEq.jl

Filtering and smoothing often helps to escape local optima in oscillatory systems

% é& {8( :‘.‘ﬁ é ‘ ;3 j‘ @‘5 -# “‘ﬁ i — Position
AN IV P T A W )
V?%F" V¥Y . V“’a&" VWY mmmn Tl

[Tronarp et al., 2022]
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Robust parameter inference in ODEs with ProbNumDiffEq.jl

Filtering and smoothing often helps to escape local optima in oscillatory systems

A Extracellular c D K? = 1e+20 K2 = 1e+17
i1 15 1 high
I L
Vi 2 T8 IR,
E X T Ec !
[ S —
B Intracellular %) WMMMM K2 =1e+16 K2 = 1+06 =
AL AL 0 L 00 A 15
E 0 X
¢ o TV U 1T S
s 1Y 3 i -
-75 R 0 low
0 50 100 25 50 75 0 20 40 60 800 20 40 60 80
t(ms) gNa gNa gNa

[Beck et al., 2024]
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Robust parameter inference in ODEs with ProbNumDiffEq.jl

Filtering and smoothing often helps to escape local optima in oscillatory systems

@nathanaelbosch

ProbNumDiffEq.jl

Search docs (Cirl +

Tutorials
Getting Started

Second Order ODEs and Energy
Preservation

Differential Algebraic Equations

Probabili

ic Exponential Integrators
Parameter Inference
o The specific problem, in code

= Computing the negative log-likelihood

@ Maximum-likelihood parameter
inference

@ APl Documentation

Solvers and Options

Solvers

Diffusion models and calibration

Version | v0.16.0 v

Tutorials /' Parameter Inference QGitHb & & A

Parameter Inference with ProbNumDiffEq.jl

Let's assume we have an initial value problem (IVP)

= foly,t),  ylto) =,

which we observe through a set D = {u(t,)}_; of noisy data points

u(ts) = Hy(ta) + vn, v ~ N(0, R).

The question of interest is: How can we compute the marginal likelihood p(T? | #)? Short answer: We can't. It's
intractable, because computing the true IVP solution exactly y(t) is intractable. What we can do however is
compute an approximate marginal likelihood. This is what ProbNumDiffEg.Datalikelihoods provides.

The specific problem, in code

Let's assume that the true underlying dynamics are given by a FitzHugh-Nagumo model

using ProbNumDiffEq, LinearAlgebra, OrdinaryDiffEq, Plots
Plots.theme(:default; markersize=2, markerstrokewidth=0.1)

function f(du, u, p, t}
a, b, c=p
du[1] = ex(u[1] - u[1]%3/3 + u[2])
dul2] = -(1/c)=(ult] - a - beul2])
end
ul = [-1.0, 1.0)

%



Summary
» ODE solving is state estimation = treat initial value problems as state estimation problems
» Probablistic numerical ODE solvers solve ODEs with Bayesian filtering and smoothing
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Contribute!
» Try out the package and tell me how it goes!
Open issues, report bugs, give feedback on the package design
Help me improve performance / AD backend compatibility / GPU support / add features...
Tell me about your usecase or show me an example!

>
>
>
» Design a logo!
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Summary
» ODE solving is state estimation = treat initial value problems as state estimation problems
» Probablistic numerical ODE solvers solve ODEs with Bayesian filtering and smoothing

Tryitout! [ https://github.con/nathanaelbosch/ProbNumDiffEq. j1
ladd ProbNumDiffEq

Contribute!
» Try out the package and tell me how it goes!
» Open issues, report bugs, give feedback on the package design
» Help me improve performance / AD backend compatibility / GPU support / add features...
» Tell me about your usecase or show me an example!
» Design a logo!

Thanks!
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Probabilistic numerical ODE solvers: The state-estimation problem

This is the actual state estimation problem that we solve

Hidden: @ X1 X2 X3 ‘ XN
) 4 ) 4 ) 4 ) 4
Observed: @ @ @ @
Initial distribution: x(0) ~ N (x(0); 1y, 25 )
Prior / dynamics model: x(t+h) | x(t) ~ N (x(t+ h); A(h)x(1), Q(h))
ODE likelihood: z(t) | x(t) ~ 0 (z(t;); Ex(t;) — f(Eox(t), 1)), z20
Initial value likelihood: 2" x(0) ~ 6 (z‘”‘t;EOX 0) —¥o ) Z" 2 Q

x(t) is the /state-space representation/ of y(t); Eox(t) £ y(t), Exx(t) = j(t).
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Local calibration and step-size adaptation

Fixed steps — the vanilla way as introduced so far
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Local calibration and step-size adaptation

Fixed steps — the vanilla way as introduced so far

Calibration |
Problem: The Gauss—Markov prior T
has hyperparameters. How to ,——7\\ \\\\ /,,—7’
choose them? — / T Y ///’ /
Most notably: The diffusion o = / \‘\\\ \\ /,// ///

(basically acts as an output scale)
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Local calibration and step-size adaptation

Local calibration by estimating a time-varying diffusion model o (t)

Calibration |

Problem: The Gauss—Markov prior T
has hyperparameters. How to ,4—7\\ s R
choose them? "7
Most notably: The diffusion o

(basically acts as an output scale)
Solution: (Quasi-)MLE Seomm 7T
(can be done in closed form here)
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Local calibration and step-size adaptation

Adaptive step-size selection via local error estimation from the measurement residuals

Calibration |

Problem: The Gauss—Markov prior T
has hyperparameters. How to Lo f~_ _ TS /
choose them? /' S~ \ =% y
Most notably: The diffusion o
(basically acts as an output scale) Y R 7
Solution: (Quasi-)MLE ST

(can be done in closed form here)
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Step-size adaptation

Local error estimates from =
measurement residuals

Step-size selection with Pl-control
(similar as in classic solvers)

ha
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Prior: The v-times integrated Wiener process

A very convenient prior with closed-form transition densities

v-times integrated Wiener process prior: x(t) ~ IWP(q)

Ot =xH(ydt,  i=0,...,q-1,
(1) = odi(t),
x(O) N (10, Xo).

Corresponds to Taylor-polynomial + perturbation:

Tt 1
xO)(t XM (0 /—dWr
Z o ¢ (7)
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On linearization strategies and their influence on A-Stability

We can actually approximate the Jacobian in the EKF and still get sensible results / algorithms! [Tronarp et al., 2019]

» Measurement model: m(x(t), t) = x((t) — f(x(O(t),1)
> A standard extended Kalman filter computes the Jacobian of the measurement mode:
In(&) = Er — Jl(Eo&, 1)Eq \ = This algorithm is often called EK1.
> Turns out the following also works: Js ~ 0 and then J,(€) = E; \ = The resulting algorithm is

often called EKO.

A comparison of EK1 and EKO:

Jacobhian type A-stable uncertainties speed
EK1 H=E — J(EopP)Eq | semi-implicit yes more expressive | slower (O(Na®q®))
EKO H=E explicit no simpler faster (O(Ndg®))
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