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Background
▶ Ordinary differential equations and how to solve them

Central statement: ODE solving is state estimation
▶ “ODE filters”: How to solve ODEs with extended Kalman filtering and smoothing

Showcasing ODE filters
▶ Generalizing ODE filters to higher-order ODEs, systems with conserved quantities, BVPs, DAEs, …
▶ Parameter inference with ODE filters
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Background: Ordinary Differential Equations and how to solve them
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t)
with t ∈ [0, T], vector field f : Rd × R→ Rd, and initial value y(0) = y0. Goal: “Find y”.

▶ Simple example: Logistic ODE

ẏ(t) = y(t) (1− y(t)) , t ∈ [0, 10], y(0) = 0.1.

Numerical ODE solvers:

▶ Forward Euler:
ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t)

▶ Backward Euler:
ŷ(t+ h) = ŷ(t) + hf(ŷ(t+ h), t+ h)

▶ Runge–Kutta:
ŷ(t+ h) = ŷ(t) + h

∑s
i=1 bif(ỹi, t+ cih)

▶ Multistep:
ŷ(t+ h) = ŷ(t) + h

∑s−1
i=0 bif(ŷ(t− ih), t− ih)

Forward Euler for different step sizes:
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⇒ It is “correct” only in the limit h→ 0!

Numerical ODE solvers estimate y(t) by evaluating f on a discrete set of points.
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∑s−1
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ẏ(t) = f (y(t), t)
with t ∈ [0, T], vector field f : Rd × R→ Rd, and initial value y(0) = y0. Goal: “Find y”.

Numerical ODE solvers:
▶ Forward Euler:
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ŷ(t+ h) = ŷ(t) + h
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Probabilistic numerical ODE solvers
or “How to treat ODE solving as a Bayesian state estimation problem”
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Probabilistic numerical ODE solvers
Bayes’ theorem to the rescue

p
(
y(t)

∣∣∣ y(0) = y0, {ẏ(tn) = f (y(tn), tn)}Nn=1

)
with vector field f : Rd × R→ Rd, initial value y0, and time discretization {tn}Nn=1.

Probabilistic formulation of an ODE solver:

▶ Prior: y ∼ GP
▶ Likelihood / data:

▶ Initial data: y(0) = y0
▶ ODE data: ẏ(ti) = f(y(ti), ti), for some {tj}N

j=1 ⊂ [0, T]
▶ Inference: Bayes’ rule
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Prior: Gauss–Markov process priors
Gauss–Markov processes make GPs go fast See also: Särkkä & Solin, “Applied Stochastic Differential Equations”, 2013

▶ Continuous Gauss–Markov process prior:
y(t) defined as the output of a linear time-invariant (LTI) stochastic differential equation (SDE):

x(0) ∼ N (µ−
0 ,Σ

−
0 ),

dx(t) = Fx(t)dt+ σΓdw(t),

y(m)(t) = Emx(t), m = 1, . . . , ν.

x(t) is the state-space representation of y(t).
Examples: Integrated Wiener process, Integrated Ornstein–Uhlenbeck process, Matérn process.

▶ Discrete transition densities: x(t) can be described in discrete time as

x(t+ h) | x(t) ∼ N
(
x(t+ h); A(h)x(t), σ2Q(h)

)
,

with

A(h) = exp (Fh) , Q(h) =
∫ h

0
A(h− τ)ΓΓ⊤A(h− τ)⊤τ .
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Prior: The q-times integrated Wiener process
A very convenient prior with closed-form transition densities

▶ q-times integrated Wiener process prior: y(t) ∼ IWP(q),
defined with x(t) := [x(0)(t), x(1)(t), . . . , x(q)(t)] as

x(0) ∼ N (µ0,Σ0),

dx(i)(t) = x(i+1)(t)dt, i = 0, . . . , q− 1,

dx(q)(t) = σdW(t).

Then x(i) =: Eix models the i-th derivative of y.

▶ Discrete-time transitions:

x(t+ h) | x(t) ∼ N
(
x(t+ h); A(h)x(t), σ2Q(h)

)
,

[A(h)]ij = Ii≤j
hj−i

(j− i)!
,

[Q(h)]ij =
h2q+1−i−j

(2q+ 1− i− j)(q− i)!(q− j)!
,

for any i, j = 0, . . . , q. (one-dimensional case).

▶ Example: IWP(2)
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The likelihood model and the data
The likelihood and data relate the prior to the desired posterior: the numerical ODE solution

▶ Ideal goal (intractable): Want y(t) to satisfy the ODE

ẏ(t) = f (y(t), t)

using x(t)⇔ E1x(t) = f (E0x(t), t)
using x(t)⇔ 0 = E1x(t)− f (E0x(t), t) =: m(x(t), t).

▶ Easier goal: Satisfy the ODE on a discrete time grid

ẏ(ti) = f(y(ti), ti), ti ∈ T = {ti}Ni=1 ⊂ [0, T],

⇔ m(x(ti), ti) = 0

▶ This motivates a measurement model and data:

z(ti) | x(ti) ∼ (m(x(ti), ti))

z(ti)≜ 0, i = 1, . . . ,N.

(δ is the Dirac distribution)

Example: Logistic ODE ẏ = y(1− y)

(here: Z = X(1) − X(0)(1− X(0)))

Spoiler: This is the thing we want!
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(here: Z = X(1) − X(0)(1− X(0)))

Spoiler: This is the thing we want!

@nathanaelbosch 9



The likelihood model and the data
The likelihood and data relate the prior to the desired posterior: the numerical ODE solution

▶ Ideal goal (intractable): Want y(t) to satisfy the ODE
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Inference: Extended Kalman filtering and smoothing
Bayesian filters and smoothers estimate an unknown state (often continuous) from observations

Given a non-linear Gaussian state-estimation problem:

Initial distribution: x0 ∼ N (x0;µ0,Σ0) ,

Prior / dynamics: xi+1 | xi ∼ N (xi+1; g(xi),Qi) ,

Likelihood / measurement: zi | xi ∼ N (zi;m(xi), Ri) ,

Data: D = {zi}Ni=1.

The extended Kalman filter/smoother (EKF/EKS) recursively
computes Gaussian approximations:

Predict: p(xi | z1:i−1)

≈ N (xi;µP
i ,Σ

P
i ),

Filter: p(xi | z1:i)

≈ N (xi;µi,Σi),

Smooth: p(xi | z1:N)

≈ N (xi;µS
i ,Σ

S
i ),

Likelihood: p(zi | z1:i−1)

≈ N (zi; ẑi, Si).

EKF PREDICT

µP
i+1 = g(µi),

ΣP
i+1 = Jg(µi)ΣiJg(µi)

⊤ + Qi.

EKF UPDATE

ẑi = m(µP
i ),

Si = Jm(µP
i )Σ

P
i Jm(µ

P
i )

⊤ + Ri,

Ki = ΣP
i Jm(µ

P
i )

⊤S−1
i ,

µi = µP
i + Ki (yi − ŷi) ,

Σi = ΣP
i − KiSiK⊤i .

Similarly SMOOTH.
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Σi = ΣP
i − KiSiK⊤i .

Similarly SMOOTH.

@nathanaelbosch 10



Inference: Extended Kalman filtering and smoothing
Bayesian filters and smoothers estimate an unknown state (often continuous) from observations

Given a non-linear Gaussian state-estimation problem:

Initial distribution: x0 ∼ N (x0;µ0,Σ0) ,

Prior / dynamics: xi+1 | xi ∼ N (xi+1; g(xi),Qi) ,

Likelihood / measurement: zi | xi ∼ N (zi;m(xi), Ri) ,

Data: D = {zi}Ni=1.

The extended Kalman filter/smoother (EKF/EKS) recursively
computes Gaussian approximations:

Predict: p(xi | z1:i−1) ≈ N (xi;µP
i ,Σ

P
i ),

Filter: p(xi | z1:i) ≈ N (xi;µi,Σi),

Smooth: p(xi | z1:N) ≈ N (xi;µS
i ,Σ

S
i ),

Likelihood: p(zi | z1:i−1) ≈ N (zi; ẑi, Si).
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Probabilistic numerical ODE solvers in code
We can solve ODEs with basically just an extended Kalman filter

Algorithm The extended Kalman ODE filter

1 procedure EXTENDED KALMAN ODE FILTER((µ−
0 ,Σ

−
0 ), (A,Q), (f, y0), {ti}Ni=1)

2 µ0,Σ0 ← KF_UPDATE(µ−
0 ,Σ

−
0 , E0, 0d×d, y0) � Initial update to fit the initial value

3 for k ∈ {1, . . . ,N} do
4 hk ← tk − tk−1 � Step size

5 µ−
k ,Σ

−
k ← KF_PREDICT(µk−1,Σk−1, A(hk),Q(hk)) � Kalman filter prediction

6 mk(x) := E1x− f(E0x, tk) � Define the non-linear observation model

7 µk,Σk ← EKF_UPDATE(µ−
k ,Σ

−
k ,mk, 0d×d, 0⃗d) � Extended Kalman filter update

8 end for
9 return (µk,Σk)

N
k=1

10 end procedure

EXTENDED KALMAN ODE SMOOTHER: Just run a RTS smoother after the filter!
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Probabilistic numerical ODE solvers in action
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Probabilistic numerical ODE solutions

@nathanaelbosch 13



The state of filtering-based probabilistic numerical ODE solvers
▶ Properties and features:

▶ Polynomial convergence rates [Kersting et al., 2020, Tronarp et al., 2021]

▶ A-stability [Tronarp et al., 2019]

▶ L-stable probabilistic exponential integrators [Bosch et al., 2023b]

▶ Connection to multi-step methods in Nordsieck form [Schober et al., 2019]

▶ Complexity: O
(
d3
)
for the A-stable semi-implicit method,

Complexity: O(d) for an explicit version with coarser covariances [Krämer et al., 2022]

▶ Step-size adaptation and calibration [Bosch et al., 2021]

▶ Parallel-in-time formulation withO(log(N)) complexity [Bosch et al., 2023a]

▶ More related differential equation problems:

▶ Higher-order ODEs, DAEs, Hamiltonian systems [Bosch et al., 2022]

▶ Boundary value problems (BVPs) [Krämer and Hennig, 2021]

▶ Partial differential equations (PDEs) via method of lines [Krämer et al., 2022]

▶ Inverse problems

▶ Probabilistic numerics-based parameter inference in ODEs [Tronarp et al., 2022]

▶ Efficient inference of time-varying latent forces [Schmidt et al., 2021]

Probabilistic Numerics: Computation as Machine Learning
Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022
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Extending ODE filters to other related differential equation problems
ODE filters can solve much more than the ODEs that we saw so far! [Bosch et al., 2022, Krämer and Hennig, 2021]

Numerical problems setting: Initial value problem with first-order ODE

ẏ(t) = f(y(t), t), y(0) = y0.

This leads to the probabilistic state estimation problem:

Initial distribution: x(0) ∼ N
(
x(0);µ−

0 ,Σ
−
0
)

Prior / dynamics model: x(t+ h) | x(t) ∼ N (x(t+ h); A(h)x(t),Q(h))

ODE likelihood: z(ti) | x(ti) ∼ δ (z(ti); E1x(ti)− f(E0x(ti), ti)) , zi ≜ 0

Initial value likelihood: zinit | x(0) ∼ δ
(
zinit; E0x(0)

)
, zinit ≜ y0

The measurement model provides a very flexible way to easily encode desired properties.
But it’s all just Bayesian state estimation! ⇒ Inference with Bayesian filtering and smoothing.
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ÿ(t) = f(ẏ(t), y(t), t), y(0) = y0, ẏ(0) = ẏ0.
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Probabilistic Numerics for ODE Parameter Inference
Using the ODE solution as a “physics-enhanced” prior for regression
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“Forward” and “Inverse” Problems
Going from formula to plot, or from plot to formula

Forward Problem

ẏθ = fθ(yθ, t) yθ(t0) = y0(θ).

solve
===⇒

Inverse Problem

p(θ | D) ∝ p(D | θ)p(θ)

Problem: The marginal likelihood
p(D | θ) =

∏N
i=1N (u(ti); yθ(ti), Rθ)

is intractable (because yθ is intractable)

find⇐==
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Between classic integration and gradient matching
We’re doing both: Integrating first, then GP regression

▶ Classical Numerical Integration
▶ (i) Solve the IVP to compute ŷθ(t)
▶ (ii) Approximate the marginal likelihood as M̂(θ) =

∏
n N (u(tn); ŷθ(tn), Rθ)

▶ (iii) Optimize to get θ̂ = arg maxM̂(θ)

▶ Gradient Matching
▶ (i) Fit a curve ŷ(t) to the data {u(ti)}i=1N
▶ (ii) Estimate θ by minimizing ˙̂y(t)− fθ(ŷ(t))

Exists in both classic (splines) or probabilistic versions (GPs)
▶ Probabilistic Numerical Integration

M̂PN(θ, κ) =

∫ ∏
n
N (u(tn); y(tn), Rθ)︸ ︷︷ ︸

Likelihood

· pPN (y(t1:N) | θ, κ)︸ ︷︷ ︸
PN ODE Solution

dy(t1:N) (1)

▶ (i) Probabilistically solve IVP to compute pPN(y(t) | θ, κ)
▶ (ii) Perform Kalman filtering on the data, with pPN as a “physics-enhanced” prior
▶ (iii) Optimize the approximate marginal likelihood
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n N (u(tn); ŷθ(tn), Rθ)

▶ (iii) Optimize to get θ̂ = arg maxM̂(θ)
▶ Gradient Matching

▶ (i) Fit a curve ŷ(t) to the data {u(ti)}i=1N
▶ (ii) Estimate θ by minimizing ˙̂y(t)− fθ(ŷ(t))

Exists in both classic (splines) or probabilistic versions (GPs)
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PN ODE Solution
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▶ (i) Probabilistically solve IVP to compute pPN(y(t) | θ, κ)
▶ (ii) Perform Kalman filtering on the data, with pPN as a “physics-enhanced” prior
▶ (iii) Optimize the approximate marginal likelihood
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▶ (iii) Optimize to get θ̂ = arg maxM̂(θ)
▶ Gradient Matching
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Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly
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Probabilistic numerics can help escape local optima
By becoming uncertain enough about the ODE solution the method can interpolate the data and continue from there
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Figure: Learning the length of a simple pendulum with Runge–Kutta (RK) and probabilistic numerics (FENRIR).
Out-of-phase initial condition shown on the left, optimization progress shown left to right.
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Gradient-based parameter inference in a Hodgkin–Huxley neuron
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Summary
▶ ODE solving is state estimation
⇒ treat initial value problems as state estimation problems

▶ “ODE filters”: How to solve ODEs with Bayesian filtering and smoothing
▶ Flexible information operators to solve more than just standard ODEs
▶ Parameter inference: Being uncertain about the ODE solution allows you to update on data

Software packages https:∕∕github.com∕nathanaelbosch∕ProbNumDiffEq.jl

]add ProbNumDiffEq

https:∕∕github.com∕probabilistic-numerics∕probnum

pip install probnum

https:∕∕github.com∕pnkraemer∕probdiffeq
pip install probdiffeq
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Background: Extended Kalman filtering and smoothing
Bayesian filters and smoothers estimate an unknown state (often continuous) from observations

Non-linear Gaussian state-estimation problem:

Initial distribution: x0 ∼ N (x0;µ0,Σ0) ,

Prior / dynamics: xi+1 | xi ∼ N (xi+1; f(xi),Qi) ,

Likelihood / measurement: zi | xi ∼ N (zi;m(xi), Ri) ,

Data: D = {zi}Ni=1.

The extended Kalman filter/smoother (EKF/EKS) recursively
computes Gaussian approximations:

Predict: p(xi | z1:i−1) ≈ N (xi;µP
i ,Σ

P
i ),

Filter: p(xi | z1:i) ≈ N (xi;µi,Σi),

Smooth: p(xi | z1:N) ≈ N (xi;µS
i ,Σ

S
i ),

Likelihood: p(zi | z1:i−1) ≈ N (zi; ẑi, Si).

EKF PREDICT

µP
i+1 = f(µi),

ΣP
i+1 = Jf(µi)ΣiJf(µi)

⊤ + Qi.

EKF UPDATE

ẑi = m(µP
i ),

Si = Jm(µP
i )Σ

P
i Jm(µ

P
i )

⊤ + Ri,

Ki = ΣP
i Jm(µ

P
i )

⊤S−1
i ,

µi = µP
i + Ki (yi − ŷi) ,

Σi = ΣP
i − KiSiK⊤i .

Similarly SMOOTH.
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The extended Kalman ODE filter – building blocks
The well-known predict and update steps for (extended) Kalman filtering

Algorithm Kalman filter prediction
1 procedure KF_PREDICT(µ,Σ, A,Q)
2 µP ← Aµ � Predict mean

3 ΣP ← AΣA⊤ + Q � Predict covariance

4 return µP,ΣP

5 end procedure

Algorithm Extended Kalman filter update
1 procedure EKF_UPDATE(µ,Σ, h, R, y)
2 ŷ← h(µ) � evaluate the observation model

3 H← Jh(µ) � Jacobian of the observation model

4 S← HΣH⊤ + R � Measurement covariance

5 K← ΣH⊤S−1 � Kalman gain

6 µF ← µ+ K(y− ŷ) � update mean

7 ΣF ← Σ− KSK⊤ � update covariance

8 return µF,ΣF

9 end procedure

(KF_UPDATE analog but with affine h)
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Local calibration and step-size adaptation
Fixed steps — the vanilla way as introduced so far

Calibration
▶ Problem: The Gauss–Markov prior

has hyperparameters. How to
choose them?

▶ Most notably: The diffusion σ
(basically acts as an output scale)

▶ Solution: (Quasi-)MLE
(can be done in closed form here)

Step-size adaptation
▶ Local error estimates from

measurement residuals
▶ Step-size selection with PI-control

(similar as in classic solvers)
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Local calibration and step-size adaptation
Local calibration by estimating a time-varying diffusion model σ(t)
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Local calibration and step-size adaptation
Adaptive step-size selection via local error estimation from the measurement residuals

Calibration
▶ Problem: The Gauss–Markov prior

has hyperparameters. How to
choose them?

▶ Most notably: The diffusion σ
(basically acts as an output scale)

▶ Solution: (Quasi-)MLE
(can be done in closed form here)

Step-size adaptation
▶ Local error estimates from

measurement residuals
▶ Step-size selection with PI-control

(similar as in classic solvers)
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Prior: The ν-times integrated Wiener process
A very convenient prior with closed-form transition densities

▶ ν-times integrated Wiener process prior: x(t) ∼ IWP(q)

dx(i)(t) = x(i+1)(t)dt, i = 0, . . . , q− 1,

dx(q)(t) = σdW(t),
x(0) ∼ N (µ0,Σ0).

▶ Corresponds to Taylor-polynomial + perturbation:

x(0)(t) =
q∑

m=0

x(m)(0)
tm

m!
+ σ

∫ t

0

t− τ

q!
dW(τ)
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On linearization strategies and their influence on A-Stability
We can actually approximate the Jacobian in the EKF and still get sensible results / algorithms! [Tronarp et al., 2019]

▶ Measurement model: m(x(t), t) = x(1)(t)− f(x(0)(t), t)
▶ A standard extended Kalman filter computes the Jacobian of the measurement mode:

Jm(ξ) = E1 − Jf(E0ξ, t)E0 \⇒ This algorithm is often called EK1.
▶ Turns out the following also works: Jf ≈ 0 and then Jm(ξ) ≈ E1 \⇒ The resulting algorithm is

often called EK0.

A comparison of EK1 and EK0:

Jacobian type A-stable uncertainties speed
EK1 H = E1 − Jf(E0µp)E0 semi-implicit yes more expressive slower (O(Nd3q3))
EK0 H = E1 explicit no simpler faster (O(Ndq3))
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Uncertainty calibration or “how to choose prior hyperparameters”
Hyperparameters of the prior have a strong influence on posteriors – so we need to estimate them [Tronarp et al., 2019]

▶ Problem: The prior hyperparameter σ strongly influences covariances. How to choose it?
▶ Standard approach: Maximize the marginal likelihood:

σ̂ = arg max p(DPN | σ) = p(z1:N | σ) = p(z1 | σ)
N∏

k=2

p(zk|z1:k−1, σ).

▶ The EKF provides Gaussian estimates p(zk | z1:k−1) ≈ N (zk; ẑk, Sk).
⇒ Quasi-maximum likelihood estimate:

σ̂ = arg max p(DPN | σ) = arg max
N∑

k=1

log p(zk | z1:k−1, σ)

▶ In our specific context there is a closed-form solution (proof: [Tronarp et al., 2019]):

σ̂2 =
1
Nd

N∑
i=1

(zi − ẑi)
⊤ S−1

i (zi − ẑi) ,

and we don’t even need to run the filter again! Just adjust the estimated covariances:
Σi ← σ̂2 · Σi, ∀i ∈ {1, . . . ,N}.
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Numerically stable implementation: Square-root filtering
When steps get small numerical stability suffers — so better work with matrix square-roots directly [Krämer and Hennig, 2020]

▶ Problem: The computed covariances can have negative eigenvalues due to finite precision
arithmetic and numerical round-off, in particular with small step sizes. Failure example: demo.jl

▶ It holds: A matrix M ∈ Rd×d is positive semi-definite if and only if there exists a matrix B ∈ Rd×d

such that M = BB⊤.
▶ Kalman filtering and smoothing in square-root form — a minimal derivation:

▶ Central operation in PREDICT/UPDATE/SMOOTH: M = ABA⊤ + C.
▶ Predict: ΣP = AΣA⊤ + Q
▶ Update (in Joseph form): Σ = (I − KH)ΣP(I − KH)⊤ + KRK⊤
▶ Smooth (in Joseph form): Λ = (I − GA)Σ(I − GA)⊤ + GΛ+G⊤ + GQG⊤

▶ This can be formulated on the square-root level: Let M = ML(ML)
⊤, B = BL(BL)

⊤, C = CL(CL)
⊤:

M = ABA⊤ + C,

⇔ ML(ML)
⊤ = ABL(BL)

⊤A⊤ + CL(CL)
⊤ =

[
ABL CL

]
·
[
ABL CL

]⊤
doing QR

([
ABL CL

]⊤)
⇔ = R⊤Q⊤QR = R⊤R. ⇒ ML := R⊤

⇒ PREDICT/UPDATE/SMOOTH can be formulated directly on square-roots to preserve PSD-ness!

⇒ To solve ODEs in a stable way, use the square-root Kalman filters / smoothers!
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Visual Example: EKF

IVP:

y′(t) = 3y(1− y), y(0) = 0.1, t ∈ [0, 1.5].

Step 0:
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Visual Example: EKF
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