Robust Parameter Inference in ODEs via Physics-Enhanced Gaussian Process Regression PROBNUM 24

Nathanael Bosch

16. July 2024

some of the presented work is supported by the European Research Council.

▶ Initial value problem:

$$
\dot{y}(t) = f_{\theta}(y(t), t), \quad t \in [0, T], \qquad y(0) = y_{0, \theta}
$$

▶ Initial value problem:

$$
\dot{y}(t) = f_{\theta}(y(t), t), \quad t \in [0, T], \qquad y(0) = y_{0, \theta}
$$

▶ Observations:

$$
u_i = Hy(t_i) + \varepsilon_i, \qquad \varepsilon_i \sim \mathcal{N}(0, R_\theta)
$$

ERERHARD KARLS ¢ TERINGEN

▶ Initial value problem:

$$
\dot{y}(t) = f_{\theta}(y(t), t), \quad t \in [0, T], \qquad y(0) = y_{0, \theta}
$$

▶ Observations:

$$
u_i = Hy(t_i) + \varepsilon_i, \qquad \varepsilon_i \sim \mathcal{N}(0, R_\theta)
$$

▶ Goal:

 $p(\theta | \mathcal{D}) \propto p(\mathcal{D} | \theta)p(\theta)$

▶ Initial value problem:

$$
\dot{y}(t) = f_{\theta}(y(t), t), \quad t \in [0, T], \qquad y(0) = y_{0, \theta}
$$

▶ Observations:

$$
u_i = Hy(t_i) + \varepsilon_i, \qquad \varepsilon_i \sim \mathcal{N}(0, R_\theta)
$$

▶ Goal:

 $p(\theta | \mathcal{D}) \propto p(\mathcal{D} | \theta)p(\theta)$

▶ Maximum likelihood, maximum-a-posteriori and MCMC require the marginal likelihood:

$$
\mathcal{M}(\theta) = p(\mathcal{D} \mid \theta)
$$

$$
\mathcal{M}(\theta) = p(\mathcal{D} \mid \theta) = \int p(\mathcal{D} \mid y(t_{1:N})) p(y(t_{1:N}) \mid \theta) dy(t_{1:N})
$$

 $\mathcal{M}(\theta) = p(\mathcal{D} \mid \theta) = \int p(\mathcal{D} \mid y(t_{1:N})) p(y(t_{1:N}) \mid \theta)$ Gaussian likelihood $\overline{}$ d*y*(*t*1:*N*)

 $\mathcal{M}(\theta) = p(\mathcal{D} \mid \theta) = \int p(\mathcal{D} \mid y(t_{1:N})) p(y(t_{1:N}) \mid \theta)$ Gaussian likelihood 222 ??? d*y*(*t*1:*N*)

$$
\mathcal{M}(\theta) = p(\mathcal{D} \mid \theta) = \int \underbrace{p(\mathcal{D} \mid y(t_{1:N}))}_{\text{Gaussian likelihood}} \underbrace{p(y(t_{1:N}) \mid \theta)}_{???} \mathrm{d}y(t_{1:N})
$$

 \blacktriangleright "*y*(*t*) given θ " is fully specified via the ODE $⇒$ *p*(*y*(*t*_{1:*N*}) | *θ*) = *δ*(*y*(*t*_{1:*N*}) − *y*^{*}(*t*_{1:*N*}))

$$
\mathcal{M}(\theta) = p(\mathcal{D} \mid \theta) = \int \underbrace{p(\mathcal{D} \mid y(t_{1:N}))}_{\text{Gaussian likelihood}} \underbrace{p(y(t_{1:N}) \mid \theta)}_{???} \mathrm{d}y(t_{1:N})
$$

- \blacktriangleright "*y*(*t*) given θ " is fully specified via the ODE $⇒$ *p*(*y*(*t*_{1:*N*}) | *θ*) = *δ*(*y*(*t*_{1:*N*}) − *y*^{*}(*t*_{1:*N*}))
- ▶ But the true ODE solution *y ∗* (*t*1:*N*) is intractable!

$$
\mathcal{M}(\theta) = p(\mathcal{D} \mid \theta) = \int \underbrace{p(\mathcal{D} \mid y(t_{1:N}))}_{\text{Gaussian likelihood}} \underbrace{p(y(t_{1:N}) \mid \theta)}_{???} \text{dy}(t_{1:N})
$$

► "y(t) given
$$
\theta
$$
" is fully specified via the ODE
\n $\Rightarrow p(y(t_{1:N}) | \theta) = \delta(y(t_{1:N}) - y^*(t_{1:N}))$

▶ But the true ODE solution *y ∗* (*t*1:*N*) is intractable!

▶ Let's approximate:

 $\delta(y(t_{1:N}) - y_{\theta}^*(t_{1:N}))$ ≈

$$
\mathcal{M}(\theta) = p(\mathcal{D} \mid \theta) = \int \underbrace{p(\mathcal{D} \mid y(t_{1:N}))}_{\text{Gaussian likelihood}} \underbrace{p(y(t_{1:N}) \mid \theta)}_{???} \mathrm{d}y(t_{1:N})
$$

► "y(t) given
$$
\theta
$$
" is fully specified via the ODE
\n $\Rightarrow p(y(t_{1:N}) | \theta) = \delta(y(t_{1:N}) - y^*(t_{1:N}))$

▶ But the true ODE solution *y ∗* (*t*1:*N*) is intractable!

▶ Let's approximate:

 $\delta(y(t_{1:N}) - y_{\theta}^*)$ $(he$ classic numerical approach)

$$
\mathcal{M}(\theta) = p(\mathcal{D} \mid \theta) = \int \underbrace{p(\mathcal{D} \mid y(t_{1:N}))}_{\text{Gaussian likelihood}} \underbrace{p(y(t_{1:N}) \mid \theta)}_{???} \mathrm{d}y(t_{1:N})
$$

► "y(t) given
$$
\theta
$$
" is fully specified via the ODE
\n $\Rightarrow p(y(t_{1:N}) | \theta) = \delta(y(t_{1:N}) - y^*(t_{1:N}))$

▶ But the true ODE solution *y ∗* (*t*1:*N*) is intractable!

▶ Let's approximate:

```
\delta(y(t_{1:N}) - y_{\theta}^*)(he) probabilistic numerical approach)
```
Probabilistic numerical ODE solvers

$$
p(y(t) | y(0) = y_0, \{ \dot{y}(t_n) = f(y(t_n), t_n) \}_{n=1}^N)
$$

with vector field $f: \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$, initial value y_0 , and time discretization $\{t_n\}_{n=1}^N.$

$$
p(y(t) | y(0) = y_0, \{ \dot{y}(t_n) = f(y(t_n), t_n) \}_{n=1}^N)
$$

with vector field $f: \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$, initial value y_0 , and time discretization $\{t_n\}_{n=1}^N.$

$$
p\left(y(t) \mid y(0) = y_0, \{\dot{y}(t_n) = f(y(t_n), t_n)\}_{n=1}^N\right)
$$

with vector field $f: \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$, initial value y_0 , and time discretization $\{t_n\}_{n=1}^N.$

$$
p(y(t) | y(0) = y_0, \{ \dot{y}(t_n) = f(y(t_n), t_n) \}_{n=1}^N)
$$

with vector field $f: \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$, initial value y_0 , and time discretization $\{t_n\}_{n=1}^N.$

▶ **Prior:** *y*(*t*) *∼ GP* a Gauss–Markov process

$$
p(y(t) | y(0) = y_0, \{ \dot{y}(t_n) = f(y(t_n), t_n) \}_{n=1}^N)
$$

with vector field $f: \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$, initial value y_0 , and time discretization $\{t_n\}_{n=1}^N.$

▶ **Prior:** *y*(*t*) *∼ GP* a Gauss–Markov process

$$
x(t+h) | x(t) \sim \mathcal{N}(A(h)x(t), Q(h)),
$$

$$
y(t) = E_0 x(t), \qquad \dot{y}(t) = E_1 x(t)
$$

$$
p(y(t) | y(0) = y_0, \{ \dot{y}(t_n) = f(y(t_n), t_n) \}_{n=1}^N)
$$

with vector field $f: \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$, initial value y_0 , and time discretization $\{t_n\}_{n=1}^N.$

▶ **Prior:** *y*(*t*) *∼ GP* a Gauss–Markov process

$$
x(t+h) \mid x(t) \sim \mathcal{N}(A(h)x(t), Q(h)),
$$

$$
y(t) = E_0 x(t), \qquad \dot{y}(t) = E_1 x(t)
$$

$$
p(y(t) | y(0) = y_0, \{ \dot{y}(t_n) = f(y(t_n), t_n) \}_{n=1}^N)
$$

with vector field $f: \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$, initial value y_0 , and time discretization $\{t_n\}_{n=1}^N.$

▶ **Prior:** *y*(*t*) *∼ GP* a Gauss–Markov process

$$
x(t+h) | x(t) \sim \mathcal{N}(A(h)x(t), Q(h)),
$$

$$
y(t) = E_0x(t), \qquad \dot{y}(t) = E_1x(t)
$$

Likelihood: (aka "observation model" or "information operator")

$$
E_0x(0) - y_0 = 0,
$$
 & $E_1x(t_n) - f(E_0x(t_n), t_n) = 0.$

$$
p\left(y(t) \mid y(0) = y_0, \{\dot{y}(t_n) = f(y(t_n), t_n)\}_{n=1}^N\right)
$$

with vector field $f: \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$, initial value y_0 , and time discretization $\{t_n\}_{n=1}^N.$

▶ **Prior:** *y*(*t*) *∼ GP* a Gauss–Markov process

$$
x(t+h) | x(t) \sim \mathcal{N}(A(h)x(t), Q(h)),
$$

$$
y(t) = E_0x(t), \qquad \dot{y}(t) = E_1x(t)
$$

Likelihood: (aka "observation model" or "information operator")

 $E_0X(0) - V_0 = 0,$ & $E_1X(t_0) - f(E_0X(t_0), t_0) = 0.$

Inference: Bayesian filtering and smoothing Extended Kalman filter, unscented Kalman filter, particle filters, ... (+ smoothers)

Probabilistic ODE solvers: the state-estimation problem

This is the actual state estimation problem that we solve

Initial value likelihood: *z*

Initial distribution: $x(0) \sim \mathcal{N}(x(0); \mu_0^-, \Sigma_0^-)$ Prior / dynamics model: $x(t+h) | x(t) \sim \mathcal{N}(x(t+h); A(h)x(t), Q(h))$ ODE likelihood: $z(t_i) | x(t_i) \sim \delta(z(t_i); E_1 x(t_i) - f(E_0 x(t_i), t_i))$, $z_i \triangleq 0$ $\int x(0) \sim \delta\left(z^{\text{init}}; E_0 x(0) - y_0\right)$ *, z* $z^{\text{init}} \triangleq 0$

Probabilistic ODE solvers in pseudo code

UNIVERSITAT
TURINGEN

We can solve ODEs with basically just an extended Kalman filter

Algorithm The extended Kalman ODE filter

 α **procedure** Extended Kalman ODE filter(($\mu_{0}^{-}, \Sigma_{0}^{-}$), (*A, Q*), (*f, y*₀), {*t_i*} $\frac{N}{n-1}$) μ ⁰, Σ⁰ ← KF_UPDATE(μ [−]0[−], Σ[−]₀[−], E₀[−]0_{d×d} *, ^y*0)  Initial update to fit the initial value ³ **for** *k ∈ {*1*, . . . , N}* **do** ⁴

⁴

⁴
 μ_k^- , Σ_k^+ \leftarrow KF_PREDICT(μ_{k-1} , Σ_{k-1} , $A(h_k)$, $Q(h_k)$)
 M Kalman filter prediction
 M Step size 6 $m_k(x) := E_1 x - f(E_0 x, t_k)$ / Define the non-linear observation model $\overline{\mu}_k, \Sigma_k \leftarrow \textsf{EKF_UPDATE}(\mu_k^-, \Sigma_k^-, m_k, 0_{d \times d}, \vec{0}_d)$ // Extended Kalman filter update ⁸ **end for** $\mathbf{P} = \left[\begin{array}{c} \mathbf{return}\ (\mu_k, \Sigma_k)_{k=1}^N \end{array} \right]$ ¹⁰ **end procedure**

Computing the PN-approximated marginal likelihood

How to compute the PN-approximated margial likelihood It's just another filtering problem

$$
\mathcal{M}(\theta) = p(\mathcal{D} \mid \theta) = \int \underbrace{p(\mathcal{D} \mid y(t_{1:N}))}_{\text{Gaussian likelihood}} \underbrace{p(y(t_{1:N}) \mid \mathcal{D}_{\text{PN}}, \theta)}_{\text{PN posterior}} \mathrm{d}y(t_{1:N})
$$

¢

UNIVERSIT tübingen

How to compute the PN-approximated margial likelihood It's just another filtering problem

$$
\mathcal{M}(\theta) = p(\mathcal{D} \mid \theta) = \int \underbrace{\mathcal{D}(\mathcal{D} \mid y(t_{1:N}))}_{\text{Gaussian likelihood}} \underbrace{\mathcal{D}(y(t_{1:N}) \mid \mathcal{D}_{PN}, \theta)}_{\text{PN posterior}}
$$

$$
p(x(t_{1:N}) \mid \mathcal{D}_{PN}, \theta) = \mathcal{N}\Big(x(t_N); \mu_N^F, \Sigma_N^F\Big) \prod_{t=1}^{N-1} \mathcal{N}(x(t_n); G_n x(t_{n+1}) + d_n, \Lambda_n);
$$

t=1 marginalizing this posterior is exactly what a *smoother* does.

ERERHARD KARLS

How to compute the PN-approximated margial likelihood It's just another filtering problem

$$
\mathcal{M}(\theta) = p(\mathcal{D} \mid \theta) = \int \underbrace{p(\mathcal{D} \mid y(t_{1:N}))}_{\text{Gaussian likelihood}} \underbrace{p(y(t_{1:N}) \mid \mathcal{D}_{PN}, \theta)}_{\text{PN posterior}} \mathrm{d}y(t_{1:N})
$$

Filtering posteriors have a recursive, linear Gaussian, backward-in-time representation:

$$
p(x(t_{1:N}) | \mathcal{D}_{PN}, \theta) = \mathcal{N}\Big(x(t_N); \mu_N^F, \Sigma_N^F\Big) \prod_{t=1}^{N-1} \mathcal{N}(x(t_n); \mathcal{G}_n x(t_{n+1}) + d_n, \Lambda_n);
$$

t=1 marginalizing this posterior is exactly what a *smoother* does.

State-space model:

Initial distribution: *^x*(*tN*) *∼ N* Dynamics model: *x*(*tn−*1) *| x*(*tn*) *∼ N* (*x*(*tn*); *Gnx*(*tn*+1) + *dn,* Λ*n*) $Data$ *likelihood:* @nathanaelbosch 9

$$
x(t_N) \sim \mathcal{N}\Big(x(t_N); \mu_N^F, \Sigma_N^F\Big)
$$

$$
(t_{n-1}) | x(t_n) \sim \mathcal{N}(x(t_n); G_n x(t_{n+1}) + d_n, \Lambda_n)
$$

$$
u_n | x(t_n) \sim \mathcal{N}(x(t_n); HE_0 x(t_n), R_\theta)
$$

ERERHARD KARLS

Physics-Enhanced Regression for Initial Value Problems (FENRIR)

Resulting algorithm:

- 1. Run filter forwards to compute $p(y(t_{1:N}) | \mathcal{D}_{PN}, \theta)$
- 2. Run filter backwards to compute the marginal likelihood *M*(*θ*)

MLE parameter inference with FENRIR It works!

MLE parameter inference with FENRIR

UNIVERSI tübingen

The algorithm is quite robust to local optima

¢ MLE parameter inference with FENRIR on the Hodgkin-Huxley model TUBINGEN

It works, but clearly not as well as for the simple pendulum problem

MLE parameter inference with FENRIR on the Hodgkin-Huxley model TUBINGER

It works, but clearly not as well as for the simple pendulum problem

Idea: Diffusion Tempering

Idea: Diffusion Tempering

Algorithm: Start with an initial parameter quess θ ^o. Then for $i = 1, \ldots, M$ solve a sequence of MLE optimization problems

$$
\theta_i = \arg \max \mathcal{M}(\theta, \Gamma(i)) = \text{OPTIMIZE}(\mathcal{M}; \theta_{\text{init}} = \theta_{i-1}, \sigma = \Gamma(i)). \tag{1}
$$

FENRIR + diffusion tempering on the Hodgkin-Huxley ODE It works!

ERERHARD KARLS

NIVERSIT tübingen ¢

FENRIR + diffusion tempering on the Hodgkin-Huxley ODE It works!

An alternative way to compute the PN-approximated marginal likelihood

EBERHARD KARLS
UNIVERSITAT **CONTRACT**
TUBINGEN An alternative PN likelihood approximation method: DALTON "Data-Adaptive Probabilistic Likelihood Approximation" [Wu and Lysy, 2024]

$$
p(\mathcal{D}_{\text{data}} \mid \theta, \mathcal{D}_{\text{PN}}) = \frac{p(\mathcal{D}_{\text{data}}, \mathcal{D}_{\text{PN}} \mid \theta)}{p(\mathcal{D}_{\text{PN}} \mid \theta)}
$$

An alternative PN likelihood approximation method: DALTON "Data-Adaptive Probabilistic Likelihood Approximation" [Wu and Lysy, 2024]

UNIVERSITAT ^{EBERHARD KARLS}
TUBINGEN

$$
p(\mathcal{D}_{data} | \theta, \mathcal{D}_{PN}) = \frac{p(\mathcal{D}_{data}, \mathcal{D}_{PN} | \theta)}{p(\mathcal{D}_{PN} | \theta)}
$$

To compute:

- \blacktriangleright $p(\mathcal{D}_{PN} | \theta)$: Standard EKF with PN likelihood
- ▶ *p*(D_{data} , D_{PN} | *θ*): EKF with two likelihood models for "PN observations" and the actual data

An alternative PN likelihood approximation method: DALTON "Data-Adaptive Probabilistic Likelihood Approximation" [Wu and Lysy, 2024]

EBERHARD KARLS
TUBINGEN

$$
p(\mathcal{D}_{\text{data}} \mid \theta, \mathcal{D}_{\text{PN}}) = \frac{p(\mathcal{D}_{\text{data}}, \mathcal{D}_{\text{PN}} \mid \theta)}{p(\mathcal{D}_{\text{PN}} \mid \theta)}
$$

To compute:

- ▶ *p*(D_{PN} | *θ*): Standard EKF with PN likelihood
- ▶ *p*(\mathcal{D}_{data} , \mathcal{D}_{PN} | *θ*): EKF with two likelihood models for "PN observations" and the actual data
- *⇒* Run two filters!

Updating on data in the forward pass can severly improve the ODE solution [Wu and Lysy, 2024]

EBERHARD KARLS
TUBINGEN

Pros / cons:

Updating on data in the forward pass can severly improve the ODE solution

Pros / cons:

▶ + Better performace for chaotic systems

Updating on data in the forward pass can severly improve the ODE solution

Pros / cons:

- ▶ + Better performace for chaotic systems
- ▶ Needs to solve the ODE two times

Updating on data in the forward pass can severly improve the ODE solution

Pros / cons:

- ▶ + Better performace for chaotic systems
- ▶ Needs to solve the ODE two times
- \blacktriangleright + Computationally cheaper as it does not require smoothing!

Summary

- ▶ Parameter inference in ODEs requires computing a marginal likelihood
- ▶ Use filtering-based probabilistic numerical ODE solvers to approximate it
- ▶ **Being probabilistic can help escape local optima**

Software e https://github.com/nathanaelbosch/ProbNumDiffEq.jl]add ProbNumDiffEq

https://github.com/probabilistic-numerics/probnum pip install probnum

https://github.com/pnkraemer/probdiffeq pip install probdiffeq

Other topic I'm excited about: *Probabilistic numerics for parallel-in-time ODE solving!*

\blacktriangleright Wu, M. and Lysy, M. (2024).

Data-adaptive probabilistic likelihood approximation for ordinary differential equations. In Dasgupta, S., Mandt, S., and Li, Y., editors, *Proceedings of The 27th International Conference on Artificial Intelligence and Statistics*, volume 238 of *Proceedings of Machine Learning Research*, pages 1018–1026. PMLR.