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The ODE parameter inference problem

▶ Initial value problem:

ẏ(t) = fθ(y(t), t), t ∈ [0, T], y(0) = y0,θ

▶ Observations:

ui = Hy(ti) + εi, εi ∼ N (0, Rθ)

▶ Goal:
p(θ | D) ∝ p(D | θ)p(θ)

▶ Maximum likelihood, maximum-a-posteriori and MCMC
require the marginal likelihood:

M(θ) = p(D | θ)
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Investigating the marginal likelihood

M(θ) = p(D | θ) =
∫

p(D | y(t1:N))︸ ︷︷ ︸

Gaussian likelihood

p(y(t1:N) | θ)︸ ︷︷ ︸

???

dy(t1:N)

▶ “y(t) given θ” is fully specified via the ODE
⇒ p(y(t1:N) | θ) = δ(y(t1:N)− y∗(t1:N))

▶ But the true ODE solution y∗(t1:N) is intractable!
▶ Let’s approximate:

δ(y(t1:N)− y∗θ(t1:N)) ≈

δ(y(t1:N)− ŷθ(t1:N)) (the classic numerical approach)
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Probabilistic numerical ODE solvers
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Filtering-based probabilistic numerical ODE solvers

p
(
y(t)

∣∣∣ y(0) = y0, {ẏ(tn) = f (y(tn), tn)}Nn=1

)
with vector field f : Rd × R→ Rd, initial value y0, and time discretization {tn}Nn=1.

▶ Prior:

y(t) ∼ GP a Gauss–Markov process

x(t+ h) | x(t) ∼ N (A(h)x(t),Q(h)),
y(t) = E0x(t), ẏ(t) = E1x(t)

▶ Likelihood: (aka “observation model” or “information operator”)

E0x(0)− y0 = 0, & E1x(tn)− f(E0x(tn), tn) = 0.

▶ Inference:

Bayesian filtering and smoothing
Extended Kalman filter, unscented Kalman filter, particle filters, ... (+ smoothers)
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Probabilistic ODE solvers: the state-estimation problem
This is the actual state estimation problem that we solve

x1x0 x2 x3 . . . xN

z0 z1 z2 z3 zN

Hidden:

Observed:

Initial distribution: x(0) ∼ N
(
x(0);µ−

0 ,Σ
−
0
)

Prior / dynamics model: x(t+ h) | x(t) ∼ N (x(t+ h); A(h)x(t),Q(h))
ODE likelihood: z(ti) | x(ti) ∼ δ (z(ti); E1x(ti)− f(E0x(ti), ti)) , zi ≜ 0

Initial value likelihood: zinit | x(0) ∼ δ
(
zinit; E0x(0)− y0

)
, zinit ≜ 0
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Probabilistic ODE solvers in pseudo code
We can solve ODEs with basically just an extended Kalman filter

Algorithm The extended Kalman ODE filter

1 procedure EXTENDED KALMAN ODE FILTER((µ−
0 ,Σ

−
0 ), (A,Q), (f, y0), {ti}

N
i=1)

2 µ0,Σ0 ← KF_UPDATE(µ−
0 ,Σ

−
0 , E0, 0d×d, y0) � Initial update to fit the initial value

3 for k ∈ {1, . . . ,N} do
4 hk ← tk − tk−1 � Step size

5 µ−
k ,Σ

−
k ← KF_PREDICT(µk−1,Σk−1, A(hk),Q(hk)) � Kalman filter prediction

6 mk(x) := E1x− f(E0x, tk) � Define the non-linear observation model

7 µk,Σk ← EKF_UPDATE(µ−
k ,Σ

−
k ,mk, 0d×d, 0⃗d) � Extended Kalman filter update

8 end for
9 return (µk,Σk)

N
k=1

10 end procedure

https://github.com/nathanaelbosch/probnumspringschool2024-tutorial
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Computing the PN-approximated marginal likelihood
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How to compute the PN-approximated margial likelihood
It’s just another filtering problem

M(θ) = p(D | θ) =
∫

p(D | y(t1:N))︸ ︷︷ ︸
Gaussian likelihood

p(y(t1:N) | DPN, θ)︸ ︷︷ ︸
PN posterior

dy(t1:N)

Filtering posteriors have a recursive, linear Gaussian, backward-in-time representation:

p(x(t1:N) | DPN, θ) = N
(
x(tN);µF

N,Σ
F
N

) N−1∏
t=1

N (x(tn);Gnx(tn+1) + dn,Λn);

marginalizing this posterior is exactly what a smoother does.

State-space model:

Initial distribution: x(tN) ∼ N
(
x(tN);µF

N,Σ
F
N

)
Dynamics model: x(tn−1) | x(tn) ∼ N (x(tn);Gnx(tn+1) + dn,Λn)

Data likelihood: un | x(tn) ∼ N (x(tn);HE0x(tn), Rθ)
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How to compute the PN-approximated margial likelihood
Physics-Enhanced Regression for Initial Value Problems (FENRIR)

Resulting algorithm:
1. Run filter forwards to compute p(y(t1:N) | DPN, θ)

2. Run filter backwards to compute the marginal likelihoodM(θ)
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MLE parameter inference with FENRIR
It works!
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MLE parameter inference with FENRIR
The algorithm is quite robust to local optima
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Parameter inference in Hodgkin-Huxley ODEs
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Parameter inference in Hodgkin-Huxley ODEs
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Parameter inference in Hodgkin-Huxley ODEs
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MLE parameter inference with FENRIR on the Hodgkin-Huxley model
It works, but clearly not as well as for the simple pendulum problem
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Idea: Diffusion Tempering

Algorithm: Start with an initial parameter guess θo. Then for i = 1, . . . ,M solve a sequence of
MLE optimization problems

θi = arg maxM(θ, Γ(i)) = OPTIMIZE(M; θinit=θi−1, σ=Γ(i)). (1)
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FENRIR + diffusion tempering on the Hodgkin-Huxley ODE
It works!
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FENRIR + diffusion tempering on the Hodgkin-Huxley ODE
It works!
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An alternative way to compute the PN-approximated
marginal likelihood
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An alternative PN likelihood approximation method: DALTON
”Data-Adaptive Probabilistic Likelihood Approximation” [Wu and Lysy, 2024]

p(Ddata | θ,DPN) =
p(Ddata,DPN | θ)

p(DPN | θ)

To compute:
▶ p(DPN | θ): Standard EKF with PN likelihood
▶ p(Ddata,DPN | θ): EKF with two likelihood models for “PN observations” and the actual

data
⇒ Run two filters!
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FENRIR vs DALTON: Lorenz63
Updating on data in the forward pass can severly improve the ODE solution [Wu and Lysy, 2024]
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Summary
▶ Parameter inference in ODEs requires computing a marginal likelihood
▶ Use filtering-based probabilistic numerical ODE solvers to approximate it
▶ Being probabilistic can help escape local optima

Software https://github.com/nathanaelbosch/ProbNumDiffEq.jl
]add ProbNumDiffEq

https://github.com/probabilistic-numerics/probnum
pip install probnum

https://github.com/pnkraemer/probdiffeq
pip install probdiffeq

Other topic I’m excited about: Probabilistic numerics for parallel-in-time ODE solving!
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