Probabilistic Numerical Solvers for Ordinary Differential Equations
 SCML 2024

Nathanael Bosch
22. March 2024

EBERHARD KARLS
 UNIVERSITAT TUBINGEN

 imprs-is
 eirc ${ }^{\text {some }}$ by the European Research Council.

Background

- Ordinary differential equations and how to solve them

Background

- Ordinary differential equations and how to solve them

Central statement: ODE solving is state estimation
> "ODE filters": How to solve ODEs with extended Kalman filtering and smoothing

Background

- Ordinary differential equations and how to solve them

Central statement: ODE solving is state estimation
> "ODE filters": How to solve ODEs with extended Kalman filtering and smoothing

Showcasing ODE filters

- Generalizing ODE filters to higher-order ODEs, systems with conserved quantities, BVPs, DAEs, ...
- Parameter inference with ODE filters

Background: Ordinary Differential Equations and how to solve them

$$
\dot{y}(t)=f(y(t), t)
$$

with $t \in[0, T]$, vector field $f: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$, and initial value $y(0)=y_{0}$. Goal: "Find $y^{\prime \prime}$.

- Simple example: Logistic ODE

$$
\dot{y}(t)=y(t)(1-y(t)), \quad t \in[0,10], \quad y(0)=0.1 .
$$

$$
\dot{y}(t)=f(y(t), t)
$$

with $t \in[0, T]$, vector field $f: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$, and initial value $y(0)=y_{0}$. Goal: "Find $y^{\prime \prime}$.
Numerical ODE solvers:

- Forward Euler:

$$
\hat{y}(t+h)=\hat{y}(t)+h f(\hat{y}(t), t)
$$

$$
\dot{y}(t)=f(y(t), t)
$$

with $t \in[0, T]$, vector field $f: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$, and initial value $y(0)=y_{0}$. Goal: "Find y ".
Numerical ODE solvers:

- Forward Euler:

$$
\hat{y}(t+h)=\hat{y}(t)+h f(\hat{y}(t), t)
$$

- Backward Euler:

$$
\hat{y}(t+h)=\hat{y}(t)+h f(\hat{y}(t+h), t+h)
$$

$$
\dot{y}(t)=f(y(t), t)
$$

with $t \in[0, T]$, vector field $f: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$, and initial value $y(0)=y_{0}$. Goal: "Find y ".
Numerical ODE solvers:

- Forward Euler:

$$
\hat{y}(t+h)=\hat{y}(t)+h f(\hat{y}(t), t)
$$

- Backward Euler:

$$
\hat{y}(t+h)=\hat{y}(t)+h f(\hat{y}(t+h), t+h)
$$

- Runge-Kutta:

$$
\hat{y}(t+h)=\hat{y}(t)+h \sum_{i=1}^{s} b_{i} f\left(\tilde{y}_{i}, t+c_{i} h\right)
$$

$$
\dot{y}(t)=f(y(t), t)
$$

with $t \in[0, T]$, vector field $f: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$, and initial value $y(0)=y_{0}$. Goal: "Find y ".
Numerical ODE solvers:

- Forward Euler:

$$
\hat{y}(t+h)=\hat{y}(t)+h f(\hat{y}(t), t)
$$

- Backward Euler:

$$
\hat{y}(t+h)=\hat{y}(t)+h f(\hat{y}(t+h), t+h)
$$

- Runge-Kutta:

$$
\hat{y}(t+h)=\hat{y}(t)+h \sum_{i=1}^{s} b_{i} f\left(\tilde{y}_{i}, t+c_{i} h\right)
$$

- Multistep:

$$
\hat{y}(t+h)=\hat{y}(t)+h \sum_{i=0}^{s-1} b_{i} f(\hat{y}(t-i h), t-i h)
$$

$$
\dot{y}(t)=f(y(t), t)
$$

with $t \in[0, T]$, vector field $f: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$, and initial value $y(0)=y_{0}$. Goal: "Find y ".

Numerical ODE solvers:

- Forward Euler
$\hat{y}(t+h)=\hat{y}(t)+h f(\hat{y}(t), t)$
- Backward Euler:
$\hat{y}(t+h)=\hat{y}(t)+h f(\hat{y}(t+h), t+h)$
\rightarrow Runge-Kutta:
$\hat{y}(t+h)=\hat{y}(t)+h \sum_{i=1}^{s} b_{i} f\left(\tilde{y}_{i}, t+c_{i} h\right)$
- Multistep:
$\hat{y}(t+h)=\hat{y}(t)+h \sum_{i=0}^{s-1} b_{i} f(\hat{y}(t-i h), t-i h)$

Forward Euler for different step sizes:

$$
\dot{y}(t)=f(y(t), t)
$$

with $t \in[0, T]$, vector field $f: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$, and initial value $y(0)=y_{0}$. Goal: "Find $y^{\prime \prime}$.

Numerical ODE solvers:

- Forward Euler
$\hat{y}(t+h)=\hat{y}(t)+h f(\hat{y}(t), t)$
- Backward Euler:
$\hat{y}(t+h)=\hat{y}(t)+h f(\hat{y}(t+h), t+h)$
- Runge-Kutta:
$\hat{y}(t+h)=\hat{y}(t)+h \sum_{i=1}^{s} b_{i} f\left(\tilde{y}_{i}, t+c_{i} h\right)$
- Multistep:
$\hat{y}(t+h)=\hat{y}(t)+h \sum_{i=0}^{s-1} b_{i} f(\hat{y}(t-i h), t-i h)$

Forward Euler for different step sizes:

Probabilistic numerical ODE solvers

or "How to treat ODE solving as a Bayesian state estimation problem"

$$
P\left(y(t) \mid y(0)=y_{0},\left\{\dot{y}\left(t_{n}\right)=f\left(y\left(t_{n}\right), t_{n}\right)\right\}_{n=1}^{N}\right)
$$

with vector field $f: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$, initial value y_{0}, and time discretization $\left\{t_{n}\right\}_{n=1}^{N}$.

Probabilistic formulation of an ODE solver:

$$
P\left(y(t) \mid y(0)=y_{0},\left\{\dot{y}\left(t_{n}\right)=f\left(y\left(t_{n}\right), t_{n}\right)\right\}_{n=1}^{N}\right)
$$

with vector field $f: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$, initial value y_{0}, and time discretization $\left\{t_{n}\right\}_{n=1}^{N}$.

Probabilistic formulation of an ODE solver:

- Prior: $y \sim \mathcal{G P}$

Probabilistic numerical ODE solvers

$$
p\left(y(t) \mid y(0)=y_{0},\left\{y\left(t_{n}\right)=f\left(y\left(t_{n}\right), t_{n}\right)\right\}_{n=1}^{N}\right)
$$

with vector field $f: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$, initial value y_{0}, and time discretization $\left\{t_{n}\right\}_{n=1}^{N}$.

Probabilistic formulation of an ODE solver:

- Prior: $y \sim \mathcal{G P}$
- Likelihood / data:
- Initial data: $y(0)=y_{0}$
- ODE data: $\dot{y}\left(t_{i}\right)=f\left(y\left(t_{i}\right), t_{i}\right)$, for some $\left\{t_{j}\right\}_{j=1}^{N} \subset[0, T]$

$$
p\left(y(t) \mid y(0)=y_{0},\left\{y\left(t_{n}\right)=f\left(y\left(t_{n}\right), t_{n}\right)\right\}_{n=1}^{N}\right)
$$

with vector field $f: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$, initial value y_{0}, and time discretization $\left\{t_{n}\right\}_{n=1}^{N}$.

Probabilistic formulation of an ODE solver:

- Prior: $y \sim \mathcal{G P}$
- Likelihood / data:
- Initial data: $y(0)=y_{0}$
- ODE data: $\dot{y}\left(t_{i}\right)=f\left(y\left(t_{i}\right), t_{i}\right)$, for some $\left\{t_{j}\right\}_{j=1}^{N} \subset[0, T]$
- Inference: Bayes' rule

Prior: Gauss-Markov process priors

See also: Särkkä \& Solin, "Applied Stochastic Differential Equations", 2013

- Continuous Gauss-Markov process prior:
$y(t)$ defined as the output of a linear time-invariant (LTI) stochastic differential equation (SDE):

$$
\begin{aligned}
x(0) & \sim \mathcal{N}\left(\mu_{0}^{-}, \Sigma_{0}^{-}\right) \\
\mathrm{d} x(t) & =F x(t) \mathrm{d} t+\sigma \Gamma \mathrm{d} w(t) \\
y^{(m)}(t) & =E_{m} x(t), \quad m=1, \ldots, \nu
\end{aligned}
$$

$x(t)$ is the state-space representation of $y(t)$.
Examples: Integrated Wiener process, Integrated Ornstein-Uhlenbeck process, Matérn process.

- Continuous Gauss-Markov process prior:
$y(t)$ defined as the output of a linear time-invariant (LTI) stochastic differential equation (SDE):

$$
\begin{aligned}
x(0) & \sim \mathcal{N}\left(\mu_{0}^{-}, \Sigma_{0}^{-}\right), \\
\mathrm{dx}(t) & =F x(t) \mathrm{d} t+\sigma \Gamma \mathrm{d} w(t), \\
y^{(m)}(t) & =E_{m} x(t), \quad m=1, \ldots, \nu .
\end{aligned}
$$

$x(t)$ is the state-space representation of $y(t)$.
Examples: Integrated Wiener process, Integrated Ornstein-Uhlenbeck process, Matérn process.

- Discrete transition densities: $x(t)$ can be described in discrete time as

$$
x(t+h) \mid x(t) \sim \mathcal{N}\left(x(t+h) ; A(h) x(t), \sigma^{2} Q(h)\right)
$$

with

$$
A(h)=\exp (F h), \quad Q(h)=\int_{0}^{h} A(h-\tau) \Gamma \Gamma^{\top} A(h-\tau)^{\top} \tau
$$

- Continuous Gauss-Markov process prior:
$y(t)$ defined as the output of a linear time-invariant (LTI) stochastic differential equation (SDE):

$$
\begin{aligned}
x(0) & \sim \mathcal{N}\left(\mu_{0}^{-}, \Sigma_{0}^{-}\right), \\
\mathrm{d} x(t) & =F x(t) \mathrm{d} t+\sigma \Gamma \mathrm{d} w(t), \\
y^{(m)}(t) & =E_{m} x(t), \quad m=1, \ldots, \nu
\end{aligned}
$$

$x(t)$ is the state-space representation of $y(t)$.
Examples: Integrated Wiener process, Integrated Ornstein-Uhlenbeck process, Matérn process.

- Discrete transition densities: $x(t)$ can be described in discrete time as

$$
x(t+h) \mid x(t) \sim \mathcal{N}\left(x(t+h) ; A(h) x(t), \sigma^{2} Q(h)\right)
$$

with

$$
A(h)=\exp (F h), \quad Q(h)=\int_{0}^{h} A(h-\tau) \Gamma \Gamma^{\top} A(h-\tau)^{\top} \tau
$$

- q-times integrated Wiener process prior: $y(t) \sim \operatorname{IWP}(q)$, defined with $x(t):=\left[x^{(0)}(t), x^{(1)}(t), \ldots, x^{(q)}(t)\right]$ as

$$
\begin{aligned}
x(0) & \sim \mathcal{N}\left(\mu_{0}, \Sigma_{0}\right), \\
\mathrm{d} x^{(i)}(t) & =x^{(i+1)}(t) \mathrm{d} t, \quad i=0, \ldots, q-1, \\
\mathrm{~d} x^{(q)}(t) & =\sigma \mathrm{d} W(t) .
\end{aligned}
$$

Then $x^{(i)}=: E_{i} x$ models the i-th derivative of y.

- q-times integrated Wiener process prior: $y(t) \sim \operatorname{IWP}(q)$,

defined with $x(t):=\left[x^{(0)}(t), x^{(1)}(t), \ldots, x^{(q)}(t)\right]$ as

$$
\begin{aligned}
x(0) & \sim \mathcal{N}\left(\mu_{0}, \Sigma_{0}\right), \\
d x^{(i)}(t) & =x^{(i+1)}(t) \mathrm{d} t, \\
\mathrm{~d} x^{(G)}(t) & =\sigma \mathrm{d} W(t) .
\end{aligned}
$$

$$
\mathrm{d} x^{(i)}(t)=x^{(i+1)}(t) \mathrm{d} t, \quad i=0, \ldots, q-1,
$$

Then $x^{(i)}=: E_{i} x$ models the i-th derivative of y.

- Discrete-time transitions:

$$
\begin{aligned}
x(t+h) \mid x(t) & \sim \mathcal{N}\left(x(t+h) ; A(h) x(t), \sigma^{2} Q(h)\right), \\
{[A(h)]_{j j} } & =\mathbb{I}_{i \leq j} \frac{h^{j-i}}{(j-i)!}, \\
{[Q(h)]_{j j} } & =\frac{h^{2 q+1-i-j}}{(2 q+1-i-j)(q-i)!(q-j)!},
\end{aligned}
$$

for any $i, j=0, \ldots, q$. (one-dimensional case).

- q-times integrated Wiener process prior: $y(t) \sim \operatorname{IWP}(q)$, defined with $x(t):=\left[x^{(0)}(t), x^{(1)}(t), \ldots, x^{(q)}(t)\right]$ as

$$
\begin{aligned}
x(0) & \sim \mathcal{N}\left(\mu_{0}, \Sigma_{0}\right) \\
d x^{(i)}(t) & =x^{(i+1)}(t) \mathrm{d} t, \quad i=0, \ldots, q-1, \\
\mathrm{~d} x^{(q)}(t) & =\sigma \mathrm{d} W(t) .
\end{aligned}
$$

Then $x^{(i)}=: E_{i} x$ models the i-th derivative of y.

- Discrete-time transitions:

$$
\begin{aligned}
x(t+h) \mid x(t) & \sim \mathcal{N}\left(x(t+h) ; A(h) x(t), \sigma^{2} Q(h)\right), \\
{[A(h)]_{j j} } & =\mathbb{I}_{i \leq j} \frac{h^{j-i}}{(j-i)!}, \\
{[Q(h)]_{j j} } & =\frac{h^{2 q+1-i-j}}{(2 q+1-i-j)(q-i)!(q-j)!},
\end{aligned}
$$

for any $i, j=0, \ldots, q$. (one-dimensional case).

- Example: IWP(2)

$$
\begin{aligned}
& A(h)=\left(\begin{array}{lll}
1 & h & \frac{h^{2}}{2} \\
0 & 1 & h \\
0 & 0 & 1
\end{array}\right), \\
& Q(h)=\left(\begin{array}{ccc}
\frac{h^{5}}{20} & \frac{h^{4}}{8} & \frac{h^{3}}{6} \\
\frac{h^{4}}{8} & \frac{h^{3}}{3} & \frac{h^{2}}{2} \\
\frac{h^{3}}{6} & \frac{h^{2}}{2} & h
\end{array}\right) .
\end{aligned}
$$

Prior: The q-times integrated Wiener process

- q-times integrated Wiener process prior: $y(t) \sim \operatorname{IWP}(q)$, defined with $x(t):=\left[x^{(0)}(t), x^{(1)}(t), \ldots, x^{(q)}(t)\right]$ as

$$
\begin{aligned}
x(0) & \sim \mathcal{N}\left(\mu_{0}, \Sigma_{0}\right), \\
\mathrm{d} x^{(i)}(t) & =x^{(i+1)}(t) \mathrm{d} t, \quad i=0, \ldots, q-1, \\
\mathrm{~d} x^{(q)}(t) & =\sigma \mathrm{d} W(t) .
\end{aligned}
$$

Then $x^{(i)}=: E_{i} x$ models the i-th derivative of y.

- Discrete-time transitions:

$$
\begin{aligned}
x(t+h) \mid x(t) & \sim \mathcal{N}\left(x(t+h) ; A(h) x(t), \sigma^{2} Q(h)\right), \\
{[A(h)]_{j j} } & =\mathbb{I}_{i \leq j} \frac{h^{j-i}}{(j-i)!}, \\
{[Q(h)]_{j j} } & =\frac{h^{2 q+1-i-j}}{(2 q+1-i-j)(q-i)!(q-j)!},
\end{aligned}
$$

for any $i, j=0, \ldots, q$. (one-dimensional case).

- Example: IWP(2)

Prior: The q-times integrated Wiener process

> q-times integrated Wiener process prior: $y(t) \sim \operatorname{IWP}(q)$, defined with $x(t):=\left[x^{(0)}(t), x^{(1)}(t), \ldots, x^{(q)}(t)\right]$ as

$$
\begin{aligned}
x(0) & \sim \mathcal{N}\left(\mu_{0}, \Sigma_{0}\right), \\
\mathrm{d} x^{(i)}(t) & =x^{(i+1)}(t) \mathrm{d} t, \quad i=0, \ldots, q-1, \\
\mathrm{~d} x^{(q)}(t) & =\sigma \mathrm{d} W(t) .
\end{aligned}
$$

Then $x^{(i)}=: E_{i} \times$ models the i-th derivative of y.

- Discrete-time transitions:

$$
\begin{aligned}
x(t+h) \mid x(t) & \sim \mathcal{N}\left(x(t+h) ; A(h) x(t), \sigma^{2} Q(h)\right) \\
{[A(h)]_{i j} } & =\mathbb{I}_{i \leq j} \frac{h^{j-i}}{(j-i)!} \\
{[Q(h)]_{i j} } & =\frac{h^{2 q+1-i-j}}{(2 q+1-i-j)(q-i)!(q-j)!}
\end{aligned}
$$

- Example: IWP(2)

for any $i, j=0, \ldots, q$. (one-dimensional case).
- Ideal goal (intractable): Want $y(t)$ to satisfy the ODE

$$
\dot{y}(t)=f(y(t), t)
$$

- Ideal goal (intractable): Want $y(t)$ to satisfy the ODE

$$
\begin{array}{rlrl}
\dot{y}(t) & =f(y(t), t) \\
\stackrel{\operatorname{using} x(t)}{\Leftrightarrow} & E_{1} x(t) & =f\left(E_{0} x(t), t\right)
\end{array}
$$

- Ideal goal (intractable): Want $y(t)$ to satisfy the ODE

$$
\begin{aligned}
& \dot{y}(t)=f(y(t), t) \\
& \operatorname{using}^{\prime}(t) \\
& E_{1} x(t)=f\left(E_{0} x(t), t\right) \\
& 0=E_{1} x(t)-f\left(E_{0} x(t), t\right)
\end{aligned}
$$

- Ideal goal (intractable): Want $y(t)$ to satisfy the ODE

$$
\begin{aligned}
& \dot{y}(t)=f(y(t), t) \\
& E_{1} x(t)=f\left(E_{0} x(t), t\right) \\
& u s i n g \times(t) \\
&=E_{1} x(t)-f\left(E_{0} x(t), t\right)=: m(x(t), t) .
\end{aligned}
$$

- Ideal goal (intractable): Want $y(t)$ to satisfy the ODE

$$
\begin{aligned}
& \dot{y}(t)=f(y(t), t) \\
& \stackrel{u s i n g}{\Leftrightarrow} \times(t) \\
& E_{1} x(t)=f\left(E_{0} x(t), t\right) \\
& 0=E_{1} x(t)-f\left(E_{0} x(t), t\right)=: m(x(t), t) .
\end{aligned}
$$

- Easier goal: Satisfy the ODE on a discrete time grid

$$
\dot{y}\left(t_{i}\right)=f\left(y\left(t_{i}\right), t_{i}\right), \quad t_{i} \in \mathbb{T}=\left\{t_{i}\right\}_{i=1}^{N} \subset[0, T],
$$

- Ideal goal (intractable): Want $y(t)$ to satisfy the ODE

$$
\begin{aligned}
& \dot{y}(t)=f(y(t), t) \\
& E_{1} x(t)=f\left(E_{0} x(t), t\right) \\
& u s i n g \times(t) \\
&=E_{1} x(t)-f\left(E_{0} x(t), t\right)=: m(x(t), t) .
\end{aligned}
$$

- Easier goal: Satisfy the ODE on a discrete time grid

$$
\begin{aligned}
\dot{y}\left(t_{i}\right) & =f\left(y\left(t_{i}\right), t_{i}\right), \quad t_{i} \in \mathbb{T}=\left\{t_{i}\right\}_{i=1}^{N} \subset[0, T], \\
\Leftrightarrow \quad m\left(x\left(t_{i}\right), t_{i}\right) & =0
\end{aligned}
$$

- Ideal goal (intractable): Want $y(t)$ to satisfy the ODE

$$
\begin{aligned}
& \dot{y}(t)=f(y(t), t) \\
& \stackrel{u s i n g}{\Leftrightarrow} \times(t) \\
& E_{1} x(t)=f\left(E_{0} x(t), t\right) \\
& 0=E_{1} x(t)-f\left(E_{0} x(t), t\right)=: m(x(t), t) .
\end{aligned}
$$

- Easier goal: Satisfy the ODE on a discrete time grid

$$
\begin{aligned}
\dot{y}\left(t_{i}\right) & =f\left(y\left(t_{i}\right), t_{i}\right), \quad t_{i} \in \mathbb{T}=\left\{t_{i}\right\}_{i=1}^{N} \subset[0, T], \\
\Leftrightarrow \quad m\left(x\left(t_{i}\right), t_{i}\right) & =0
\end{aligned}
$$

- This motivates a measurement model and data:

$$
\begin{aligned}
& z\left(t_{i}\right) \mid x\left(t_{i}\right) \sim \mathcal{N}\left(m\left(x\left(t_{i}\right), t_{i}\right), R\right) \\
& z\left(t_{i}\right) \triangleq 0, \quad i=1, \ldots, N .
\end{aligned}
$$

- Ideal goal (intractable): Want $y(t)$ to satisfy the ODE

$$
\begin{aligned}
& \dot{y}(t)=f(y(t), t) \\
& \stackrel{u s i n g}{\Leftrightarrow} \times(t) \\
& E_{1} x(t)=f\left(E_{0} x(t), t\right) \\
& 0=E_{1} x(t)-f\left(E_{0} x(t), t\right)=: m(x(t), t) .
\end{aligned}
$$

- Easier goal: Satisfy the ODE on a discrete time grid

$$
\begin{aligned}
\dot{y}\left(t_{i}\right) & =f\left(y\left(t_{i}\right), t_{i}\right), \quad t_{i} \in \mathbb{T}=\left\{t_{i}\right\}_{i=1}^{N} \subset[0, T], \\
\Leftrightarrow \quad m\left(x\left(t_{i}\right), t_{i}\right) & =0
\end{aligned}
$$

- This motivates a noiseless measurement model and data:

$$
\begin{aligned}
& z\left(t_{i}\right) \mid x\left(t_{i}\right) \sim \mathcal{N}\left(m\left(x\left(t_{i}\right), t_{i}\right), 0\right) \\
& z\left(t_{i}\right) \triangleq 0, \quad i=1, \ldots, N .
\end{aligned}
$$

- Ideal goal (intractable): Want $y(t)$ to satisfy the ODE

$$
\begin{aligned}
& \dot{y}(t)=f(y(t), t) \\
& \stackrel{\operatorname{using}}{\Leftrightarrow} \stackrel{(t)}{ } \\
& E_{1} x(t)=f\left(E_{0} x(t), t\right) \\
& 0=E_{1} x(t)-f\left(E_{0} x(t), t\right)=: m(x(t), t) .
\end{aligned}
$$

- Easier goal: Satisfy the ODE on a discrete time grid

$$
\begin{aligned}
\dot{y}\left(t_{i}\right) & =f\left(y\left(t_{i}\right), t_{i}\right), \quad t_{i} \in \mathbb{T}=\left\{t_{i}\right\}_{i=1}^{N} \subset[0, T], \\
\Leftrightarrow \quad m\left(x\left(t_{i}\right), t_{i}\right) & =0
\end{aligned}
$$

- This motivates a noiseless measurement model and data:

$$
\begin{aligned}
& z\left(t_{i}\right) \mid x\left(t_{i}\right) \sim \delta\left(m\left(x\left(t_{i}\right), t_{i}\right)\right) \\
& z\left(t_{i}\right) \triangleq 0, \quad i=1, \ldots, N .
\end{aligned}
$$

(δ is the Dirac distribution)

- Ideal goal (intractable): Want $y(t)$ to satisfy the ODE

$$
\dot{y}(t)=f(y(t), t)
$$

$$
\begin{gathered}
E_{1} x(t)=f\left(E_{0} x(t), t\right) \\
\quad 0=E_{1} x(t)-f\left(E_{0} x(t), t\right)=: m(x(t), t) .
\end{gathered}
$$

Example: Logistic ODE $\dot{y}=y(1-y)$
Prior samples

- Easier goal: Satisfy the ODE on a discrete time grid

$$
\begin{aligned}
\dot{y}\left(t_{i}\right) & =f\left(y\left(t_{i}\right), t_{i}\right), \quad t_{i} \in \mathbb{T}=\left\{t_{i}\right\}_{i=1}^{N} \subset[0, T], \\
\Leftrightarrow \quad m\left(x\left(t_{i}\right), t_{i}\right) & =0
\end{aligned}
$$

- This motivates a noiseless measurement model and data:

$$
\begin{aligned}
& z\left(t_{i}\right) \mid x\left(t_{i}\right) \sim \delta\left(m\left(x\left(t_{i}\right), t_{i}\right)\right) \\
& z\left(t_{i}\right) \triangleq 0, \quad i=1, \ldots, N .
\end{aligned}
$$

(δ is the Dirac distribution)

(here: $\left.Z=X^{(1)}-X^{(0)}\left(1-X^{(0)}\right)\right)$

- Ideal goal (intractable): Want $y(t)$ to satisfy the ODE

$$
\dot{y}(t)=f(y(t), t)
$$

$$
\begin{gathered}
E_{1} x(t)=f\left(E_{0} x(t), t\right) \\
0=E_{1} x(t)-f\left(E_{0} x(t), t\right)=: m(x(t), t) .
\end{gathered}
$$

Example: Logistic ODE $\dot{y}=y(1-y)$
Prior samples \& ODE solution

- Easier goal: Satisfy the ODE on a discrete time grid

$$
\begin{aligned}
\dot{y}\left(t_{i}\right) & =f\left(y\left(t_{i}\right), t_{i}\right), \quad t_{i} \in \mathbb{T}=\left\{t_{i}\right\}_{i=1}^{N} \subset[0, T], \\
\Leftrightarrow \quad m\left(x\left(t_{i}\right), t_{i}\right) & =0
\end{aligned}
$$

- This motivates a noiseless measurement model and data:

$$
\begin{aligned}
& z\left(t_{i}\right) \mid x\left(t_{i}\right) \sim \delta\left(m\left(x\left(t_{i}\right), t_{i}\right)\right) \\
& z\left(t_{i}\right) \triangleq 0, \quad i=1, \ldots, N .
\end{aligned}
$$

(δ is the Dirac distribution)

(here: $\left.Z=X^{(1)}-X^{(0)}\left(1-X^{(0)}\right)\right)$

- Ideal goal (intractable): Want $y(t)$ to satisfy the ODE

$$
\dot{y}(t)=f(y(t), t)
$$

$$
\begin{gathered}
E_{1} x(t)=f\left(E_{0} x(t), t\right) \\
0=E_{1} x(t)-f\left(E_{0} x(t), t\right)=: m(x(t), t) .
\end{gathered}
$$

Prior samples \& ODE solution (zoomed)

- Easier goal: Satisfy the ODE on a discrete time grid

$$
\begin{aligned}
\dot{y}\left(t_{i}\right) & =f\left(y\left(t_{i}\right), t_{i}\right), \quad t_{i} \in \mathbb{T}=\left\{t_{i}\right\}_{i=1}^{N} \subset[0, T], \\
\Leftrightarrow \quad m\left(x\left(t_{i}\right), t_{i}\right) & =0
\end{aligned}
$$

- This motivates a noiseless measurement model and data:

$$
\begin{aligned}
& z\left(t_{i}\right) \mid x\left(t_{i}\right) \sim \delta\left(m\left(x\left(t_{i}\right), t_{i}\right)\right) \\
& z\left(t_{i}\right) \triangleq 0, \quad i=1, \ldots, N .
\end{aligned}
$$

(δ is the Dirac distribution)

$$
\text { (here: } \left.Z=X^{(1)}-X^{(0)}\left(1-X^{(0)}\right)\right)
$$

- Ideal goal (intractable): Want $y(t)$ to satisfy the ODE

$$
\dot{y}(t)=f(y(t), t)
$$

$$
\begin{aligned}
& \stackrel{u \operatorname{sing} x(t)}{\Leftrightarrow} \quad E_{1} x(t)=f\left(E_{0} x(t), t\right) \\
& 0=E_{1} x(t)-f\left(E_{0} x(t), t\right)=: m(x(t), t) .
\end{aligned}
$$

Prior samples \& ODE solution \& "Data"

- Easier goal: Satisfy the ODE on a discrete time grid

$$
\begin{aligned}
\dot{y}\left(t_{i}\right) & =f\left(y\left(t_{i}\right), t_{i}\right), \quad t_{i} \in \mathbb{T}=\left\{t_{i}\right\}_{i=1}^{N} \subset[0, T], \\
\Leftrightarrow \quad m\left(x\left(t_{i}\right), t_{i}\right) & =0
\end{aligned}
$$

- This motivates a noiseless measurement model and data:

$$
\begin{aligned}
& z\left(t_{i}\right) \mid x\left(t_{i}\right) \sim \delta\left(m\left(x\left(t_{i}\right), t_{i}\right)\right) \\
& z\left(t_{i}\right) \triangleq 0, \quad i=1, \ldots, N .
\end{aligned}
$$

(δ is the Dirac distribution)

- Ideal goal (intractable): Want $y(t)$ to satisfy the ODE

$$
\dot{y}(t)=f(y(t), t)
$$

$$
\begin{gathered}
\stackrel{E_{1} x(t)}{u \sin x(t)} \stackrel{=f\left(E_{0} x(t), t\right)}{\Leftrightarrow} \\
0=E_{1} x(t)-f\left(E_{0} x(t), t\right)=: m(x(t), t) .
\end{gathered}
$$

Posterior samples \& ODE solution

- Easier goal: Satisfy the ODE on a discrete time grid

$$
\begin{aligned}
\dot{y}\left(t_{i}\right) & =f\left(y\left(t_{i}\right), t_{i}\right), \quad t_{i} \in \mathbb{T}=\left\{t_{i}\right\}_{i=1}^{N} \subset[0, T], \\
\Leftrightarrow \quad m\left(x\left(t_{i}\right), t_{i}\right) & =0
\end{aligned}
$$

- This motivates a noiseless measurement model and data:

$$
\begin{aligned}
& z\left(t_{i}\right) \mid x\left(t_{i}\right) \sim \delta\left(m\left(x\left(t_{i}\right), t_{i}\right)\right) \\
& z\left(t_{i}\right) \triangleq 0, \quad i=1, \ldots, N .
\end{aligned}
$$

(δ is the Dirac distribution)

 (here: $\left.Z=X^{(1)}-X^{(0)}\left(1-X^{(0)}\right)\right)$

Given a non-linear Gaussian state-estimation problem:
Initial distribution: $\quad x_{0} \sim \mathcal{N}\left(x_{0} ; \mu_{0}, \Sigma_{0}\right)$,
Prior / dynamics: $\quad x_{i+1} \mid x_{i} \sim \mathcal{N}\left(x_{i+1} ; g\left(x_{i}\right), Q_{i}\right)$,
Likelihood / measurement:
Data: $\quad \mathcal{D}=\left\{z_{i}\right\}_{i=1}^{N}$.

Given a non-linear Gaussian state-estimation problem:
Initial distribution:
Prior / dynamics:
Likelihood / measurement:
Data:

$$
\begin{aligned}
x_{0} & \sim \mathcal{N}\left(x_{0} ; \mu_{0}, \Sigma_{0}\right), \\
x_{i+1} \mid x_{i} & \sim \mathcal{N}\left(x_{i+1} ; g\left(x_{i}\right), Q_{i}\right), \\
z_{i} \mid x_{i} & \sim \mathcal{N}\left(z_{i} ; m\left(x_{i}\right), R_{i}\right), \\
\mathcal{D} & =\left\{z_{i}\right\}_{i=1}^{N}
\end{aligned}
$$

The extended Kalman filter/smoother (EKF/EKS) recursively computes Gaussian approximations:

Predict:		$p\left(x_{i} \mid z_{1: i-1}\right)$	$\approx \mathcal{N}\left(x_{i} ; \mu_{i}^{P}, \Sigma_{i}^{P}\right)$,
Filter:	$p\left(x_{i} \mid z_{1: i}\right)$	$\approx \mathcal{N}\left(x_{i} ; \mu_{i}, \Sigma_{i}\right)$,	
Smooth:	$p\left(x_{i} \mid z_{1: N}\right)$	$\approx \mathcal{N}\left(x_{i} ; \mu_{i}^{S}, \Sigma_{i}^{S}\right)$,	
Likelihood:	$p\left(z_{i} \mid z_{1: i-1}\right)$	$\approx \mathcal{N}\left(z_{i} ; \hat{z}_{i}, S_{i}\right)$.	

Given a non-linear Gaussian state-estimation problem:
Initial distribution:
Prior / dynamics:
Likelihood / measurement:

> Data:

$$
\begin{aligned}
x_{0} & \sim \mathcal{N}\left(x_{0} ; \mu_{0}, \Sigma_{0}\right), \\
x_{i+1} \mid x_{i} & \sim \mathcal{N}\left(x_{i+1} ; g\left(x_{i}\right), Q_{i}\right), \\
z_{i} \mid x_{i} & \sim \mathcal{N}\left(z_{i} ; m\left(x_{i}\right), R_{i}\right), \\
\mathcal{D} & =\left\{z_{i}\right\}_{i=1}^{N}
\end{aligned}
$$

The extended Kalman filter/smoother (EKF/EKS) recursively computes Gaussian approximations:

Predict:
Filter:

$$
\begin{aligned}
\text { Predict: } & p\left(x_{i} \mid z_{1: i-1}\right) & \approx \mathcal{N}\left(x_{i} ; \mu_{i}^{P}, \Sigma_{i}^{p}\right), \\
\text { Filter: } & p\left(x_{i} \mid z_{1: i}\right) & \approx \mathcal{N}\left(x_{i} ; \mu_{i}, \Sigma_{i}\right) \\
\text { Smooth: } & p\left(x_{i} \mid z_{1: N}\right) & \approx \mathcal{N}\left(x_{i} ; \mu_{i}^{S}, \Sigma_{i}^{S}\right),
\end{aligned}
$$

$$
\text { Likelihood: } \quad p\left(z_{i} \mid z_{1: i-1}\right) \approx \mathcal{N}\left(z_{i} ; \hat{z}_{i}, S_{i}\right)
$$

EKF PREDICT

$$
\begin{aligned}
& \mu_{i+1}^{P}=g\left(\mu_{i}\right), \\
& \sum_{i+1}^{P}=J_{g}\left(\mu_{i}\right) \sum_{i} J_{g}\left(\mu_{i}\right)^{\top}+Q_{i} .
\end{aligned}
$$

EKF UPDATE

$\hat{z}_{i}=m\left(\mu_{i}^{P}\right)$,
$S_{i}=J_{m}\left(\mu_{i}^{P}\right) \Sigma_{i}^{P} J_{m}\left(\mu_{i}^{P}\right)^{\top}+R_{i}$,
$K_{i}=\Sigma_{i}^{P} J_{m}\left(\mu_{i}^{P}\right)^{\top} S_{i}^{-1}$,
$\mu_{i}=\mu_{i}^{P}+K_{i}\left(y_{i}-\hat{y}_{i}\right)$,
$\Sigma_{i}=\Sigma_{i}^{P}-K_{i} S_{i} K_{i}^{\top}$.
Similarly SMOOTH.

Probabilistic numerical ODE solvers in code

```
Algorithm The extended Kalman ODE filter
    procedure Extended Kalman ODE FILTER \(\left(\left(\mu_{0}^{-}, \Sigma_{0}^{-}\right),(A, Q),\left(f, y_{0}\right),\left\{t_{i}\right\}_{i=1}^{N}\right)\)
    \({ }_{2} \mu_{0}, \Sigma_{0} \leftarrow \operatorname{KF} \_\operatorname{UPDATE}\left(\mu_{0}^{-}, \Sigma_{0}^{-}, E_{0}, 0_{d \times d}, y_{0}\right) \quad / /\) initial update to fit the initial value
    3 for \(k \in\{1, \ldots, N\}\) do
            \(h_{k} \leftarrow t_{k}-t_{k-1}\)
            \(\mu_{k}^{-}, \Sigma_{k}^{-} \leftarrow \operatorname{KF} \_\operatorname{PREDICT}\left(\mu_{k-1}, \Sigma_{k-1}, A\left(h_{k}\right), Q\left(h_{k}\right)\right)\)
            \(m_{k}(x):=E_{1} x-f\left(E_{0} x, t_{k}\right)\)
            \(\mu_{k}, \Sigma_{k} \leftarrow \operatorname{EKF} \_\operatorname{UPDATE}\left(\mu_{k}^{-}, \Sigma_{k}^{-}, m_{k}, 0_{d \times d}, \overrightarrow{0}_{d}\right)\)
            end for
            return \(\left(\mu_{k}, \Sigma_{k}\right)_{k=1}^{N}\)
    end procedure
```

Extended Kalman ODE smoother: Just run a RTS smoother after the filter!

- Properties and features:
- Polynomial convergence rates [Kersting etal. 2020, Tronarp etal. 2021]
- Properties and features:
- Polynomial convergence rates [kersing etal. 2020, Tronarp etal. 2021]
- A-stability [Tronarp etal, 2019]
- Properties and features:
- Polynomial convergence rates [Kersing etal. 2020, Tronarp etal, 2021]
- A-stability [Tronarp etal, 2019]
- L-stable probabilistic exponential integrators [Boschetal., 2023b]
- Properties and features:
- Polynomial convergence rates [kersing etal., 2020, Tronarp etal, 202]]
- A-stability [Tronarp etal, 2019]
- L-stable probabilistic exponential integrators [Bosch etal. 2023b)
- Connection to multi-step methods in Nordsieck form [Schober etal, 2019]
- Properties and features:
- Polynomial convergence rates [kersing etal. 2020, Tronarp etal. 2021]
- A-stability [Tronarp etal, 2019]
- L-stable probabilistic exponential integrators [Bosch etal., 2023b]
- Connection to multi-step methods in Nordsieck form [schoberetal. 2019]
- Complexity: $\mathcal{O}\left(d^{3}\right)$ for the A-stable semi-implicit method, $\mathcal{O}(d)$ for an explicit version with coarser covariances [Krämeretal. 2022]
- Properties and features:
- Polynomial convergence rates [kersing etal, 2020, Tronarp etal, 2021]
- A-stability [Tronarp etal, 2019]
- L-stable probabilistic exponential integrators [Bosch etal., 2023b]
- Connection to multi-step methods in Nordsieck form [schoberetal. 2019]
- Complexity: $\mathcal{O}\left(d^{3}\right)$ for the A-stable semi-implicit method,
$\mathcal{O}(d)$ for an explicit version with coarser covariances |kamer etal., 2022]
- Step-size adaptation and calibration [Bosch etal. 2021]
- Properties and features:
- Polynomial convergence rates [Kersing etal. 2020, Tronarp etal, 2021]
- A-stability [Tronarp etal, 2019]
- L-stable probabilistic exponential integrators [Bosch etal. 2023b]
- Connection to multi-step methods in Nordsieck form [schoberetal. 2019]
- Complexity: $\mathcal{O}\left(d^{3}\right)$ for the A-stable semi-implicit method,
$\mathcal{O}(d)$ for an explicit version with coarser covariances [kamer etal., 2022]
- Step-size adaptation and calibration [Bosch etal, 2027]
- Parallel-in-time formulation with $\mathcal{O}(\log (N))$ complexity [Bosch etal., 2023a]
- Properties and features:
- Polynomial convergence rates [Kersing etal. 2020, Tronarp etal. 2021]
- A-stability [Tronarp et al, 2019]
- L-stable probabilistic exponential integrators [Bosch etal. 2023b]
- Connection to multi-step methods in Nordsieck form [schoberetal. 2019]
- Complexity: $\mathcal{O}\left(d^{3}\right)$ for the A-stable semi-implicit method,
$\mathcal{O}(d)$ for an explicit version with coarser covariances |kamer etal. 2022]
- Step-size adaptation and calibration (Bosch etal, 2027]
- Parallel-in-time formulation with $\mathcal{O}(\log (N))$ complexity [Bosch etal, 2023i]
- More related differential equation problems:
- Higher-order ODEs, DAEs, Hamiltonian systems [Bosch etal. 2022]
- Boundary value problems (BVPs) [kämer and Hennig, 2021]
- Partial differential equations (PDEs) via method of lines [krämeretal., 2022]
- Properties and features:
- Polynomial convergence rates [Kersing etal. 2020, Tronarp etal. 2021]
- A-stability [Tronarpetal, 2019]
- L-stable probabilistic exponential integrators [Bosch etal. 2023b]
- Connection to multi-step methods in Nordsieck form [schoberetal. 2019]
- Complexity: $\mathcal{O}\left(d^{3}\right)$ for the A-stable semi-implicit method, $\mathcal{O}(d)$ for an explicit version with coarser covariances |kameretal., 2022]
- Step-size adaptation and calibration [Boschetal. 2027]
- Parallel-in-time formulation with $\mathcal{O}(\log (N))$ complexity [Boschetal, 2023a]
- More related differential equation problems:
- Higher-order ODEs, DAEs, Hamiltonian systems [Bosch etal. 2022]
- Boundary value problems (BVPS) [Kämer and Hennig, 2021]
- Partial differential equations (PDES) via method of lines [krämer etal., 2022]
- Inverse problems
- Probabilistic numerics-based parameter inference in ODES [Tronarp et al. 2022]
- Efficient inference of time-varying latent forces [schmidt tat. 2021]

The state of filtering-based probabilistic numerical ODE solvers

- Properties and features:
- Polynomial convergence rates [Kersing etal. 2020, Tronarp etal. 2021]
- A-stability [Tronarpetal, 2019]
- L-stable probabilistic exponential integrators [Bosch etal. 2023b]
- Connection to multi-step methods in Nordsieck form [schoberetal. 2019]
- Complexity: $\mathcal{O}\left(d^{3}\right)$ for the A-stable semi-implicit method,
$\mathcal{O}(d)$ for an explicit version with coarser covariances |kamer etal. 2022]
- Step-size adaptation and calibration [Boschetal. 2027]
- Parallel-in-time formulation with $\mathcal{O}(\log (N))$ complexity [Bosch etal. 2023a]
- More related differential equation problems:
- Higher-order ODEs, DAEs, Hamiltonian systems [Bosch etal. 2022]
- Boundary value problems (BVPs) [krämer and tennig, 2021]
- Partial differential equations (PDEs) via method of lines [keàmer et al, 2022]
- Inverse problems
- Probabilistic numerics-based parameter inference in ODEs [Tronarpetal, 2022]
- Efficient inference of time-varying latent forces [schmidtetal. 2021]

Probabilistic Numerics: Computation as Machine Learning
Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022

- Properties and features:
- Polynomial convergence rates [Kersing et al. 2020, Tronarp et al. 2021]
- A-stability [Tronarpe tal, 2019]
- L-stable probabilistic exponential integrators (Bosch etal., 2023b]
- Connection to multi-step methods in Nordsieck form [schoberetal. 2019]
- Complexity: $\mathcal{O}\left(d^{3}\right)$ for the A-stable semi-implicit method,
$\mathcal{O}(d)$ for an explicit version with coarser covariances |kamer etal. 2022]
- Step-size adaptation and calibration [Boschetal. 2027]
- Parallel-in-time formulation with $\mathcal{O}(\log (N))$ complexity [Bosch etal, 2023a]
- More related differential equation problems:
- Higher-order ODEs, DAEs, Hamiltonian systems [Bosch etal., 2022]
- Boundary value problems (BVPs) [Kämer and Hennig, 2021]
- Partial differential equations (PDES) via method of lines [krameretal., 2022]
- Inverse problems
- Probabilistic numerics-based parameter inference in ODES [Tronarp et al. 2022]
- Efficient inference of time-varying latent forces [schmidtetal., 2021]

Probabilistic Numerics: Computation as Machine Learning
Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022

Flexible Information Operators

or: "How to solve other problems than ODEs with essentially the same algorithm as before"

Flexible Information Operators

or: "How to solve other problems than ODEs with essentially the same algorithm as before" (it's all just likelihood models)

Numerical problems setting: Initial value problem with first-order ODE

$$
\dot{y}(t)=f(y(t), t), \quad y(0)=y_{0} .
$$

This leads to the probabilistic state estimation problem:

Initial distribution:
Prior / dynamics model:
ODE likelihood:
Initial value likelihood:

$$
\begin{aligned}
x(0) & \sim \mathcal{N}\left(x(0) ; \mu_{0}^{-}, \Sigma_{0}^{-}\right) & & \\
x(t+h) \mid x(t) & \sim \mathcal{N}(x(t+h) ; A(h) x(t), Q(h)) & & \\
z\left(t_{i}\right) \mid x\left(t_{i}\right) & \sim \delta\left(z\left(t_{i}\right) ; E_{1} x\left(t_{i}\right)-f\left(E_{0} x\left(t_{i}\right), t_{i}\right)\right), & & z_{i} \triangleq 0 \\
z^{\text {init }} \mid x(0) & \sim \delta\left(z^{\text {init. }} ; E_{0} x(0)\right), & & z^{\text {init }} \triangleq y_{0}
\end{aligned}
$$

Numerical problems setting: Initial value problem with second-order ODE

$$
\ddot{y}(t)=f(\dot{y}(t), y(t), t), \quad y(0)=y_{0}, \quad \dot{y}(0)=\dot{y}_{0} .
$$

This leads to the probabilistic state estimation problem:

Initial distribution:
Prior / dynamics model:
ODE likelihood:
Initial value likelihood:

$$
\begin{aligned}
x(0) & \sim \mathcal{N}\left(x(0) ; \mu_{0}^{-}, \Sigma_{0}^{-}\right) & & \\
x(t+h) \mid x(t) & \sim \mathcal{N}(x(t+h) ; A(h) x(t), Q(h)) & & \\
z\left(t_{i}\right) \mid x\left(t_{i}\right) & \sim \delta\left(z\left(t_{i}\right) ; E_{1} x\left(t_{i}\right)-f\left(E_{0} x\left(t_{i}\right), t_{i}\right)\right), & & z_{i} \triangleq 0 \\
z^{\text {init }} \mid x(0) & \sim \delta\left(z^{\text {init. }} ; E_{0} x(0)\right), & & z^{\text {init }} \triangleq y_{0}
\end{aligned}
$$

Extending ODE filters to other related differential equation problems

Numerical problems setting: Initial value problem with second-order ODE

$$
\ddot{y}(t)=f(\dot{y}(t), y(t), t), \quad y(0)=y_{0}, \quad \dot{y}(0)=\dot{y}_{0} .
$$

This leads to the probabilistic state estimation problem:

Initial distribution:
Prior / dynamics model:
ODE likelihood:
Initial value likelihood:
Initial derivative likelihood:

$$
\begin{aligned}
x(0) & \sim \mathcal{N}\left(x(0) ; \mu_{0}^{-}, \Sigma_{0}^{-}\right) & & \\
x(t+h) \mid x(t) & \sim \mathcal{N}(x(t+h) ; A(h) x(t), Q(h)) & & \\
z\left(t_{i}\right) \mid x\left(t_{i}\right) & \sim \delta\left(z\left(t_{i}\right) ; E_{2} x\left(t_{i}\right)-f\left(E_{1} x\left(t_{i}\right), E_{0} x\left(t_{i}\right), t_{i}\right)\right), & & z_{i} \triangleq 0 \\
z^{\text {init }} \mid x(0) & \sim \delta\left(z^{\text {init }} ; E_{0} x(0)\right), & & z^{\text {init }} \triangleq y_{0} \\
z_{1}^{\text {init }} \mid x(0) & \sim \delta\left(z_{1}^{\text {init }} ; E_{1} x(0)\right), & & z_{1}^{\text {init }} \triangleq \dot{y}_{0}
\end{aligned}
$$

Numerical problems setting: Initial value problem with first-order ODE and conserved quantities

$$
\dot{y}(t)=f(y(t), t), \quad y(0)=y_{0} . \quad g(y(t), \dot{y}(t))=0 .
$$

This leads to the probabilistic state estimation problem:

Initial distribution:
Prior / dynamics model:
ODE likelihood:
Initial value likelihood:

$$
\begin{aligned}
x(0) & \sim \mathcal{N}\left(x(0) ; \mu_{0}^{-}, \Sigma_{0}^{-}\right) & & \\
x(t+h) \mid x(t) & \sim \mathcal{N}(x(t+h) ; A(h) x(t), Q(h)) & & \\
z\left(t_{i}\right) \mid x\left(t_{i}\right) & \sim \delta\left(z\left(t_{i}\right) ; E_{1} x\left(t_{i}\right)-f\left(E_{0} x\left(t_{i}\right), t_{i}\right)\right), & & z_{i} \triangleq 0 \\
z^{\text {init }} \mid x(0) & \sim \delta\left(z^{\text {init }} ; E_{0} x(0)\right), & & z^{\text {init }} \triangleq y_{0}
\end{aligned}
$$

Numerical problems setting: Initial value problem with first-order ODE and conserved quantities

$$
\dot{y}(t)=f(y(t), t), \quad y(0)=y_{0} . \quad g(y(t), \dot{y}(t))=0 .
$$

This leads to the probabilistic state estimation problem:

Initial distribution:
Prior / dynamics model: ODE likelihood:

Conservation law likelihood:
Initial value likelihood:

$$
\begin{aligned}
x(0) & \sim \mathcal{N}\left(x(0) ; \mu_{0}^{-}, \Sigma_{0}^{-}\right) & & \\
x(t+h) \mid x(t) & \sim \mathcal{N}(x(t+h) ; A(h) x(t), Q(h)) & & \\
z\left(t_{i}\right) \mid x\left(t_{i}\right) & \sim \delta\left(z\left(t_{i}\right) ; E_{1} x\left(t_{i}\right)-f\left(E_{0} x\left(t_{i}\right), t_{i}\right)\right), & & z_{i} \triangleq 0 \\
z_{i}^{C}\left(t_{i}\right) \mid z\left(t_{i}\right) & \sim \delta\left(z_{i}^{C}\left(t_{i}\right) ; g\left(E_{0} x(t), E_{1} x(t)\right)\right), & & z_{i}^{C} \triangleq 0 \\
z^{\text {init }} \mid x(0) & \sim \delta\left(z^{\text {init. }} ; E_{0} x(0)\right), & & z^{\text {init }} \triangleq y_{0}
\end{aligned}
$$

Extending ODE filters to other related differential equation problems

Numerical problems setting: Initial value problem with second-order ODE and conserved quantities

$$
\ddot{y}(t)=f(\dot{y}(t), y(t), t), \quad y(0)=y_{0}, \quad \dot{y}(0)=\dot{y}_{0} . \quad g(y(t), \dot{y}(t))=0 .
$$

This leads to the probabilistic state estimation problem:

Initial distribution:

$$
\begin{aligned}
x(0) & \sim \mathcal{N}\left(x(0) ; \mu_{0}^{-}, \Sigma_{0}^{-}\right) & & \\
x(t+h) \mid x(t) & \sim \mathcal{N}(x(t+h) ; A(h) x(t), Q(h)) & & \\
z\left(t_{i}\right) \mid x\left(t_{i}\right) & \sim \delta\left(z\left(t_{i}\right) ; E_{2} x\left(t_{i}\right)-f\left(E_{1} x\left(t_{i}\right), E_{0} x\left(t_{i}\right), t_{i}\right)\right), & & z_{i} \triangleq 0 \\
z_{i}^{C}\left(t_{i}\right) \mid z\left(t_{i}\right) & \sim \delta\left(z_{i}^{c}\left(t_{i}\right) ; g\left(E_{0} x(t), E_{1} x(t)\right)\right), & & z_{i}^{c} \triangleq 0 \\
z^{\text {init }} \mid x(0) & \sim \delta\left(z^{\text {init }} ; E_{0} x(0)\right), & & z^{\text {init }} \triangleq y_{0} \\
z_{1}^{\text {init }} \mid x(0) & \sim \delta\left(z_{1}^{\text {init }} ; E_{1} x(0)\right), & & z_{1}^{\text {init }} \triangleq \dot{y}_{0}
\end{aligned}
$$

Prior / dynamics model:
ODE likelihood:
Conservation law likelihood:
Initial value likelihood:
Initial derivative likelihood:
Г.

Extending ODE filters to other related differential equation problems
[Bosch et al., 2022, Krämer and Hennig, 2021]

Extending ODE filters to other related differential equation problems

Numerical problems setting: Initial value problem with second-order ODE and conserved quantities

Extendinc ODF filters to other related differential enuation nroblems UNvivimi

Numerical problems setting: Initial value problem with differential-algebraic equation (DAE)

$$
0=F(\dot{y}(t), y(t), t), \quad y(0)=y_{0} .
$$

This leads to the probabilistic state estimation problem:

Initial distribution:
Prior / dynamics model:
ODE likelihood:
Initial value likelihood:

$$
\begin{aligned}
x(0) & \sim \mathcal{N}\left(x(0) ; \mu_{0}^{-}, \Sigma_{0}^{-}\right) & & \\
x(t+h) \mid x(t) & \sim \mathcal{N}(x(t+h) ; A(h) x(t), Q(h)) & & \\
z\left(t_{i}\right) \mid x\left(t_{i}\right) & \sim \delta\left(z\left(t_{i}\right) ; E_{1} x\left(t_{i}\right)-f\left(E_{0} x\left(t_{i}\right), t_{i}\right)\right), & & z_{i} \triangleq 0 \\
z^{\text {init }} \mid x(0) & \sim \delta\left(z^{\text {init. }} ; E_{0} x(0)\right), & & z^{\text {init }} \triangleq y_{0}
\end{aligned}
$$

Extendinc ODF filters to other related differential enuation nroblems uजviewin

Numerical problems setting: Initial value problem with differential-algebraic equation (DAE)

$$
0=F(\dot{y}(t), y(t), t), \quad y(0)=y_{0} .
$$

This leads to the probabilistic state estimation problem:

Initial distribution:
Prior / dynamics model:
DAE likelihood:
Initial value likelihood:

$$
\begin{aligned}
x(0) & \sim \mathcal{N}\left(x(0) ; \mu_{0}^{-}, \Sigma_{0}^{-}\right) & & \\
x(t+h) \mid x(t) & \sim \mathcal{N}(x(t+h) ; A(h) x(t), Q(h)) & & \\
z\left(t_{i}\right) \mid x\left(t_{i}\right) & \sim \delta\left(z\left(t_{i}\right) ; F\left(E_{1} x\left(t_{i}\right), E_{0} x\left(t_{i}\right), t_{i}\right)\right), & & z_{i} \triangleq 0 \\
z^{\text {init }} \mid x(0) & \sim \delta\left(z^{\text {init }} ; E_{0} x(0)\right), & & z^{\text {init }} \triangleq y_{0}
\end{aligned}
$$

Extending ODE filters to other related differential equation problems

Numerical problems setting: Boundary value problem (BVP) with first-order ODE

$$
\dot{y}(t)=f(y(t), t), \quad L y(0)=y_{0}, \quad R y(T)=y_{T} .
$$

This leads to the probabilistic state estimation problem:

Initial distribution:
Prior / dynamics model:
ODE likelihood:
Initial value likelihood:

$$
\begin{aligned}
x(0) & \sim \mathcal{N}\left(x(0) ; \mu_{0}^{-}, \Sigma_{0}^{-}\right) & & \\
x(t+h) \mid x(t) & \sim \mathcal{N}(x(t+h) ; A(h) x(t), Q(h)) & & \\
z\left(t_{i}\right) \mid x\left(t_{i}\right) & \sim \delta\left(z\left(t_{i}\right) ; E_{1} x\left(t_{i}\right)-f\left(E_{0} x\left(t_{i}\right), t_{i}\right)\right), & & z_{i} \triangleq 0 \\
z^{\text {init }} \mid x(0) & \sim \delta\left(z^{\text {init. }} ; E_{0} x(0)\right), & & z^{\text {init }} \triangleq y_{0}
\end{aligned}
$$

Extending ODE filters to other related differential equation problems

Numerical problems setting: Boundary value problem (BVP) with first-order ODE

$$
\dot{y}(t)=f(y(t), t), \quad L y(0)=y_{0}, \quad R y(T)=y_{T} .
$$

This leads to the probabilistic state estimation problem:

$$
\begin{array}{rlrlrl}
\text { Initial distribution: } & x(0) & \sim \mathcal{N}\left(x(0) ; \mu_{0}^{-}, \Sigma_{0}^{-}\right) & \\
\text {Prior / dynamics model: } & & x(t+h) \mid x(t) & \sim \mathcal{N}(x(t+h) ; A(h) x(t), Q(h)) & & \\
\text { ODE likelihood: } & z\left(t_{i}\right) \mid x\left(t_{i}\right) & \sim \delta\left(z\left(t_{i}\right) ; E_{1} x\left(t_{i}\right)-f\left(E_{0} x\left(t_{i}\right), t_{i}\right)\right), & & z_{i} \triangleq 0 \\
\text { Initial value likelihood: } & z^{\text {init }} \mid x(0) & \sim \delta\left(z^{\text {init }} ; L E_{0} x(0)\right), & & z^{\text {nit }} \triangleq y_{0} \\
\text { Boundary value likelihood: } & & z_{1}^{\mathbb{R}} \mid x(T) & \sim \delta\left(z_{1}^{\mathbb{R}} ; R E_{0} x(T)\right), & & z_{1}^{\text {init }} \triangleq y_{T}
\end{array}
$$

Extending ODE filters to other related differential equation problems UNUNWN

Numerical problems setting: Boundary value problem (BVP) with first-order ODE

$$
\dot{y}(t)=f(y(t), t), \quad L y(0)=y_{0}, \quad R y(T)=y_{T} .
$$

This leads to the probabilistic state estimation problem:

Initial distribution:		$x(0)$	$\sim \mathcal{N}\left(x(0) ; \mu_{0}^{-}, \Sigma_{0}^{-}\right)$
Prior / dynamics model:	$x(t+h) \mid x(t)$	$\sim \mathcal{N}(x(t+h) ; A(h) x(t), Q(h))$	
ODE likelihood:		$z\left(t_{i}\right) \mid x\left(t_{i}\right)$	$\sim \delta\left(z\left(t_{i}\right) ; E_{1} x\left(t_{i}\right)-f\left(E_{0} x\left(t_{i}\right), t_{i}\right)\right)$,
		$z_{i} \triangleq 0$	
Initial value likelihood:	$z^{\text {nitit }} \mid x(0)$	$\sim \delta\left(z^{\left.\text {nitit; } ; L E_{0} x(0)\right),}\right.$	
Boundary value likelihood:		$z_{1}^{\mathrm{R}} \mid x(T)$	$\sim \delta\left(z_{1}^{\mathrm{R}} ; \operatorname{RE} E_{0} x(T)\right)$,

The measurement model provides a very flexible way to easily encode desired properties. But it's all just Bayesian state estimation! \Rightarrow Inference with Bayesian filtering and smoothing.

Probabilistic Numerics for ODE Parameter Inference

Using the ODE solution as a "physics-enhanced" prior for regression

Forward Problem

$$
\dot{y}_{\theta}=f_{\theta}\left(y_{\theta}, t\right) \quad y_{\theta}\left(t_{0}\right)=y_{0}(\theta)
$$

Forward Problem

$$
\dot{y}_{\theta}=f_{\theta}\left(y_{\theta}, t\right) \quad y_{\theta}\left(t_{0}\right)=y_{0}(\theta) .
$$

Inverse Problem

$$
p(\theta \mid \mathcal{D}) \propto p(\mathcal{D} \mid \theta) p(\theta)
$$

Forward Problem

$$
\dot{y}_{\theta}=f_{\theta}\left(y_{\theta}, t\right) \quad y_{\theta}\left(t_{0}\right)=y_{0}(\theta) .
$$

Inverse Problem

$$
p(\theta \mid \mathcal{D}) \propto p(\mathcal{D} \mid \theta) p(\theta)
$$

Problem: The marginal likelihood

$$
p(\mathcal{D} \mid \theta)=\prod_{i=1}^{N} \mathcal{N}\left(u\left(t_{i}\right) ; y_{\theta}\left(t_{i}\right), R_{\theta}\right)
$$

is intractable (because y_{θ} is intractable)

- Classical Numerical Integration
- (i) Solve the IVP to compute $\hat{y}_{\theta}(t)$
- (ii) Approximate the marginal likelihood as $\widehat{\mathcal{M}}(\theta)=\prod_{n} \mathcal{N}\left(u\left(t_{n}\right) ; \hat{y}_{\theta}\left(t_{n}\right), R_{\theta}\right)$
- (iii) Optimize to get $\hat{\theta}=\arg \max \widehat{\mathcal{M}}(\theta)$
> Classical Numerical Integration
- (i) Solve the IVP to compute $\hat{y}_{\theta}(t)$
- (ii) Approximate the marginal likelihood as $\widehat{\mathcal{M}}(\theta)=\prod_{n} \mathcal{N}\left(u\left(t_{n}\right) ; \hat{y}_{\theta}\left(t_{n}\right), R_{\theta}\right)$
> (iii) Optimize to get $\hat{\theta}=\arg \max \widehat{\mathcal{M}}(\theta)$
- Gradient Matching
- (i) Fit a curve $\hat{y}(t)$ to the data $\left\{u\left(t_{i}\right)\right\}_{i=1} N$
- (ii) Estimate θ by minimizing $\dot{\hat{y}}(t)-f_{\theta}(\hat{y}(t))$

Exists in both classic (splines) or probabilistic versions (GPs)

- Classical Numerical Integration
- (i) Solve the IVP to compute $\hat{y}_{\theta}(t)$
((ii) Approximate the marginal likelihood as $\widehat{\mathcal{M}}(\theta)=\prod_{n} \mathcal{N}\left(u\left(t_{n}\right) ; \hat{y}_{\theta}\left(t_{n}\right), R_{\theta}\right)$
- (iii) Optimize to get $\hat{\theta}=\arg \max \widehat{\mathcal{M}}(\theta)$
- Gradient Matching
- (i) Fit a curve $\hat{y}(t)$ to the data $\left\{u\left(t_{i}\right)\right\}_{i=1} N$
- (ii) Estimate θ by minimizing $\hat{\hat{y}}(t)-f_{\theta}(\hat{y}(t))$

Exists in both classic (splines) or probabilistic versions (GPs)

- Probabilistic Numerical Integration
- Classical Numerical Integration
- (i) Solve the IVP to compute $\hat{y}_{\theta}(t)$
- (ii) Approximate the marginal likelihood as $\hat{\mathcal{M}}(\theta)=\prod_{n} \mathcal{N}\left(u\left(t_{n}\right) ; \hat{y}_{\theta}\left(t_{n}\right), R_{\theta}\right)$
$>$ (iii) Optimize to get $\hat{\theta}=\arg \max \widehat{\mathcal{M}}(\theta)$
- Gradient Matching
- (i) Fit a curve $\hat{y}(t)$ to the data $\left\{u\left(t_{i}\right)\right\}_{i=1} N$
- (ii) Estimate θ by minimizing $\hat{\hat{y}}(t)-f_{\theta}(\hat{y}(t))$

Exists in both classic (splines) or probabilistic versions (GPs)

- Probabilistic Numerical Integration

$$
\begin{equation*}
\widehat{\mathcal{M}}_{P N}(\theta, \kappa)=\int \underbrace{\prod_{n} \mathcal{N}\left(u\left(t_{n}\right) ; y\left(t_{n}\right), R_{\theta}\right)}_{\text {Likelihood }} \cdot \underbrace{p_{P N}\left(y\left(t_{1: N}\right) \mid \theta, \kappa\right)}_{\text {PN ODE Solution }} d y\left(t_{1: N}\right) \tag{1}
\end{equation*}
$$

- Classical Numerical Integration
- (i) Solve the IVP to compute $\hat{y}_{\theta}(t)$
- (ii) Approximate the marginal likelihood as $\overline{\mathcal{M}}(\theta)=\prod_{n} \mathcal{N}\left(u\left(t_{n}\right) ; \hat{y}_{\theta}\left(t_{n}\right), R_{\theta}\right)$
$>$ (iii) Optimize to get $\hat{\theta}=\arg \max \widehat{\mathcal{M}}(\theta)$
- Gradient Matching
- (i) Fit a curve $\hat{y}(t)$ to the data $\left\{u\left(t_{i}\right)\right\}_{i=1} N$
- (ii) Estimate θ by minimizing $\hat{\hat{y}}(t)-f_{\theta}(\hat{y}(t))$

Exists in both classic (splines) or probabilistic versions (GPs)

- Probabilistic Numerical Integration

$$
\begin{equation*}
\widehat{\mathcal{M}}_{P N}(\theta, \kappa)=\int \underbrace{\prod_{n} \mathcal{N}\left(u\left(t_{n}\right) ; y\left(t_{n}\right), R_{\theta}\right)}_{\text {Likelihood }} \cdot \underbrace{p_{P N}\left(y\left(t_{1: N}\right) \mid \theta, \kappa\right)}_{\text {PN ODE Solution }} d y\left(t_{1: N}\right) \tag{1}
\end{equation*}
$$

- (i) Probabilistically solve IVP to compute $P_{\text {PN }}(y(t) \mid \theta, \kappa)$
- Classical Numerical Integration
- (i) Solve the IVP to compute $\hat{y}_{\theta}(t)$
- (ii) Approximate the marginal likelihood as $\hat{\mathcal{M}}(\theta)=\prod_{n} \mathcal{N}\left(u\left(t_{n}\right) ; \hat{y}_{\theta}\left(t_{n}\right), R_{\theta}\right)$
$>$ (iii) Optimize to get $\hat{\theta}=\arg \max \widehat{\mathcal{M}}(\theta)$
- Gradient Matching
- (i) Fit a curve $\hat{y}(t)$ to the data $\left\{u\left(t_{i}\right)\right\}_{i=1} N$
- (ii) Estimate θ by minimizing $\hat{\hat{y}}(t)-f_{\theta}(\hat{y}(t))$

Exists in both classic (splines) or probabilistic versions (GPs)

- Probabilistic Numerical Integration

$$
\begin{equation*}
\widehat{\mathcal{M}}_{P N}(\theta, \kappa)=\int \underbrace{\prod_{n} \mathcal{N}\left(u\left(t_{n}\right) ; y\left(t_{n}\right), R_{\theta}\right)}_{\text {Likelihood }} \cdot \underbrace{p_{P N}\left(y\left(t_{1: N}\right) \mid \theta, \kappa\right)}_{\text {PN ODE Solution }} d y\left(t_{1: N}\right) \tag{1}
\end{equation*}
$$

- (i) Probabilistically solve IVP to compute $p_{\mathrm{PN}}(y(t) \mid \theta, \kappa)$
- (ii) Perform Kalman filtering on the data, with $p_{\text {PN }}$ as a "physics-enhanced" prior

Between classic integration and gradient matching

> Classical Numerical Integration

- (i) Solve the IVP to compute $\hat{y}_{\theta}(t)$
- (ii) Approximate the marginal likelihood as $\hat{\mathcal{M}}(\theta)=\prod_{n} \mathcal{N}\left(u\left(t_{n}\right) ; \hat{y}_{\theta}\left(t_{n}\right), R_{\theta}\right)$
$>$ (iii) Optimize to get $\hat{\theta}=\arg \max \widehat{\mathcal{M}}(\theta)$
- Gradient Matching
- (i) Fit a curve $\hat{y}(t)$ to the data $\left\{u\left(t_{i}\right)\right\}_{i=1} N$
- (ii) Estimate θ by minimizing $\hat{\hat{y}}(t)-f_{\theta}(\hat{y}(t))$

Exists in both classic (splines) or probabilistic versions (GPs)

- Probabilistic Numerical Integration

$$
\begin{equation*}
\widehat{\mathcal{M}}_{P N}(\theta, \kappa)=\int \underbrace{\prod_{n} \mathcal{N}\left(u\left(t_{n}\right) ; y\left(t_{n}\right), R_{\theta}\right)}_{\text {Likelihood }} \cdot \underbrace{p_{P N}\left(y\left(t_{1: N}\right) \mid \theta, \kappa\right)}_{\text {PN ODE Solution }} d y\left(t_{1: N}\right) \tag{1}
\end{equation*}
$$

- (i) Probabilistically solve IVP to compute $p_{\text {PN }}(y(t) \mid \theta, \kappa)$
- (ii) Perform Kalman filtering on the data, with $p_{\text {PN }}$ as a "physics-enhanced" prior
- (iii) Optimize the approximate marginal likelihood

Example: Probabilistic Numerical Integration

Optimizing ODE parameters and prior hyperparameters jointly

Example: Probabilistic Numerical Integration

Optimizing ODE parameters and prior hyperparameters jointly

Example: Probabilistic Numerical Integration

Optimizing ODE parameters and prior hyperparameters jointly

Example: Probabilistic Numerical Integration

Example: Probabilistic Numerical Integration

Example: Probabilistic Numerical Integration

Figure: $i=10$

Example: Probabilistic Numerical Integration

Optimizing ODE parameters and prior hyperparameters jointly

Figure: $i=15$

Example: Probabilistic Numerical Integration

Optimizing ODE parameters and prior hyperparameters jointly

Example: Probabilistic Numerical Integration

Optimizing ODE parameters and prior hyperparameters jointly

Example: Probabilistic Numerical Integration

Optimizing ODE parameters and prior hyperparameters jointly

Example: Probabilistic Numerical Integration

Optimizing ODE parameters and prior hyperparameters jointly

Figure: $i=35$

Example: Probabilistic Numerical Integration

Optimizing ODE parameters and prior hyperparameters jointly

Example: Probabilistic Numerical Integration

Optimizing ODE parameters and prior hyperparameters jointly

Example: Probabilistic Numerical Integration

Optimizing ODE parameters and prior hyperparameters jointly

Figure: $i=50$

Example: Probabilistic Numerical Integration

Optimizing ODE parameters and prior hyperparameters jointly

Figure: $i=55$

Example: Probabilistic Numerical Integration

Optimizing ODE parameters and prior hyperparameters jointly

Figure: $i=60$

Example: Probabilistic Numerical Integration

Optimizing ODE parameters and prior hyperparameters jointly

Example: Probabilistic Numerical Integration

Optimizing ODE parameters and prior hyperparameters jointly

Example: Probabilistic Numerical Integration

Optimizing ODE parameters and prior hyperparameters jointly

Figure: $i=63$

Example: Probabilistic Numerical Integration

Optimizing ODE parameters and prior hyperparameters jointly

Figure: $i=63$

Example: Probabilistic Numerical Integration

Optimizing ODE parameters and prior hyperparameters jointly

Example: Probabilistic Numerical Integration

Optimizing ODE parameters and prior hyperparameters jointly

Example: Probabilistic Numerical Integration

Figure: $i=70$

Example: Probabilistic Numerical Integration

Optimizing ODE parameters and prior hyperparameters jointly

Example: Probabilistic Numerical Integration

Optimizing ODE parameters and prior hyperparameters jointly

Example: Probabilistic Numerical Integration

Optimizing ODE parameters and prior hyperparameters jointly

Example: Probabilistic Numerical Integration

Optimizing ODE parameters and prior hyperparameters jointly

Example: Probabilistic Numerical Integration

Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=75

Example: Probabilistic Numerical Integration

Optimizing ODE parameters and prior hyperparameters jointly

Figure: $i=76$

Example: Probabilistic Numerical Integration

Optimizing ODE parameters and prior hyperparameters jointly

Example: Probabilistic Numerical Integration

Optimizing ODE parameters and prior hyperparameters jointly

Example: Probabilistic Numerical Integration

Optimizing ODE parameters and prior hyperparameters jointly

Example: Probabilistic Numerical Integration

Optimizing ODE parameters and prior hyperparameters jointly

Example: Probabilistic Numerical Integration

Optimizing ODE parameters and prior hyperparameters jointly

Example: Probabilistic Numerical Integration

Optimizing ODE parameters and prior hyperparameters jointly

Example: Probabilistic Numerical Integration

Optimizing ODE parameters and prior hyperparameters jointly

- Position
- - Velocity
- Data

Figure: Learning the length of a simple pendulum with Runge-Kutta (RK) and probabilistic numerics (FENRIR). Out-of-phase initial condition shown on the left, optimization progress shown left to right.

Summary

- ODE solving is state estimation
\Rightarrow treat initial value problems as state estimation problems
- "ODE filters": How to solve ODEs with Bayesian filtering and smoothing
- Flexible information operators to solve more than just standard ODEs
- Parameter inference: Being uncertain about the ODE solution allows you to update on data
Software packages https://github.com/nathanaelbosch/ProbNumDiffEq.jl
ladd ProbNumDiffEq
https://github.com/probabilistic-numerics/probnum
pip install probnum
- Bosch, N., Corenflos, A., Yaghoobi, F., Tronarp, F., Hennig, P., and Särkkä, S. (2023a). Parallel-in-time probabilistic numerical ODE solvers.
- Bosch, N., Hennig, P., and Tronarp, F. (2021).

Calibrated adaptive probabilistic ODE solvers.
In Banerjee, A. and Fukumizu, K., editors, Proceedings of The 24th International Conference on
Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine Learning Research, pages 3466-3474. PMLR.

- Bosch, N., Hennig, P., and Tronarp, F. (2023b).

Probabilistic exponential integrators.
In Thirty-seventh Conference on Neural Information Processing Systems.

- Bosch, N., Tronarp, F., and Hennig, P. (2022).

Pick-and-mix information operators for probabilistic ODE solvers.
In Camps-Valls, G., Ruiz, F. J. R., and Valera, I., editors, Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, volume 151 of Proceedings of Machine Learning Research, pages 10015-10027. PMLR.

- Kersting, H., Sullivan, T. J., and Hennig, P. (2020). Convergence rates of gaussian ode filters. Statistics and Computing, 30(6):1791-1816.
- Krämer, N., Bosch, N., Schmidt, J., and Hennig, P. (2022).

Probabilistic ODE solutions in millions of dimensions.
In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., and Sabato, S., editors, Proceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages 11634-11649. PMLR.

- Krämer, N. and Hennig, P. (2020).

Stable implementation of probabilistic ode solvers. CoRR.

- Krämer, N. and Hennig, P. (2021). Linear-time probabilistic solution of boundary value problems.
In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W., editors, Advances in Neural Information Processing Systems, volume 34, pages 11160-11171. Curran Associates, Inc.
- Krämer, N., Schmidt, J., and Hennig, P. (2022).

Probabilistic numerical method of lines for time-dependent partial differential equations. In Camps-Valls, G., Ruiz, F. J. R., and Valera, I., editors, Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, volume 151 of Proceedings of Machine Learning Research, pages 625-639. PMLR.

- Schmidt, J., Krämer, N., and Hennig, P. (2021).

A probabilistic state space model for joint inference from differential equations and data.
In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W., editors, Advances in Neural Information Processing Systems, volume 34, pages 12374-12385. Curran Associates, Inc.

- Schober, M., Särkkä, S., and Hennig, P. (2019).

A probabilistic model for the numerical solution of initial value problems.
Statistics and Computing, 29(1):99-122.

- Tronarp, F., Bosch, N., and Hennig, P. (2022).

Fenrir: Physics-enhanced regression for initial value problems.
In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., and Sabato, S., editors, Proceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages 21776-21794. PMLR.

- Tronarp, F., Kersting, H., Särkkä, S., and Hennig, P. (2019).

Probabilistic solutions to ordinary differential equations as nonlinear Bayesian filtering: a new perspective.
Statistics and Computing, 29(6):1297-1315.

- Tronarp, F., Särkkä, S., and Hennig, P. (2021).

Bayesian ode solvers: the maximum a posteriori estimate.
Statistics and Computing, 31(3):23.

BACKUP

Non-linear Gaussian state-estimation problem:
Initial distribution:
Prior / dynamics:

$$
\begin{aligned}
x_{0} & \sim \mathcal{N}\left(x_{0} ; \mu_{0}, \Sigma_{0}\right) \\
x_{i+1} \mid x_{i} & \sim \mathcal{N}\left(x_{i+1} ; f\left(x_{i}\right), Q_{i}\right)
\end{aligned}
$$

$$
z_{i} \mid x_{i} \sim \mathcal{N}\left(z_{i} ; m\left(x_{i}\right), R_{i}\right)
$$

Data:

$$
\mathcal{D}=\left\{z_{i}\right\}_{i=1}^{N} .
$$

The extended Kalman filter/smoother (EKF/EKS) recursively computes Gaussian approximations:

Predict:
Filter:

$$
\begin{aligned}
\text { Predict: } & p\left(x_{i} \mid z_{1: i-1}\right) & \approx \mathcal{N}\left(x_{i} ; \mu_{i}^{P}, \Sigma_{i}^{P}\right), \\
\text { Filter: } & p\left(x_{i} \mid z_{1: i}\right) & \approx \mathcal{N}\left(x_{i} ; \mu_{i}, \Sigma_{i}\right) \\
\text { Smooth: } & p\left(x_{i} \mid z_{1: N}\right) & \approx \mathcal{N}\left(x_{i} ; \mu_{i}^{S}, \Sigma_{i}^{S}\right),
\end{aligned}
$$

$$
\text { Likelihood: } \quad p\left(z_{i} \mid z_{1: i-1}\right) \approx \mathcal{N}\left(z_{i} ; \hat{z}_{i}, S_{i}\right)
$$

EKF PREDICT

$$
\begin{aligned}
& \mu_{i+1}^{P}=f\left(\mu_{i}\right), \\
& \sum_{i+1}^{P}=J_{f}\left(\mu_{i}\right) \sum_{i} J_{f}\left(\mu_{i}\right)^{\top}+Q_{i} .
\end{aligned}
$$

EKF UPDATE

$$
\begin{aligned}
\hat{z}_{i} & =m\left(\mu_{i}^{P}\right) \\
S_{i} & =J_{m}\left(\mu_{i}^{P}\right) \Sigma_{i}^{P} J_{m}\left(\mu_{i}^{P}\right)^{\top}+R_{i} \\
K_{i} & =\Sigma_{i}^{P} J_{m}\left(\mu_{i}^{P}\right)^{\top} S_{i}^{-1} \\
\mu_{i} & =\mu_{i}^{P}+K_{i}\left(y_{i}-\hat{y}_{i}\right) \\
\Sigma_{i} & =\Sigma_{i}^{P}-K_{i} S_{i} K_{i}^{\top}
\end{aligned}
$$

Similarly SMOOTH.

```
Algorithm Kalman filter prediction
    , procedure KF_PREDICT \((\mu, \Sigma, A, Q)\)
    2 \(\quad \mu^{P} \leftarrow A \mu\) // Predict mean
        \(\Sigma^{p} \leftarrow A \Sigma A^{\top}+Q \quad / /\) Predict covariance
        return \(\mu^{P}, \Sigma^{P}\)
    \({ }_{5}\) end procedure
```

```
Algorithm Extended Kalman filter update
    1 procedure EKF_UPDATE \((\mu, \Sigma, h, R, y)\)
    \(2 \quad \hat{y} \leftarrow h(\mu) \quad / /\) evaluate the observation model
        \(H \leftarrow J_{h}(\mu) \quad / /\) Jacobian of the observation model
        \(S \leftarrow H \Sigma H^{\top}+R \quad / /\) Measurement covariance
        \(K \leftarrow \Sigma H^{\top} S^{-1} \quad / /\) Kalman gain
        \(\mu^{F} \leftarrow \mu+K(y-\hat{y}) \quad / /\) update mean
        \(\Sigma^{F} \leftarrow \Sigma-K S K^{\top} \quad / /\) update covariance
        return \(\mu^{F}, \Sigma^{F}\)
    end procedure
```

(KF_UPDATE analog but with affine h)

Local calibration and step-size adaptation

Calibration

- Problem: The Gauss-Markov prior has hyperparameters. How to choose them?
- Most notably: The diffusion σ (basically acts as an output scale)

Local calibration and step-size adaptation

Calibration

- Problem: The Gauss-Markov prior has hyperparameters. How to choose them?
- Most notably: The diffusion σ (basically acts as an output scale)
- Solution: (Quasi-)MLE (can be done in closed form here)

Local calibration and step-size adaptation

Calibration

- Problem: The Gauss-Markov prior has hyperparameters. How to choose them?
- Most notably: The diffusion σ (basically acts as an output scale)
- Solution: (Quasi-)MLE (can be done in closed form here)

Step-size adaptation

- Local error estimates from measurement residuals
- Step-size selection with PI-control (similar as in classic solvers)

- ν-times integrated Wiener process prior: $x(t) \sim \operatorname{IWP}(q)$

$$
\begin{aligned}
\mathrm{d} x^{(i)}(t) & =x^{(i+1)}(t) \mathrm{d} t, \quad i=0, \ldots, q-1 \\
\mathrm{~d} x^{(q)}(t) & =\sigma \mathrm{d} W(t) \\
x(0) & \sim \mathcal{N}\left(\mu_{0}, \Sigma_{0}\right)
\end{aligned}
$$

- Corresponds to Taylor-polynomial + perturbation:

$$
x^{(0)}(t)=\sum_{m=0}^{q} x^{(m)}(0) \frac{t^{m}}{m!}+\sigma \int_{0}^{t} \frac{t-\tau}{q!} \mathrm{d} W(\tau)
$$

- Measurement model: $m(x(t), t)=x^{(1)}(t)-f\left(x^{(0)}(t), t\right)$
- A standard extended Kalman filter computes the Jacobian of the measurement mode: $J_{m}(\xi)=E_{1}-J_{f}\left(E_{0} \xi, t\right) E_{0} \backslash \Rightarrow$ This algorithm is often called EK1.
- Turns out the following also works: $J_{f} \approx 0$ and then $J_{m}(\xi) \approx E_{1} \backslash \Rightarrow$ The resulting algorithm is often called EK0.

A comparison of EK1 and EK0:

	Jacobian	type	A-stable	uncertainties	speed
EK1	$H=E_{1}-J_{f}\left(E_{0} \mu^{p}\right) E_{0}$	semi-implicit	yes	more expressive	slower $\left(0\left(N d^{3} q^{3}\right)\right)$
EK0	$H=E_{1}$	explicit	no	simpler	faster $\left(O\left(N d q^{3}\right)\right)$

Uncertainty calibration or "how to choose prior hyperparameters"

- Problem: The prior hyperparameter σ strongly influences covariances. How to choose it?
- Standard approach: Maximize the marginal likelihood:

$$
\hat{\sigma}=\arg \max p\left(\mathcal{D}_{\mathrm{PN}} \mid \sigma\right)=p\left(z_{1: N} \mid \sigma\right)=p\left(z_{1} \mid \sigma\right) \prod_{k=2}^{N} p\left(z_{k} \mid z_{1: k-1}, \sigma\right)
$$

- The EKF provides Gaussian estimates $p\left(z_{k} \mid z_{1: k-1}\right) \approx \mathcal{N}\left(z_{k} ; \hat{z}_{k}, S_{k}\right)$.
\Rightarrow Quasi-maximum likelihood estimate:

$$
\hat{\sigma}=\arg \max p\left(\mathcal{D}_{\mathrm{PN}} \mid \sigma\right)=\arg \max \sum_{k=1}^{N} \log p\left(z_{k} \mid z_{1: k-1}, \sigma\right)
$$

- In our specific context there is a closed-form solution (proof: [Tronarp et al., 2019]):

$$
\hat{\sigma}^{2}=\frac{1}{N d} \sum_{i=1}^{N}\left(z_{i}-\hat{z}_{i}\right)^{\top} S_{i}^{-1}\left(z_{i}-\hat{z}_{i}\right)
$$

and we don't even need to run the filter again! Just adjust the estimated covariances:

$$
\Sigma_{i} \leftarrow \hat{\sigma}^{2} \cdot \Sigma_{i}, \quad \forall i \in\{1, \ldots, N\}
$$

- Problem: The computed covariances can have negative eigenvalues due to finite precision arithmetic and numerical round-off, in particular with small step sizes. Failure example: demo.j1
- It holds: A matrix $M \in \mathbb{R}^{d \times d}$ is positive semi-definite if and only if there exists a matrix $B \in \mathbb{R}^{d \times d}$ such that $M=B B^{\top}$.
- Kalman filtering and smoothing in square-root form - a minimal derivation:
- Central operation in PREDICT/UPDATE/SMOOTH: $M=A B A^{\top}+C$.
- Predict: $\Sigma^{P}=A \Sigma A^{\top}+Q$
- Update (in Joseph form): $\Sigma=(I-K H) \Sigma^{P}(I-K H)^{\top}+K R K^{\top}$
- Smooth (in Joseph form): $\Lambda=(I-G A) \Sigma(I-G A)^{\top}+G \Lambda^{+} G^{\top}+G Q G^{\top}$
- This can be formulated on the square-root level: Let $M=M_{L}\left(M_{L}\right)^{\top}, B=B_{L}\left(B_{L}\right)^{\top}, C=C_{L}\left(C_{L}\right)^{\top}$:

$$
\begin{aligned}
M & =A B A^{\top}+C, \\
\Leftrightarrow \quad M_{L}\left(M_{L}\right)^{\top} & =A B_{L}\left(B_{L}\right)^{\top} A^{\top}+C_{L}\left(C_{L}\right)^{\top}=\left[\begin{array}{ll}
A B_{L} & C_{L}
\end{array}\right] \cdot\left[\begin{array}{ll}
A B_{L} & C_{L}
\end{array}\right]^{\top} \\
\operatorname{doing} Q R\left(\left[\begin{array}{ll}
A B_{L} & C_{L}
\end{array}\right]^{\top}\right) & =R^{\top} Q^{\top} Q R=R^{\top} R . \quad \Rightarrow M_{L}:=R^{\top}
\end{aligned}
$$

\Rightarrow PREDICT/UPDATE/SMOOTH can be formulated directly on square-roots to preserve PSD-ness!

Visual Example: EKF

IVP:

$$
y^{\prime}(t)=3 y(1-y), \quad y(0)=0.1, \quad t \in[0,1.5] .
$$

Visual Example: EKF

IVP:

$$
y^{\prime}(t)=3 y(1-y), \quad y(0)=0.1, \quad t \in[0,1.5] .
$$

Step 0:

Visual Example: EKF

IVP:

$$
y^{\prime}(t)=3 y(1-y), \quad y(0)=0.1, \quad t \in[0,1.5] .
$$

Step 1:

Visual Example: EKF

IVP:

$$
y^{\prime}(t)=3 y(1-y), \quad y(0)=0.1, \quad t \in[0,1.5] .
$$

Step 2:

Visual Example: EKF

IVP:

$$
y^{\prime}(t)=3 y(1-y), \quad y(0)=0.1, \quad t \in[0,1.5] .
$$

Step 3:

Visual Example: EKF

IVP:

$$
y^{\prime}(t)=3 y(1-y), \quad y(0)=0.1, \quad t \in[0,1.5] .
$$

Step 4:

Visual Example: EKF

IVP:

$$
y^{\prime}(t)=3 y(1-y), \quad y(0)=0.1, \quad t \in[0,1.5] .
$$

Step 5:

Visual Example: EKF

IVP:

$$
y^{\prime}(t)=3 y(1-y), \quad y(0)=0.1, \quad t \in[0,1.5] .
$$

Step 6:

2nd derivative

Visual Example: EKF

IVP:

$$
y^{\prime}(t)=3 y(1-y), \quad y(0)=0.1, \quad t \in[0,1.5] .
$$

Step 7:

2nd derivative

Visual Example: EKF

IVP:

$$
y^{\prime}(t)=3 y(1-y), \quad y(0)=0.1, \quad t \in[0,1.5] .
$$

Step 8:

2nd derivative

Visual Example: EKF

IVP:

$$
y^{\prime}(t)=3 y(1-y), \quad y(0)=0.1, \quad t \in[0,1.5] .
$$

Step 9:

2nd derivative

Visual Example: EKF

IVP:

$$
y^{\prime}(t)=3 y(1-y), \quad y(0)=0.1, \quad t \in[0,1.5] .
$$

Step 10:

2nd derivative

