
Robust Parameter Inference in ODEs via
Physics-Enhanced Gaussian Process Regression

ProbNum 24

Nathanael Bosch

16. July 2024

some of the presented work is supported
by the European Research Council.

@nathanaelbosch 1

The ODE parameter inference problem

▶ Initial value problem:

ẏ(t) = fθ(y(t), t), t ∈ [0, T], y(0) = y0,θ

▶ Observations:

ui = Hy(ti) + εi, εi ∼ N (0, Rθ)

▶ Goal:
p(θ | D) ∝ p(D | θ)p(θ)

▶ Maximum likelihood, maximum-a-posteriori and MCMC
require the marginal likelihood:

M(θ) = p(D | θ)

@nathanaelbosch 2

The ODE parameter inference problem

▶ Initial value problem:

ẏ(t) = fθ(y(t), t), t ∈ [0, T], y(0) = y0,θ

▶ Observations:

ui = Hy(ti) + εi, εi ∼ N (0, Rθ)

▶ Goal:
p(θ | D) ∝ p(D | θ)p(θ)

▶ Maximum likelihood, maximum-a-posteriori and MCMC
require the marginal likelihood:

M(θ) = p(D | θ)

@nathanaelbosch 2

The ODE parameter inference problem

▶ Initial value problem:

ẏ(t) = fθ(y(t), t), t ∈ [0, T], y(0) = y0,θ

▶ Observations:

ui = Hy(ti) + εi, εi ∼ N (0, Rθ)

▶ Goal:
p(θ | D) ∝ p(D | θ)p(θ)

▶ Maximum likelihood, maximum-a-posteriori and MCMC
require the marginal likelihood:

M(θ) = p(D | θ)

@nathanaelbosch 2

The ODE parameter inference problem

▶ Initial value problem:

ẏ(t) = fθ(y(t), t), t ∈ [0, T], y(0) = y0,θ

▶ Observations:

ui = Hy(ti) + εi, εi ∼ N (0, Rθ)

▶ Goal:
p(θ | D) ∝ p(D | θ)p(θ)

▶ Maximum likelihood, maximum-a-posteriori and MCMC
require the marginal likelihood:

M(θ) = p(D | θ)

@nathanaelbosch 2

Investigating the marginal likelihood

M(θ) = p(D | θ) =
∫

p(D | y(t1:N))︸ ︷︷ ︸

Gaussian likelihood

p(y(t1:N) | θ)︸ ︷︷ ︸

???

dy(t1:N)

▶ “y(t) given θ” is fully specified via the ODE
⇒ p(y(t1:N) | θ) = δ(y(t1:N)− y∗(t1:N))

▶ But the true ODE solution y∗(t1:N) is intractable!
▶ Let’s approximate:

δ(y(t1:N)− y∗θ(t1:N)) ≈

δ(y(t1:N)− ŷθ(t1:N)) (the classic numerical approach)

@nathanaelbosch 3

Investigating the marginal likelihood

M(θ) = p(D | θ) =
∫

p(D | y(t1:N))︸ ︷︷ ︸
Gaussian likelihood

p(y(t1:N) | θ)︸ ︷︷ ︸

???

dy(t1:N)

▶ “y(t) given θ” is fully specified via the ODE
⇒ p(y(t1:N) | θ) = δ(y(t1:N)− y∗(t1:N))

▶ But the true ODE solution y∗(t1:N) is intractable!
▶ Let’s approximate:

δ(y(t1:N)− y∗θ(t1:N)) ≈

δ(y(t1:N)− ŷθ(t1:N)) (the classic numerical approach)

@nathanaelbosch 3

Investigating the marginal likelihood

M(θ) = p(D | θ) =
∫

p(D | y(t1:N))︸ ︷︷ ︸
Gaussian likelihood

p(y(t1:N) | θ)︸ ︷︷ ︸
???

dy(t1:N)

▶ “y(t) given θ” is fully specified via the ODE
⇒ p(y(t1:N) | θ) = δ(y(t1:N)− y∗(t1:N))

▶ But the true ODE solution y∗(t1:N) is intractable!
▶ Let’s approximate:

δ(y(t1:N)− y∗θ(t1:N)) ≈

δ(y(t1:N)− ŷθ(t1:N)) (the classic numerical approach)

@nathanaelbosch 3

Investigating the marginal likelihood

M(θ) = p(D | θ) =
∫

p(D | y(t1:N))︸ ︷︷ ︸
Gaussian likelihood

p(y(t1:N) | θ)︸ ︷︷ ︸
???

dy(t1:N)

▶ “y(t) given θ” is fully specified via the ODE
⇒ p(y(t1:N) | θ) = δ(y(t1:N)− y∗(t1:N))

▶ But the true ODE solution y∗(t1:N) is intractable!
▶ Let’s approximate:

δ(y(t1:N)− y∗θ(t1:N)) ≈

δ(y(t1:N)− ŷθ(t1:N)) (the classic numerical approach)

@nathanaelbosch 3

Investigating the marginal likelihood

M(θ) = p(D | θ) =
∫

p(D | y(t1:N))︸ ︷︷ ︸
Gaussian likelihood

p(y(t1:N) | θ)︸ ︷︷ ︸
???

dy(t1:N)

▶ “y(t) given θ” is fully specified via the ODE
⇒ p(y(t1:N) | θ) = δ(y(t1:N)− y∗(t1:N))

▶ But the true ODE solution y∗(t1:N) is intractable!

▶ Let’s approximate:

δ(y(t1:N)− y∗θ(t1:N)) ≈

δ(y(t1:N)− ŷθ(t1:N)) (the classic numerical approach)

@nathanaelbosch 3

Investigating the marginal likelihood

M(θ) = p(D | θ) =
∫

p(D | y(t1:N))︸ ︷︷ ︸
Gaussian likelihood

p(y(t1:N) | θ)︸ ︷︷ ︸
???

dy(t1:N)

▶ “y(t) given θ” is fully specified via the ODE
⇒ p(y(t1:N) | θ) = δ(y(t1:N)− y∗(t1:N))

▶ But the true ODE solution y∗(t1:N) is intractable!
▶ Let’s approximate:

δ(y(t1:N)− y∗θ(t1:N)) ≈

δ(y(t1:N)− ŷθ(t1:N)) (the classic numerical approach)

@nathanaelbosch 3

Investigating the marginal likelihood

M(θ) = p(D | θ) =
∫

p(D | y(t1:N))︸ ︷︷ ︸
Gaussian likelihood

p(y(t1:N) | θ)︸ ︷︷ ︸
???

dy(t1:N)

▶ “y(t) given θ” is fully specified via the ODE
⇒ p(y(t1:N) | θ) = δ(y(t1:N)− y∗(t1:N))

▶ But the true ODE solution y∗(t1:N) is intractable!
▶ Let’s approximate:

δ(y(t1:N)− y∗θ(t1:N)) ≈ δ(y(t1:N)− ŷθ(t1:N)) (the classic numerical approach)

@nathanaelbosch 3

Investigating the marginal likelihood

M(θ) = p(D | θ) =
∫

p(D | y(t1:N))︸ ︷︷ ︸
Gaussian likelihood

p(y(t1:N) | θ)︸ ︷︷ ︸
???

dy(t1:N)

▶ “y(t) given θ” is fully specified via the ODE
⇒ p(y(t1:N) | θ) = δ(y(t1:N)− y∗(t1:N))

▶ But the true ODE solution y∗(t1:N) is intractable!
▶ Let’s approximate:

δ(y(t1:N)− y∗θ(t1:N)) ≈ pPN(y(t1:N) | θ) (the probabilistic numerical approach)

@nathanaelbosch 3

Probabilistic numerical ODE solvers

@nathanaelbosch 4

Filtering-based probabilistic numerical ODE solvers

p
(
y(t)

∣∣∣ y(0) = y0, {ẏ(tn) = f (y(tn), tn)}Nn=1

)
with vector field f : Rd × R→ Rd, initial value y0, and time discretization {tn}Nn=1.

▶ Prior:

y(t) ∼ GP a Gauss–Markov process

x(t+ h) | x(t) ∼ N (A(h)x(t),Q(h)),
y(t) = E0x(t), ẏ(t) = E1x(t)

▶ Likelihood: (aka “observation model” or “information operator”)

E0x(0)− y0 = 0, & E1x(tn)− f(E0x(tn), tn) = 0.

▶ Inference:

Bayesian filtering and smoothing
Extended Kalman filter, unscented Kalman filter, particle filters, ... (+ smoothers)

@nathanaelbosch 5

Filtering-based probabilistic numerical ODE solvers

p
(
y(t)

∣∣∣ y(0) = y0, {ẏ(tn) = f (y(tn), tn)}Nn=1

)
with vector field f : Rd × R→ Rd, initial value y0, and time discretization {tn}Nn=1.

@nathanaelbosch 5

Filtering-based probabilistic numerical ODE solvers

p
(
y(t)

∣∣∣ y(0) = y0, {ẏ(tn) = f (y(tn), tn)}Nn=1

)
with vector field f : Rd × R→ Rd, initial value y0, and time discretization {tn}Nn=1.

▶ Prior:

y(t) ∼ GP a Gauss–Markov process

x(t+ h) | x(t) ∼ N (A(h)x(t),Q(h)),
y(t) = E0x(t), ẏ(t) = E1x(t)

▶ Likelihood: (aka “observation model” or “information operator”)

E0x(0)− y0 = 0, & E1x(tn)− f(E0x(tn), tn) = 0.

▶ Inference:

Bayesian filtering and smoothing
Extended Kalman filter, unscented Kalman filter, particle filters, ... (+ smoothers)

@nathanaelbosch 5

Filtering-based probabilistic numerical ODE solvers

p
(
y(t)

∣∣∣ y(0) = y0, {ẏ(tn) = f (y(tn), tn)}Nn=1

)
with vector field f : Rd × R→ Rd, initial value y0, and time discretization {tn}Nn=1.

▶ Prior: y(t) ∼ GP a Gauss–Markov process

x(t+ h) | x(t) ∼ N (A(h)x(t),Q(h)),
y(t) = E0x(t), ẏ(t) = E1x(t)

▶ Likelihood: (aka “observation model” or “information operator”)

E0x(0)− y0 = 0, & E1x(tn)− f(E0x(tn), tn) = 0.

▶ Inference:

Bayesian filtering and smoothing
Extended Kalman filter, unscented Kalman filter, particle filters, ... (+ smoothers)

@nathanaelbosch 5

Filtering-based probabilistic numerical ODE solvers

p
(
y(t)

∣∣∣ y(0) = y0, {ẏ(tn) = f (y(tn), tn)}Nn=1

)
with vector field f : Rd × R→ Rd, initial value y0, and time discretization {tn}Nn=1.

▶ Prior: y(t) ∼ GP a Gauss–Markov process

x(t+ h) | x(t) ∼ N (A(h)x(t),Q(h)),
y(t) = E0x(t), ẏ(t) = E1x(t)

▶ Likelihood: (aka “observation model” or “information operator”)

E0x(0)− y0 = 0, & E1x(tn)− f(E0x(tn), tn) = 0.

▶ Inference:

Bayesian filtering and smoothing
Extended Kalman filter, unscented Kalman filter, particle filters, ... (+ smoothers)

@nathanaelbosch 5

Filtering-based probabilistic numerical ODE solvers

p
(
y(t)

∣∣∣ y(0) = y0, {ẏ(tn) = f (y(tn), tn)}Nn=1

)
with vector field f : Rd × R→ Rd, initial value y0, and time discretization {tn}Nn=1.

▶ Prior: y(t) ∼ GP a Gauss–Markov process

x(t+ h) | x(t) ∼ N (A(h)x(t),Q(h)),
y(t) = E0x(t), ẏ(t) = E1x(t)

▶ Likelihood: (aka “observation model” or “information operator”)

E0x(0)− y0 = 0, & E1x(tn)− f(E0x(tn), tn) = 0.

▶ Inference:

Bayesian filtering and smoothing
Extended Kalman filter, unscented Kalman filter, particle filters, ... (+ smoothers)

@nathanaelbosch 5

Filtering-based probabilistic numerical ODE solvers

p
(
y(t)

∣∣∣ y(0) = y0, {ẏ(tn) = f (y(tn), tn)}Nn=1

)
with vector field f : Rd × R→ Rd, initial value y0, and time discretization {tn}Nn=1.

▶ Prior: y(t) ∼ GP a Gauss–Markov process

x(t+ h) | x(t) ∼ N (A(h)x(t),Q(h)),
y(t) = E0x(t), ẏ(t) = E1x(t)

▶ Likelihood: (aka “observation model” or “information operator”)

E0x(0)− y0 = 0, & E1x(tn)− f(E0x(tn), tn) = 0.

▶ Inference: Bayesian filtering and smoothing
Extended Kalman filter, unscented Kalman filter, particle filters, ... (+ smoothers)

@nathanaelbosch 5

Filtering-based probabilistic numerical ODE solvers

p
(
y(t)

∣∣∣ y(0) = y0, {ẏ(tn) = f (y(tn), tn)}Nn=1

)
with vector field f : Rd × R→ Rd, initial value y0, and time discretization {tn}Nn=1.

▶ Prior: y(t) ∼ GP a Gauss–Markov process

x(t+ h) | x(t) ∼ N (A(h)x(t),Q(h)),
y(t) = E0x(t), ẏ(t) = E1x(t)

▶ Likelihood: (aka “observation model” or “information operator”)

E0x(0)− y0 = 0, & E1x(tn)− f(E0x(tn), tn) = 0.

▶ Inference: Bayesian filtering and smoothing
Extended Kalman filter, unscented Kalman filter, particle filters, ... (+ smoothers)

@nathanaelbosch 5

Probabilistic ODE solvers: the state-estimation problem
This is the actual state estimation problem that we solve

x1x0 x2 x3 . . . xN

z0 z1 z2 z3 zN

Hidden:

Observed:

Initial distribution: x(0) ∼ N
(
x(0);µ−

0 ,Σ
−
0
)

Prior / dynamics model: x(t+ h) | x(t) ∼ N (x(t+ h); A(h)x(t),Q(h))
ODE likelihood: z(ti) | x(ti) ∼ δ (z(ti); E1x(ti)− f(E0x(ti), ti)) , zi ≜ 0

Initial value likelihood: zinit | x(0) ∼ δ
(
zinit; E0x(0)− y0

)
, zinit ≜ 0

@nathanaelbosch 6

Probabilistic ODE solvers in pseudo code
We can solve ODEs with basically just an extended Kalman filter

Algorithm The extended Kalman ODE filter

1 procedure EXTENDED KALMAN ODE FILTER((µ−
0 ,Σ

−
0), (A,Q), (f, y0), {ti}

N
i=1)

2 µ0,Σ0 ← KF_UPDATE(µ−
0 ,Σ

−
0 , E0, 0d×d, y0) � Initial update to fit the initial value

3 for k ∈ {1, . . . ,N} do
4 hk ← tk − tk−1 � Step size

5 µ−
k ,Σ

−
k ← KF_PREDICT(µk−1,Σk−1, A(hk),Q(hk)) � Kalman filter prediction

6 mk(x) := E1x− f(E0x, tk) � Define the non-linear observation model

7 µk,Σk ← EKF_UPDATE(µ−
k ,Σ

−
k ,mk, 0d×d, 0⃗d) � Extended Kalman filter update

8 end for
9 return (µk,Σk)

N
k=1

10 end procedure

https://github.com/nathanaelbosch/probnumspringschool2024-tutorial

@nathanaelbosch 7

https://github.com/nathanaelbosch/probnumspringschool2024-tutorial

Computing the PN-approximated marginal likelihood

@nathanaelbosch 8

How to compute the PN-approximated margial likelihood
It’s just another filtering problem

M(θ) = p(D | θ) =
∫

p(D | y(t1:N))︸ ︷︷ ︸
Gaussian likelihood

p(y(t1:N) | DPN, θ)︸ ︷︷ ︸
PN posterior

dy(t1:N)

Filtering posteriors have a recursive, linear Gaussian, backward-in-time representation:

p(x(t1:N) | DPN, θ) = N
(
x(tN);µF

N,Σ
F
N

) N−1∏
t=1

N (x(tn);Gnx(tn+1) + dn,Λn);

marginalizing this posterior is exactly what a smoother does.

State-space model:

Initial distribution: x(tN) ∼ N
(
x(tN);µF

N,Σ
F
N

)
Dynamics model: x(tn−1) | x(tn) ∼ N (x(tn);Gnx(tn+1) + dn,Λn)

Data likelihood: un | x(tn) ∼ N (x(tn);HE0x(tn), Rθ)

@nathanaelbosch 9

How to compute the PN-approximated margial likelihood
It’s just another filtering problem

M(θ) = p(D | θ) =
∫

p(D | y(t1:N))︸ ︷︷ ︸
Gaussian likelihood

p(y(t1:N) | DPN, θ)︸ ︷︷ ︸
PN posterior

dy(t1:N)

Filtering posteriors have a recursive, linear Gaussian, backward-in-time representation:

p(x(t1:N) | DPN, θ) = N
(
x(tN);µF

N,Σ
F
N

) N−1∏
t=1

N (x(tn);Gnx(tn+1) + dn,Λn);

marginalizing this posterior is exactly what a smoother does.

State-space model:

Initial distribution: x(tN) ∼ N
(
x(tN);µF

N,Σ
F
N

)
Dynamics model: x(tn−1) | x(tn) ∼ N (x(tn);Gnx(tn+1) + dn,Λn)

Data likelihood: un | x(tn) ∼ N (x(tn);HE0x(tn), Rθ)

@nathanaelbosch 9

How to compute the PN-approximated margial likelihood
It’s just another filtering problem

M(θ) = p(D | θ) =
∫

p(D | y(t1:N))︸ ︷︷ ︸
Gaussian likelihood

p(y(t1:N) | DPN, θ)︸ ︷︷ ︸
PN posterior

dy(t1:N)

Filtering posteriors have a recursive, linear Gaussian, backward-in-time representation:

p(x(t1:N) | DPN, θ) = N
(
x(tN);µF

N,Σ
F
N

) N−1∏
t=1

N (x(tn);Gnx(tn+1) + dn,Λn);

marginalizing this posterior is exactly what a smoother does.

State-space model:

Initial distribution: x(tN) ∼ N
(
x(tN);µF

N,Σ
F
N

)
Dynamics model: x(tn−1) | x(tn) ∼ N (x(tn);Gnx(tn+1) + dn,Λn)

Data likelihood: un | x(tn) ∼ N (x(tn);HE0x(tn), Rθ)
@nathanaelbosch 9

How to compute the PN-approximated margial likelihood
Physics-Enhanced Regression for Initial Value Problems (FENRIR)

Resulting algorithm:
1. Run filter forwards to compute p(y(t1:N) | DPN, θ)

2. Run filter backwards to compute the marginal likelihoodM(θ)

@nathanaelbosch 10

MLE parameter inference with FENRIR
It works!

t
0 20

y(
t)

−2.5

0.0

2.5
Initial trajectory

t
0 20

y(
t)

−2.5

0.0

2.5
Optimized trajectory

0.0
0.1
0.2
0.3
0.4
0.5
0.6

α

0.0

0.1

0.2

0.3
β

1.0
1.5
2.0
2.5
3.0

γ

0 100
−10

−5

0
y₁

0 100

−2

0

2
y₂

0 100

0
10
20
30
40

log(σ²)

@nathanaelbosch 11

MLE parameter inference with FENRIR
The algorithm is quite robust to local optima

@nathanaelbosch 12

Parameter inference in Hodgkin-Huxley ODEs

@nathanaelbosch 13

Parameter inference in Hodgkin-Huxley ODEs

@nathanaelbosch 14

Parameter inference in Hodgkin-Huxley ODEs

@nathanaelbosch 15

Parameter inference in Hodgkin-Huxley ODEs

@nathanaelbosch 16

MLE parameter inference with FENRIR on the Hodgkin-Huxley model
It works, but clearly not as well as for the simple pendulum problem

@nathanaelbosch 17

MLE parameter inference with FENRIR on the Hodgkin-Huxley model
It works, but clearly not as well as for the simple pendulum problem

@nathanaelbosch 17

Idea: Diffusion Tempering

Algorithm: Start with an initial parameter guess θo. Then for i = 1, . . . ,M solve a sequence of
MLE optimization problems

θi = arg maxM(θ, Γ(i)) = OPTIMIZE(M; θinit=θi−1, σ=Γ(i)). (1)

@nathanaelbosch 18

Idea: Diffusion Tempering

Algorithm: Start with an initial parameter guess θo. Then for i = 1, . . . ,M solve a sequence of
MLE optimization problems

θi = arg maxM(θ, Γ(i)) = OPTIMIZE(M; θinit=θi−1, σ=Γ(i)). (1)

@nathanaelbosch 18

FENRIR + diffusion tempering on the Hodgkin-Huxley ODE
It works!

@nathanaelbosch 19

FENRIR + diffusion tempering on the Hodgkin-Huxley ODE
It works!

@nathanaelbosch 20

An alternative way to compute the PN-approximated
marginal likelihood

@nathanaelbosch 21

An alternative PN likelihood approximation method: DALTON
”Data-Adaptive Probabilistic Likelihood Approximation” [Wu and Lysy, 2024]

p(Ddata | θ,DPN) =
p(Ddata,DPN | θ)

p(DPN | θ)

To compute:
▶ p(DPN | θ): Standard EKF with PN likelihood
▶ p(Ddata,DPN | θ): EKF with two likelihood models for “PN observations” and the actual

data
⇒ Run two filters!

@nathanaelbosch 22

An alternative PN likelihood approximation method: DALTON
”Data-Adaptive Probabilistic Likelihood Approximation” [Wu and Lysy, 2024]

p(Ddata | θ,DPN) =
p(Ddata,DPN | θ)

p(DPN | θ)
To compute:
▶ p(DPN | θ): Standard EKF with PN likelihood
▶ p(Ddata,DPN | θ): EKF with two likelihood models for “PN observations” and the actual

data

⇒ Run two filters!

@nathanaelbosch 22

An alternative PN likelihood approximation method: DALTON
”Data-Adaptive Probabilistic Likelihood Approximation” [Wu and Lysy, 2024]

p(Ddata | θ,DPN) =
p(Ddata,DPN | θ)

p(DPN | θ)
To compute:
▶ p(DPN | θ): Standard EKF with PN likelihood
▶ p(Ddata,DPN | θ): EKF with two likelihood models for “PN observations” and the actual

data
⇒ Run two filters!

@nathanaelbosch 22

FENRIR vs DALTON: Lorenz63
Updating on data in the forward pass can severly improve the ODE solution [Wu and Lysy, 2024]

10
0

10

DA
LT

ON

10
0

10

Fe
nr

ir

6 8 10 12 14 16 18 20

10
0

10

No
 D

at
a

t = 0.005
t = 0.0001

t = 1e-05
True

Obs

Pros / cons:

▶ + Better performace
for chaotic systems

▶ - Needs to solve the
ODE two times

▶ + Computationally
cheaper as it does not
require smoothing!

@nathanaelbosch 23

FENRIR vs DALTON: Lorenz63
Updating on data in the forward pass can severly improve the ODE solution [Wu and Lysy, 2024]

10
0

10

DA
LT

ON

10
0

10

Fe
nr

ir

6 8 10 12 14 16 18 20

10
0

10

No
 D

at
a

t = 0.005
t = 0.0001

t = 1e-05
True

Obs

Pros / cons:
▶ + Better performace

for chaotic systems

▶ - Needs to solve the
ODE two times

▶ + Computationally
cheaper as it does not
require smoothing!

@nathanaelbosch 23

FENRIR vs DALTON: Lorenz63
Updating on data in the forward pass can severly improve the ODE solution [Wu and Lysy, 2024]

10
0

10

DA
LT

ON

10
0

10

Fe
nr

ir

6 8 10 12 14 16 18 20

10
0

10

No
 D

at
a

t = 0.005
t = 0.0001

t = 1e-05
True

Obs

Pros / cons:
▶ + Better performace

for chaotic systems
▶ - Needs to solve the

ODE two times

▶ + Computationally
cheaper as it does not
require smoothing!

@nathanaelbosch 23

FENRIR vs DALTON: Lorenz63
Updating on data in the forward pass can severly improve the ODE solution [Wu and Lysy, 2024]

10
0

10

DA
LT

ON

10
0

10

Fe
nr

ir

6 8 10 12 14 16 18 20

10
0

10

No
 D

at
a

t = 0.005
t = 0.0001

t = 1e-05
True

Obs

Pros / cons:
▶ + Better performace

for chaotic systems
▶ - Needs to solve the

ODE two times
▶ + Computationally

cheaper as it does not
require smoothing!

@nathanaelbosch 23

Summary
▶ Parameter inference in ODEs requires computing a marginal likelihood
▶ Use filtering-based probabilistic numerical ODE solvers to approximate it
▶ Being probabilistic can help escape local optima

Software https://github.com/nathanaelbosch/ProbNumDiffEq.jl
]add ProbNumDiffEq

https://github.com/probabilistic-numerics/probnum
pip install probnum

https://github.com/pnkraemer/probdiffeq
pip install probdiffeq

Other topic I’m excited about: Probabilistic numerics for parallel-in-time ODE solving!

@nathanaelbosch 24

https://github.com/nathanaelbosch/ProbNumDiffEq.jl
https://github.com/probabilistic-numerics/probnum
https://github.com/pnkraemer/probdiffeq

Bibliography I

▶ Wu, M. and Lysy, M. (2024).
Data-adaptive probabilistic likelihood approximation for ordinary differential equations.
In Dasgupta, S., Mandt, S., and Li, Y., editors, Proceedings of The 27th International
Conference on Artificial Intelligence and Statistics, volume 238 of Proceedings of Machine
Learning Research, pages 1018–1026. PMLR.

@nathanaelbosch 25

