
Probabilistic Numerical Solvers for Ordinary
Differential Equations

SCML 2024

Nathanael Bosch

22. March 2024

some of the presented work is supported
by the European Research Council.

@nathanaelbosch 1

Background
▶ Ordinary differential equations and how to solve them

Central statement: ODE solving is state estimation
▶ “ODE filters”: How to solve ODEs with extended Kalman filtering and smoothing

Showcasing ODE filters
▶ Generalizing ODE filters to higher-order ODEs, systems with conserved quantities, BVPs, DAEs, …
▶ Parameter inference with ODE filters

@nathanaelbosch 2

Background
▶ Ordinary differential equations and how to solve them

Central statement: ODE solving is state estimation
▶ “ODE filters”: How to solve ODEs with extended Kalman filtering and smoothing

Showcasing ODE filters
▶ Generalizing ODE filters to higher-order ODEs, systems with conserved quantities, BVPs, DAEs, …
▶ Parameter inference with ODE filters

@nathanaelbosch 2

Background
▶ Ordinary differential equations and how to solve them

Central statement: ODE solving is state estimation
▶ “ODE filters”: How to solve ODEs with extended Kalman filtering and smoothing

Showcasing ODE filters
▶ Generalizing ODE filters to higher-order ODEs, systems with conserved quantities, BVPs, DAEs, …
▶ Parameter inference with ODE filters

@nathanaelbosch 2

Background: Ordinary Differential Equations
and how to solve them

@nathanaelbosch 3

Background: Ordinary Differential Equations and how to solve them
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t)
with t ∈ [0, T], vector field f : Rd × R→ Rd, and initial value y(0) = y0. Goal: “Find y”.

▶ Simple example: Logistic ODE

ẏ(t) = y(t) (1− y(t)) , t ∈ [0, 10], y(0) = 0.1.

Numerical ODE solvers:

▶ Forward Euler:
ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t)

▶ Backward Euler:
ŷ(t+ h) = ŷ(t) + hf(ŷ(t+ h), t+ h)

▶ Runge–Kutta:
ŷ(t+ h) = ŷ(t) + h

∑s
i=1 bif(ỹi, t+ cih)

▶ Multistep:
ŷ(t+ h) = ŷ(t) + h

∑s−1
i=0 bif(ŷ(t− ih), t− ih)

Forward Euler for different step sizes:

0.0

0.5

1.0

P(
t)

step size = 0.5

0.0

0.5

1.0

P(
t)

step size = 0.1

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
t

0.0

0.5

1.0

P(
t)

step size = 0.01

⇒ It is “correct” only in the limit h→ 0!

Numerical ODE solvers estimate y(t) by evaluating f on a discrete set of points.

@nathanaelbosch 4

Background: Ordinary Differential Equations and how to solve them
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t)
with t ∈ [0, T], vector field f : Rd × R→ Rd, and initial value y(0) = y0. Goal: “Find y”.

Numerical ODE solvers:
▶ Forward Euler:

ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t)

▶ Backward Euler:
ŷ(t+ h) = ŷ(t) + hf(ŷ(t+ h), t+ h)

▶ Runge–Kutta:
ŷ(t+ h) = ŷ(t) + h

∑s
i=1 bif(ỹi, t+ cih)

▶ Multistep:
ŷ(t+ h) = ŷ(t) + h

∑s−1
i=0 bif(ŷ(t− ih), t− ih)

Forward Euler for different step sizes:

0.0

0.5

1.0

P(
t)

step size = 0.5

0.0

0.5

1.0

P(
t)

step size = 0.1

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
t

0.0

0.5

1.0

P(
t)

step size = 0.01

⇒ It is “correct” only in the limit h→ 0!

Numerical ODE solvers estimate y(t) by evaluating f on a discrete set of points.

@nathanaelbosch 4

Background: Ordinary Differential Equations and how to solve them
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t)
with t ∈ [0, T], vector field f : Rd × R→ Rd, and initial value y(0) = y0. Goal: “Find y”.

Numerical ODE solvers:
▶ Forward Euler:

ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t)
▶ Backward Euler:

ŷ(t+ h) = ŷ(t) + hf(ŷ(t+ h), t+ h)

▶ Runge–Kutta:
ŷ(t+ h) = ŷ(t) + h

∑s
i=1 bif(ỹi, t+ cih)

▶ Multistep:
ŷ(t+ h) = ŷ(t) + h

∑s−1
i=0 bif(ŷ(t− ih), t− ih)

Forward Euler for different step sizes:

0.0

0.5

1.0

P(
t)

step size = 0.5

0.0

0.5

1.0

P(
t)

step size = 0.1

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
t

0.0

0.5

1.0

P(
t)

step size = 0.01

⇒ It is “correct” only in the limit h→ 0!

Numerical ODE solvers estimate y(t) by evaluating f on a discrete set of points.

@nathanaelbosch 4

Background: Ordinary Differential Equations and how to solve them
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t)
with t ∈ [0, T], vector field f : Rd × R→ Rd, and initial value y(0) = y0. Goal: “Find y”.

Numerical ODE solvers:
▶ Forward Euler:

ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t)
▶ Backward Euler:

ŷ(t+ h) = ŷ(t) + hf(ŷ(t+ h), t+ h)
▶ Runge–Kutta:

ŷ(t+ h) = ŷ(t) + h
∑s

i=1 bif(ỹi, t+ cih)

▶ Multistep:
ŷ(t+ h) = ŷ(t) + h

∑s−1
i=0 bif(ŷ(t− ih), t− ih)

Forward Euler for different step sizes:

0.0

0.5

1.0

P(
t)

step size = 0.5

0.0

0.5

1.0

P(
t)

step size = 0.1

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
t

0.0

0.5

1.0

P(
t)

step size = 0.01

⇒ It is “correct” only in the limit h→ 0!

Numerical ODE solvers estimate y(t) by evaluating f on a discrete set of points.

@nathanaelbosch 4

Background: Ordinary Differential Equations and how to solve them
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t)
with t ∈ [0, T], vector field f : Rd × R→ Rd, and initial value y(0) = y0. Goal: “Find y”.

Numerical ODE solvers:
▶ Forward Euler:

ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t)
▶ Backward Euler:

ŷ(t+ h) = ŷ(t) + hf(ŷ(t+ h), t+ h)
▶ Runge–Kutta:

ŷ(t+ h) = ŷ(t) + h
∑s

i=1 bif(ỹi, t+ cih)
▶ Multistep:

ŷ(t+ h) = ŷ(t) + h
∑s−1

i=0 bif(ŷ(t− ih), t− ih)

Forward Euler for different step sizes:

0.0

0.5

1.0

P(
t)

step size = 0.5

0.0

0.5

1.0

P(
t)

step size = 0.1

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
t

0.0

0.5

1.0

P(
t)

step size = 0.01

⇒ It is “correct” only in the limit h→ 0!

Numerical ODE solvers estimate y(t) by evaluating f on a discrete set of points.

@nathanaelbosch 4

Background: Ordinary Differential Equations and how to solve them
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t)
with t ∈ [0, T], vector field f : Rd × R→ Rd, and initial value y(0) = y0. Goal: “Find y”.

Numerical ODE solvers:
▶ Forward Euler:

ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t)
▶ Backward Euler:

ŷ(t+ h) = ŷ(t) + hf(ŷ(t+ h), t+ h)
▶ Runge–Kutta:

ŷ(t+ h) = ŷ(t) + h
∑s

i=1 bif(ỹi, t+ cih)
▶ Multistep:

ŷ(t+ h) = ŷ(t) + h
∑s−1

i=0 bif(ŷ(t− ih), t− ih)

Forward Euler for different step sizes:

0.0

0.5

1.0

P(
t)

step size = 0.5

0.0

0.5

1.0

P(
t)

step size = 0.1

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
t

0.0

0.5

1.0

P(
t)

step size = 0.01

⇒ It is “correct” only in the limit h→ 0!

Numerical ODE solvers estimate y(t) by evaluating f on a discrete set of points.

@nathanaelbosch 4

Background: Ordinary Differential Equations and how to solve them
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t)
with t ∈ [0, T], vector field f : Rd × R→ Rd, and initial value y(0) = y0. Goal: “Find y”.

Numerical ODE solvers:
▶ Forward Euler:

ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t)
▶ Backward Euler:

ŷ(t+ h) = ŷ(t) + hf(ŷ(t+ h), t+ h)
▶ Runge–Kutta:

ŷ(t+ h) = ŷ(t) + h
∑s

i=1 bif(ỹi, t+ cih)
▶ Multistep:

ŷ(t+ h) = ŷ(t) + h
∑s−1

i=0 bif(ŷ(t− ih), t− ih)

Forward Euler for different step sizes:

0.0

0.5

1.0

P(
t)

step size = 0.5

0.0

0.5

1.0

P(
t)

step size = 0.1

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
t

0.0

0.5

1.0

P(
t)

step size = 0.01

⇒ It is “correct” only in the limit h→ 0!

Numerical ODE solvers estimate y(t) by evaluating f on a discrete set of points.
@nathanaelbosch 4

Probabilistic numerical ODE solvers
or “How to treat ODE solving as a Bayesian state estimation problem”

@nathanaelbosch 5

Probabilistic numerical ODE solvers
Bayes’ theorem to the rescue

p
(
y(t)

∣∣∣ y(0) = y0, {ẏ(tn) = f (y(tn), tn)}Nn=1

)
with vector field f : Rd × R→ Rd, initial value y0, and time discretization {tn}Nn=1.

Probabilistic formulation of an ODE solver:

▶ Prior: y ∼ GP
▶ Likelihood / data:

▶ Initial data: y(0) = y0
▶ ODE data: ẏ(ti) = f(y(ti), ti), for some {tj}N

j=1 ⊂ [0, T]
▶ Inference: Bayes’ rule

@nathanaelbosch 6

Probabilistic numerical ODE solvers
Bayes’ theorem to the rescue

p
(
y(t)

∣∣∣ y(0) = y0, {ẏ(tn) = f (y(tn), tn)}Nn=1

)
with vector field f : Rd × R→ Rd, initial value y0, and time discretization {tn}Nn=1.

Probabilistic formulation of an ODE solver:
▶ Prior: y ∼ GP

▶ Likelihood / data:
▶ Initial data: y(0) = y0
▶ ODE data: ẏ(ti) = f(y(ti), ti), for some {tj}N

j=1 ⊂ [0, T]
▶ Inference: Bayes’ rule

@nathanaelbosch 6

Probabilistic numerical ODE solvers
Bayes’ theorem to the rescue

p
(
y(t)

∣∣∣ y(0) = y0, {ẏ(tn) = f (y(tn), tn)}Nn=1

)
with vector field f : Rd × R→ Rd, initial value y0, and time discretization {tn}Nn=1.

Probabilistic formulation of an ODE solver:
▶ Prior: y ∼ GP
▶ Likelihood / data:

▶ Initial data: y(0) = y0
▶ ODE data: ẏ(ti) = f(y(ti), ti), for some {tj}N

j=1 ⊂ [0, T]

▶ Inference: Bayes’ rule

@nathanaelbosch 6

Probabilistic numerical ODE solvers
Bayes’ theorem to the rescue

p
(
y(t)

∣∣∣ y(0) = y0, {ẏ(tn) = f (y(tn), tn)}Nn=1

)
with vector field f : Rd × R→ Rd, initial value y0, and time discretization {tn}Nn=1.

Probabilistic formulation of an ODE solver:
▶ Prior: y ∼ GP
▶ Likelihood / data:

▶ Initial data: y(0) = y0
▶ ODE data: ẏ(ti) = f(y(ti), ti), for some {tj}N

j=1 ⊂ [0, T]
▶ Inference: Bayes’ rule

@nathanaelbosch 6

Prior: Gauss–Markov process priors
Gauss–Markov processes make GPs go fast See also: Särkkä & Solin, “Applied Stochastic Differential Equations”, 2013

▶ Continuous Gauss–Markov process prior:
y(t) defined as the output of a linear time-invariant (LTI) stochastic differential equation (SDE):

x(0) ∼ N (µ−
0 ,Σ

−
0),

dx(t) = Fx(t)dt+ σΓdw(t),

y(m)(t) = Emx(t), m = 1, . . . , ν.

x(t) is the state-space representation of y(t).
Examples: Integrated Wiener process, Integrated Ornstein–Uhlenbeck process, Matérn process.

▶ Discrete transition densities: x(t) can be described in discrete time as

x(t+ h) | x(t) ∼ N
(
x(t+ h); A(h)x(t), σ2Q(h)

)
,

with

A(h) = exp (Fh) , Q(h) =
∫ h

0
A(h− τ)ΓΓ⊤A(h− τ)⊤τ .

@nathanaelbosch 7

Prior: Gauss–Markov process priors
Gauss–Markov processes make GPs go fast See also: Särkkä & Solin, “Applied Stochastic Differential Equations”, 2013

▶ Continuous Gauss–Markov process prior:
y(t) defined as the output of a linear time-invariant (LTI) stochastic differential equation (SDE):

x(0) ∼ N (µ−
0 ,Σ

−
0),

dx(t) = Fx(t)dt+ σΓdw(t),

y(m)(t) = Emx(t), m = 1, . . . , ν.

x(t) is the state-space representation of y(t).
Examples: Integrated Wiener process, Integrated Ornstein–Uhlenbeck process, Matérn process.

▶ Discrete transition densities: x(t) can be described in discrete time as

x(t+ h) | x(t) ∼ N
(
x(t+ h); A(h)x(t), σ2Q(h)

)
,

with

A(h) = exp (Fh) , Q(h) =
∫ h

0
A(h− τ)ΓΓ⊤A(h− τ)⊤τ .

@nathanaelbosch 7

Prior: Gauss–Markov process priors
Gauss–Markov processes make GPs go fast See also: Särkkä & Solin, “Applied Stochastic Differential Equations”, 2013

▶ Continuous Gauss–Markov process prior:
y(t) defined as the output of a linear time-invariant (LTI) stochastic differential equation (SDE):

x(0) ∼ N (µ−
0 ,Σ

−
0),

dx(t) = Fx(t)dt+ σΓdw(t),

y(m)(t) = Emx(t), m = 1, . . . , ν.

x(t) is the state-space representation of y(t).
Examples: Integrated Wiener process, Integrated Ornstein–Uhlenbeck process, Matérn process.

▶ Discrete transition densities: x(t) can be described in discrete time as

x(t+ h) | x(t) ∼ N
(
x(t+ h); A(h)x(t), σ2Q(h)

)
,

with

A(h) = exp (Fh) , Q(h) =
∫ h

0
A(h− τ)ΓΓ⊤A(h− τ)⊤τ .

@nathanaelbosch 7

Prior: The q-times integrated Wiener process
A very convenient prior with closed-form transition densities

▶ q-times integrated Wiener process prior: y(t) ∼ IWP(q),
defined with x(t) := [x(0)(t), x(1)(t), . . . , x(q)(t)] as

x(0) ∼ N (µ0,Σ0),

dx(i)(t) = x(i+1)(t)dt, i = 0, . . . , q− 1,

dx(q)(t) = σdW(t).

Then x(i) =: Eix models the i-th derivative of y.

▶ Discrete-time transitions:

x(t+ h) | x(t) ∼ N
(
x(t+ h); A(h)x(t), σ2Q(h)

)
,

[A(h)]ij = Ii≤j
hj−i

(j− i)!
,

[Q(h)]ij =
h2q+1−i−j

(2q+ 1− i− j)(q− i)!(q− j)!
,

for any i, j = 0, . . . , q. (one-dimensional case).

▶ Example: IWP(2)

@nathanaelbosch 8

Prior: The q-times integrated Wiener process
A very convenient prior with closed-form transition densities

▶ q-times integrated Wiener process prior: y(t) ∼ IWP(q),
defined with x(t) := [x(0)(t), x(1)(t), . . . , x(q)(t)] as

x(0) ∼ N (µ0,Σ0),

dx(i)(t) = x(i+1)(t)dt, i = 0, . . . , q− 1,

dx(q)(t) = σdW(t).

Then x(i) =: Eix models the i-th derivative of y.
▶ Discrete-time transitions:

x(t+ h) | x(t) ∼ N
(
x(t+ h); A(h)x(t), σ2Q(h)

)
,

[A(h)]ij = Ii≤j
hj−i

(j− i)!
,

[Q(h)]ij =
h2q+1−i−j

(2q+ 1− i− j)(q− i)!(q− j)!
,

for any i, j = 0, . . . , q. (one-dimensional case).

▶ Example: IWP(2)

@nathanaelbosch 8

Prior: The q-times integrated Wiener process
A very convenient prior with closed-form transition densities

▶ q-times integrated Wiener process prior: y(t) ∼ IWP(q),
defined with x(t) := [x(0)(t), x(1)(t), . . . , x(q)(t)] as

x(0) ∼ N (µ0,Σ0),

dx(i)(t) = x(i+1)(t)dt, i = 0, . . . , q− 1,

dx(q)(t) = σdW(t).

Then x(i) =: Eix models the i-th derivative of y.
▶ Discrete-time transitions:

x(t+ h) | x(t) ∼ N
(
x(t+ h); A(h)x(t), σ2Q(h)

)
,

[A(h)]ij = Ii≤j
hj−i

(j− i)!
,

[Q(h)]ij =
h2q+1−i−j

(2q+ 1− i− j)(q− i)!(q− j)!
,

for any i, j = 0, . . . , q. (one-dimensional case).

▶ Example: IWP(2)

A(h) =

1 h h2
2

0 1 h
0 0 1

 ,

Q(h) =

 h5
20

h4
8

h3
6

h4
8

h3
3

h2
2

h3
6

h2
2 h

 .

@nathanaelbosch 8

Prior: The q-times integrated Wiener process
A very convenient prior with closed-form transition densities

▶ q-times integrated Wiener process prior: y(t) ∼ IWP(q),
defined with x(t) := [x(0)(t), x(1)(t), . . . , x(q)(t)] as

x(0) ∼ N (µ0,Σ0),

dx(i)(t) = x(i+1)(t)dt, i = 0, . . . , q− 1,

dx(q)(t) = σdW(t).

Then x(i) =: Eix models the i-th derivative of y.
▶ Discrete-time transitions:

x(t+ h) | x(t) ∼ N
(
x(t+ h); A(h)x(t), σ2Q(h)

)
,

[A(h)]ij = Ii≤j
hj−i

(j− i)!
,

[Q(h)]ij =
h2q+1−i−j

(2q+ 1− i− j)(q− i)!(q− j)!
,

for any i, j = 0, . . . , q. (one-dimensional case).

▶ Example: IWP(2)

@nathanaelbosch 8

Prior: The q-times integrated Wiener process
A very convenient prior with closed-form transition densities

▶ q-times integrated Wiener process prior: y(t) ∼ IWP(q),
defined with x(t) := [x(0)(t), x(1)(t), . . . , x(q)(t)] as

x(0) ∼ N (µ0,Σ0),

dx(i)(t) = x(i+1)(t)dt, i = 0, . . . , q− 1,

dx(q)(t) = σdW(t).

Then x(i) =: Eix models the i-th derivative of y.
▶ Discrete-time transitions:

x(t+ h) | x(t) ∼ N
(
x(t+ h); A(h)x(t), σ2Q(h)

)
,

[A(h)]ij = Ii≤j
hj−i

(j− i)!
,

[Q(h)]ij =
h2q+1−i−j

(2q+ 1− i− j)(q− i)!(q− j)!
,

for any i, j = 0, . . . , q. (one-dimensional case).

▶ Example: IWP(2)

@nathanaelbosch 8

The likelihood model and the data
The likelihood and data relate the prior to the desired posterior: the numerical ODE solution

▶ Ideal goal (intractable): Want y(t) to satisfy the ODE

ẏ(t) = f (y(t), t)

using x(t)⇔ E1x(t) = f (E0x(t), t)
using x(t)⇔ 0 = E1x(t)− f (E0x(t), t) =: m(x(t), t).

▶ Easier goal: Satisfy the ODE on a discrete time grid

ẏ(ti) = f(y(ti), ti), ti ∈ T = {ti}Ni=1 ⊂ [0, T],

⇔ m(x(ti), ti) = 0

▶ This motivates a measurement model and data:

z(ti) | x(ti) ∼ (m(x(ti), ti))

z(ti)≜ 0, i = 1, . . . ,N.

(δ is the Dirac distribution)

Example: Logistic ODE ẏ = y(1− y)

(here: Z = X(1) − X(0)(1− X(0)))

Spoiler: This is the thing we want!

@nathanaelbosch 9

The likelihood model and the data
The likelihood and data relate the prior to the desired posterior: the numerical ODE solution

▶ Ideal goal (intractable): Want y(t) to satisfy the ODE

ẏ(t) = f (y(t), t)
using x(t)⇔ E1x(t) = f (E0x(t), t)

using x(t)⇔ 0 = E1x(t)− f (E0x(t), t) =: m(x(t), t).
▶ Easier goal: Satisfy the ODE on a discrete time grid

ẏ(ti) = f(y(ti), ti), ti ∈ T = {ti}Ni=1 ⊂ [0, T],

⇔ m(x(ti), ti) = 0

▶ This motivates a measurement model and data:

z(ti) | x(ti) ∼ (m(x(ti), ti))

z(ti)≜ 0, i = 1, . . . ,N.

(δ is the Dirac distribution)

Example: Logistic ODE ẏ = y(1− y)

(here: Z = X(1) − X(0)(1− X(0)))

Spoiler: This is the thing we want!

@nathanaelbosch 9

The likelihood model and the data
The likelihood and data relate the prior to the desired posterior: the numerical ODE solution

▶ Ideal goal (intractable): Want y(t) to satisfy the ODE

ẏ(t) = f (y(t), t)
using x(t)⇔ E1x(t) = f (E0x(t), t)
using x(t)⇔ 0 = E1x(t)− f (E0x(t), t)

=: m(x(t), t).
▶ Easier goal: Satisfy the ODE on a discrete time grid

ẏ(ti) = f(y(ti), ti), ti ∈ T = {ti}Ni=1 ⊂ [0, T],

⇔ m(x(ti), ti) = 0

▶ This motivates a measurement model and data:

z(ti) | x(ti) ∼ (m(x(ti), ti))

z(ti)≜ 0, i = 1, . . . ,N.

(δ is the Dirac distribution)

Example: Logistic ODE ẏ = y(1− y)

(here: Z = X(1) − X(0)(1− X(0)))

Spoiler: This is the thing we want!

@nathanaelbosch 9

The likelihood model and the data
The likelihood and data relate the prior to the desired posterior: the numerical ODE solution

▶ Ideal goal (intractable): Want y(t) to satisfy the ODE

ẏ(t) = f (y(t), t)
using x(t)⇔ E1x(t) = f (E0x(t), t)
using x(t)⇔ 0 = E1x(t)− f (E0x(t), t) =: m(x(t), t).

▶ Easier goal: Satisfy the ODE on a discrete time grid

ẏ(ti) = f(y(ti), ti), ti ∈ T = {ti}Ni=1 ⊂ [0, T],

⇔ m(x(ti), ti) = 0

▶ This motivates a measurement model and data:

z(ti) | x(ti) ∼ (m(x(ti), ti))

z(ti)≜ 0, i = 1, . . . ,N.

(δ is the Dirac distribution)

Example: Logistic ODE ẏ = y(1− y)

(here: Z = X(1) − X(0)(1− X(0)))

Spoiler: This is the thing we want!

@nathanaelbosch 9

The likelihood model and the data
The likelihood and data relate the prior to the desired posterior: the numerical ODE solution

▶ Ideal goal (intractable): Want y(t) to satisfy the ODE

ẏ(t) = f (y(t), t)
using x(t)⇔ E1x(t) = f (E0x(t), t)
using x(t)⇔ 0 = E1x(t)− f (E0x(t), t) =: m(x(t), t).

▶ Easier goal: Satisfy the ODE on a discrete time grid

ẏ(ti) = f(y(ti), ti), ti ∈ T = {ti}Ni=1 ⊂ [0, T],

⇔ m(x(ti), ti) = 0
▶ This motivates a measurement model and data:

z(ti) | x(ti) ∼ (m(x(ti), ti))

z(ti)≜ 0, i = 1, . . . ,N.

(δ is the Dirac distribution)

Example: Logistic ODE ẏ = y(1− y)

(here: Z = X(1) − X(0)(1− X(0)))

Spoiler: This is the thing we want!

@nathanaelbosch 9

The likelihood model and the data
The likelihood and data relate the prior to the desired posterior: the numerical ODE solution

▶ Ideal goal (intractable): Want y(t) to satisfy the ODE

ẏ(t) = f (y(t), t)
using x(t)⇔ E1x(t) = f (E0x(t), t)
using x(t)⇔ 0 = E1x(t)− f (E0x(t), t) =: m(x(t), t).

▶ Easier goal: Satisfy the ODE on a discrete time grid

ẏ(ti) = f(y(ti), ti), ti ∈ T = {ti}Ni=1 ⊂ [0, T],
⇔ m(x(ti), ti) = 0

▶ This motivates a measurement model and data:

z(ti) | x(ti) ∼ (m(x(ti), ti))

z(ti)≜ 0, i = 1, . . . ,N.

(δ is the Dirac distribution)

Example: Logistic ODE ẏ = y(1− y)

(here: Z = X(1) − X(0)(1− X(0)))

Spoiler: This is the thing we want!

@nathanaelbosch 9

The likelihood model and the data
The likelihood and data relate the prior to the desired posterior: the numerical ODE solution

▶ Ideal goal (intractable): Want y(t) to satisfy the ODE

ẏ(t) = f (y(t), t)
using x(t)⇔ E1x(t) = f (E0x(t), t)
using x(t)⇔ 0 = E1x(t)− f (E0x(t), t) =: m(x(t), t).

▶ Easier goal: Satisfy the ODE on a discrete time grid

ẏ(ti) = f(y(ti), ti), ti ∈ T = {ti}Ni=1 ⊂ [0, T],
⇔ m(x(ti), ti) = 0

▶ This motivates a measurement model and data:

z(ti) | x(ti) ∼ N (m(x(ti), ti), R)

z(ti)≜ 0, i = 1, . . . ,N.

(δ is the Dirac distribution)

Example: Logistic ODE ẏ = y(1− y)

(here: Z = X(1) − X(0)(1− X(0)))

Spoiler: This is the thing we want!

@nathanaelbosch 9

The likelihood model and the data
The likelihood and data relate the prior to the desired posterior: the numerical ODE solution

▶ Ideal goal (intractable): Want y(t) to satisfy the ODE

ẏ(t) = f (y(t), t)
using x(t)⇔ E1x(t) = f (E0x(t), t)
using x(t)⇔ 0 = E1x(t)− f (E0x(t), t) =: m(x(t), t).

▶ Easier goal: Satisfy the ODE on a discrete time grid

ẏ(ti) = f(y(ti), ti), ti ∈ T = {ti}Ni=1 ⊂ [0, T],
⇔ m(x(ti), ti) = 0

▶ This motivates a noiselessmeasurement model and data:

z(ti) | x(ti) ∼ N (m(x(ti), ti), 0)

z(ti)≜ 0, i = 1, . . . ,N.

(δ is the Dirac distribution)

Example: Logistic ODE ẏ = y(1− y)

(here: Z = X(1) − X(0)(1− X(0)))

Spoiler: This is the thing we want!

@nathanaelbosch 9

The likelihood model and the data
The likelihood and data relate the prior to the desired posterior: the numerical ODE solution

▶ Ideal goal (intractable): Want y(t) to satisfy the ODE

ẏ(t) = f (y(t), t)
using x(t)⇔ E1x(t) = f (E0x(t), t)
using x(t)⇔ 0 = E1x(t)− f (E0x(t), t) =: m(x(t), t).

▶ Easier goal: Satisfy the ODE on a discrete time grid

ẏ(ti) = f(y(ti), ti), ti ∈ T = {ti}Ni=1 ⊂ [0, T],
⇔ m(x(ti), ti) = 0

▶ This motivates a noiselessmeasurement model and data:

z(ti) | x(ti) ∼ δ (m(x(ti), ti))

z(ti)≜ 0, i = 1, . . . ,N.

(δ is the Dirac distribution)

Example: Logistic ODE ẏ = y(1− y)

(here: Z = X(1) − X(0)(1− X(0)))

Spoiler: This is the thing we want!

@nathanaelbosch 9

The likelihood model and the data
The likelihood and data relate the prior to the desired posterior: the numerical ODE solution

▶ Ideal goal (intractable): Want y(t) to satisfy the ODE

ẏ(t) = f (y(t), t)
using x(t)⇔ E1x(t) = f (E0x(t), t)
using x(t)⇔ 0 = E1x(t)− f (E0x(t), t) =: m(x(t), t).

▶ Easier goal: Satisfy the ODE on a discrete time grid

ẏ(ti) = f(y(ti), ti), ti ∈ T = {ti}Ni=1 ⊂ [0, T],
⇔ m(x(ti), ti) = 0

▶ This motivates a noiselessmeasurement model and data:

z(ti) | x(ti) ∼ δ (m(x(ti), ti))

z(ti)≜ 0, i = 1, . . . ,N.

(δ is the Dirac distribution)

Example: Logistic ODE ẏ = y(1− y)

(here: Z = X(1) − X(0)(1− X(0)))

Spoiler: This is the thing we want!

@nathanaelbosch 9

The likelihood model and the data
The likelihood and data relate the prior to the desired posterior: the numerical ODE solution

▶ Ideal goal (intractable): Want y(t) to satisfy the ODE

ẏ(t) = f (y(t), t)
using x(t)⇔ E1x(t) = f (E0x(t), t)
using x(t)⇔ 0 = E1x(t)− f (E0x(t), t) =: m(x(t), t).

▶ Easier goal: Satisfy the ODE on a discrete time grid

ẏ(ti) = f(y(ti), ti), ti ∈ T = {ti}Ni=1 ⊂ [0, T],
⇔ m(x(ti), ti) = 0

▶ This motivates a noiselessmeasurement model and data:

z(ti) | x(ti) ∼ δ (m(x(ti), ti))

z(ti)≜ 0, i = 1, . . . ,N.

(δ is the Dirac distribution)

Example: Logistic ODE ẏ = y(1− y)

(here: Z = X(1) − X(0)(1− X(0)))

Spoiler: This is the thing we want!

@nathanaelbosch 9

The likelihood model and the data
The likelihood and data relate the prior to the desired posterior: the numerical ODE solution

▶ Ideal goal (intractable): Want y(t) to satisfy the ODE

ẏ(t) = f (y(t), t)
using x(t)⇔ E1x(t) = f (E0x(t), t)
using x(t)⇔ 0 = E1x(t)− f (E0x(t), t) =: m(x(t), t).

▶ Easier goal: Satisfy the ODE on a discrete time grid

ẏ(ti) = f(y(ti), ti), ti ∈ T = {ti}Ni=1 ⊂ [0, T],
⇔ m(x(ti), ti) = 0

▶ This motivates a noiselessmeasurement model and data:

z(ti) | x(ti) ∼ δ (m(x(ti), ti))

z(ti)≜ 0, i = 1, . . . ,N.

(δ is the Dirac distribution)

Example: Logistic ODE ẏ = y(1− y)

(here: Z = X(1) − X(0)(1− X(0)))

Spoiler: This is the thing we want!

@nathanaelbosch 9

The likelihood model and the data
The likelihood and data relate the prior to the desired posterior: the numerical ODE solution

▶ Ideal goal (intractable): Want y(t) to satisfy the ODE

ẏ(t) = f (y(t), t)
using x(t)⇔ E1x(t) = f (E0x(t), t)
using x(t)⇔ 0 = E1x(t)− f (E0x(t), t) =: m(x(t), t).

▶ Easier goal: Satisfy the ODE on a discrete time grid

ẏ(ti) = f(y(ti), ti), ti ∈ T = {ti}Ni=1 ⊂ [0, T],
⇔ m(x(ti), ti) = 0

▶ This motivates a noiselessmeasurement model and data:

z(ti) | x(ti) ∼ δ (m(x(ti), ti))

z(ti)≜ 0, i = 1, . . . ,N.

(δ is the Dirac distribution)

Example: Logistic ODE ẏ = y(1− y)

(here: Z = X(1) − X(0)(1− X(0)))

Spoiler: This is the thing we want!

@nathanaelbosch 9

The likelihood model and the data
The likelihood and data relate the prior to the desired posterior: the numerical ODE solution

▶ Ideal goal (intractable): Want y(t) to satisfy the ODE

ẏ(t) = f (y(t), t)
using x(t)⇔ E1x(t) = f (E0x(t), t)
using x(t)⇔ 0 = E1x(t)− f (E0x(t), t) =: m(x(t), t).

▶ Easier goal: Satisfy the ODE on a discrete time grid

ẏ(ti) = f(y(ti), ti), ti ∈ T = {ti}Ni=1 ⊂ [0, T],
⇔ m(x(ti), ti) = 0

▶ This motivates a noiselessmeasurement model and data:

z(ti) | x(ti) ∼ δ (m(x(ti), ti))

z(ti)≜ 0, i = 1, . . . ,N.

(δ is the Dirac distribution)

Example: Logistic ODE ẏ = y(1− y)

(here: Z = X(1) − X(0)(1− X(0)))
Spoiler: This is the thing we want!@nathanaelbosch 9

Inference: Extended Kalman filtering and smoothing
Bayesian filters and smoothers estimate an unknown state (often continuous) from observations

Given a non-linear Gaussian state-estimation problem:

Initial distribution: x0 ∼ N (x0;µ0,Σ0) ,

Prior / dynamics: xi+1 | xi ∼ N (xi+1; g(xi),Qi) ,

Likelihood / measurement: zi | xi ∼ N (zi;m(xi), Ri) ,

Data: D = {zi}Ni=1.

The extended Kalman filter/smoother (EKF/EKS) recursively
computes Gaussian approximations:

Predict: p(xi | z1:i−1)

≈ N (xi;µP
i ,Σ

P
i),

Filter: p(xi | z1:i)

≈ N (xi;µi,Σi),

Smooth: p(xi | z1:N)

≈ N (xi;µS
i ,Σ

S
i),

Likelihood: p(zi | z1:i−1)

≈ N (zi; ẑi, Si).

EKF PREDICT

µP
i+1 = g(µi),

ΣP
i+1 = Jg(µi)ΣiJg(µi)

⊤ + Qi.

EKF UPDATE

ẑi = m(µP
i),

Si = Jm(µP
i)Σ

P
i Jm(µ

P
i)

⊤ + Ri,

Ki = ΣP
i Jm(µ

P
i)

⊤S−1
i ,

µi = µP
i + Ki (yi − ŷi) ,

Σi = ΣP
i − KiSiK⊤i .

Similarly SMOOTH.

@nathanaelbosch 10

Inference: Extended Kalman filtering and smoothing
Bayesian filters and smoothers estimate an unknown state (often continuous) from observations

Given a non-linear Gaussian state-estimation problem:

Initial distribution: x0 ∼ N (x0;µ0,Σ0) ,

Prior / dynamics: xi+1 | xi ∼ N (xi+1; g(xi),Qi) ,

Likelihood / measurement: zi | xi ∼ N (zi;m(xi), Ri) ,

Data: D = {zi}Ni=1.

The extended Kalman filter/smoother (EKF/EKS) recursively
computes Gaussian approximations:

Predict: p(xi | z1:i−1) ≈ N (xi;µP
i ,Σ

P
i),

Filter: p(xi | z1:i) ≈ N (xi;µi,Σi),

Smooth: p(xi | z1:N) ≈ N (xi;µS
i ,Σ

S
i),

Likelihood: p(zi | z1:i−1) ≈ N (zi; ẑi, Si).

EKF PREDICT

µP
i+1 = g(µi),

ΣP
i+1 = Jg(µi)ΣiJg(µi)

⊤ + Qi.

EKF UPDATE

ẑi = m(µP
i),

Si = Jm(µP
i)Σ

P
i Jm(µ

P
i)

⊤ + Ri,

Ki = ΣP
i Jm(µ

P
i)

⊤S−1
i ,

µi = µP
i + Ki (yi − ŷi) ,

Σi = ΣP
i − KiSiK⊤i .

Similarly SMOOTH.

@nathanaelbosch 10

Inference: Extended Kalman filtering and smoothing
Bayesian filters and smoothers estimate an unknown state (often continuous) from observations

Given a non-linear Gaussian state-estimation problem:

Initial distribution: x0 ∼ N (x0;µ0,Σ0) ,

Prior / dynamics: xi+1 | xi ∼ N (xi+1; g(xi),Qi) ,

Likelihood / measurement: zi | xi ∼ N (zi;m(xi), Ri) ,

Data: D = {zi}Ni=1.

The extended Kalman filter/smoother (EKF/EKS) recursively
computes Gaussian approximations:

Predict: p(xi | z1:i−1) ≈ N (xi;µP
i ,Σ

P
i),

Filter: p(xi | z1:i) ≈ N (xi;µi,Σi),

Smooth: p(xi | z1:N) ≈ N (xi;µS
i ,Σ

S
i),

Likelihood: p(zi | z1:i−1) ≈ N (zi; ẑi, Si).

EKF PREDICT

µP
i+1 = g(µi),

ΣP
i+1 = Jg(µi)ΣiJg(µi)

⊤ + Qi.

EKF UPDATE

ẑi = m(µP
i),

Si = Jm(µP
i)Σ

P
i Jm(µ

P
i)

⊤ + Ri,

Ki = ΣP
i Jm(µ

P
i)

⊤S−1
i ,

µi = µP
i + Ki (yi − ŷi) ,

Σi = ΣP
i − KiSiK⊤i .

Similarly SMOOTH.
@nathanaelbosch 10

Probabilistic numerical ODE solvers in code
We can solve ODEs with basically just an extended Kalman filter

Algorithm The extended Kalman ODE filter

1 procedure EXTENDED KALMAN ODE FILTER((µ−
0 ,Σ

−
0), (A,Q), (f, y0), {ti}Ni=1)

2 µ0,Σ0 ← KF_UPDATE(µ−
0 ,Σ

−
0 , E0, 0d×d, y0) � Initial update to fit the initial value

3 for k ∈ {1, . . . ,N} do
4 hk ← tk − tk−1 � Step size

5 µ−
k ,Σ

−
k ← KF_PREDICT(µk−1,Σk−1, A(hk),Q(hk)) � Kalman filter prediction

6 mk(x) := E1x− f(E0x, tk) � Define the non-linear observation model

7 µk,Σk ← EKF_UPDATE(µ−
k ,Σ

−
k ,mk, 0d×d, 0⃗d) � Extended Kalman filter update

8 end for
9 return (µk,Σk)

N
k=1

10 end procedure

EXTENDED KALMAN ODE SMOOTHER: Just run a RTS smoother after the filter!

@nathanaelbosch 11

Probabilistic numerical ODE solvers in action

@nathanaelbosch 12

Probabilistic numerical ODE solutions

@nathanaelbosch 13

The state of filtering-based probabilistic numerical ODE solvers
▶ Properties and features:

▶ Polynomial convergence rates [Kersting et al., 2020, Tronarp et al., 2021]

▶ A-stability [Tronarp et al., 2019]

▶ L-stable probabilistic exponential integrators [Bosch et al., 2023b]

▶ Connection to multi-step methods in Nordsieck form [Schober et al., 2019]

▶ Complexity: O
(
d3
)
for the A-stable semi-implicit method,

Complexity: O(d) for an explicit version with coarser covariances [Krämer et al., 2022]

▶ Step-size adaptation and calibration [Bosch et al., 2021]

▶ Parallel-in-time formulation withO(log(N)) complexity [Bosch et al., 2023a]

▶ More related differential equation problems:

▶ Higher-order ODEs, DAEs, Hamiltonian systems [Bosch et al., 2022]

▶ Boundary value problems (BVPs) [Krämer and Hennig, 2021]

▶ Partial differential equations (PDEs) via method of lines [Krämer et al., 2022]

▶ Inverse problems

▶ Probabilistic numerics-based parameter inference in ODEs [Tronarp et al., 2022]

▶ Efficient inference of time-varying latent forces [Schmidt et al., 2021]

Probabilistic Numerics: Computation as Machine Learning
Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022

@nathanaelbosch 14

The state of filtering-based probabilistic numerical ODE solvers
▶ Properties and features:

▶ Polynomial convergence rates [Kersting et al., 2020, Tronarp et al., 2021]

▶ A-stability [Tronarp et al., 2019]

▶ L-stable probabilistic exponential integrators [Bosch et al., 2023b]

▶ Connection to multi-step methods in Nordsieck form [Schober et al., 2019]

▶ Complexity: O
(
d3
)
for the A-stable semi-implicit method,

Complexity: O(d) for an explicit version with coarser covariances [Krämer et al., 2022]

▶ Step-size adaptation and calibration [Bosch et al., 2021]

▶ Parallel-in-time formulation withO(log(N)) complexity [Bosch et al., 2023a]

▶ More related differential equation problems:

▶ Higher-order ODEs, DAEs, Hamiltonian systems [Bosch et al., 2022]

▶ Boundary value problems (BVPs) [Krämer and Hennig, 2021]

▶ Partial differential equations (PDEs) via method of lines [Krämer et al., 2022]

▶ Inverse problems

▶ Probabilistic numerics-based parameter inference in ODEs [Tronarp et al., 2022]

▶ Efficient inference of time-varying latent forces [Schmidt et al., 2021]

Probabilistic Numerics: Computation as Machine Learning
Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022

@nathanaelbosch 14

The state of filtering-based probabilistic numerical ODE solvers
▶ Properties and features:

▶ Polynomial convergence rates [Kersting et al., 2020, Tronarp et al., 2021]

▶ A-stability [Tronarp et al., 2019]

▶ L-stable probabilistic exponential integrators [Bosch et al., 2023b]

▶ Connection to multi-step methods in Nordsieck form [Schober et al., 2019]

▶ Complexity: O
(
d3
)
for the A-stable semi-implicit method,

Complexity: O(d) for an explicit version with coarser covariances [Krämer et al., 2022]

▶ Step-size adaptation and calibration [Bosch et al., 2021]

▶ Parallel-in-time formulation withO(log(N)) complexity [Bosch et al., 2023a]

▶ More related differential equation problems:

▶ Higher-order ODEs, DAEs, Hamiltonian systems [Bosch et al., 2022]

▶ Boundary value problems (BVPs) [Krämer and Hennig, 2021]

▶ Partial differential equations (PDEs) via method of lines [Krämer et al., 2022]

▶ Inverse problems

▶ Probabilistic numerics-based parameter inference in ODEs [Tronarp et al., 2022]

▶ Efficient inference of time-varying latent forces [Schmidt et al., 2021]

Probabilistic Numerics: Computation as Machine Learning
Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022

@nathanaelbosch 14

The state of filtering-based probabilistic numerical ODE solvers
▶ Properties and features:

▶ Polynomial convergence rates [Kersting et al., 2020, Tronarp et al., 2021]

▶ A-stability [Tronarp et al., 2019]

▶ L-stable probabilistic exponential integrators [Bosch et al., 2023b]

▶ Connection to multi-step methods in Nordsieck form [Schober et al., 2019]

▶ Complexity: O
(
d3
)
for the A-stable semi-implicit method,

Complexity: O(d) for an explicit version with coarser covariances [Krämer et al., 2022]

▶ Step-size adaptation and calibration [Bosch et al., 2021]

▶ Parallel-in-time formulation withO(log(N)) complexity [Bosch et al., 2023a]

▶ More related differential equation problems:

▶ Higher-order ODEs, DAEs, Hamiltonian systems [Bosch et al., 2022]

▶ Boundary value problems (BVPs) [Krämer and Hennig, 2021]

▶ Partial differential equations (PDEs) via method of lines [Krämer et al., 2022]

▶ Inverse problems

▶ Probabilistic numerics-based parameter inference in ODEs [Tronarp et al., 2022]

▶ Efficient inference of time-varying latent forces [Schmidt et al., 2021]

Probabilistic Numerics: Computation as Machine Learning
Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022

@nathanaelbosch 14

The state of filtering-based probabilistic numerical ODE solvers
▶ Properties and features:

▶ Polynomial convergence rates [Kersting et al., 2020, Tronarp et al., 2021]

▶ A-stability [Tronarp et al., 2019]

▶ L-stable probabilistic exponential integrators [Bosch et al., 2023b]

▶ Connection to multi-step methods in Nordsieck form [Schober et al., 2019]

▶ Complexity: O
(
d3
)
for the A-stable semi-implicit method,

Complexity: O(d) for an explicit version with coarser covariances [Krämer et al., 2022]

▶ Step-size adaptation and calibration [Bosch et al., 2021]

▶ Parallel-in-time formulation withO(log(N)) complexity [Bosch et al., 2023a]

▶ More related differential equation problems:

▶ Higher-order ODEs, DAEs, Hamiltonian systems [Bosch et al., 2022]

▶ Boundary value problems (BVPs) [Krämer and Hennig, 2021]

▶ Partial differential equations (PDEs) via method of lines [Krämer et al., 2022]

▶ Inverse problems

▶ Probabilistic numerics-based parameter inference in ODEs [Tronarp et al., 2022]

▶ Efficient inference of time-varying latent forces [Schmidt et al., 2021]

Probabilistic Numerics: Computation as Machine Learning
Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022

@nathanaelbosch 14

The state of filtering-based probabilistic numerical ODE solvers
▶ Properties and features:

▶ Polynomial convergence rates [Kersting et al., 2020, Tronarp et al., 2021]

▶ A-stability [Tronarp et al., 2019]

▶ L-stable probabilistic exponential integrators [Bosch et al., 2023b]

▶ Connection to multi-step methods in Nordsieck form [Schober et al., 2019]

▶ Complexity: O
(
d3
)
for the A-stable semi-implicit method,

Complexity: O(d) for an explicit version with coarser covariances [Krämer et al., 2022]

▶ Step-size adaptation and calibration [Bosch et al., 2021]

▶ Parallel-in-time formulation withO(log(N)) complexity [Bosch et al., 2023a]

▶ More related differential equation problems:

▶ Higher-order ODEs, DAEs, Hamiltonian systems [Bosch et al., 2022]

▶ Boundary value problems (BVPs) [Krämer and Hennig, 2021]

▶ Partial differential equations (PDEs) via method of lines [Krämer et al., 2022]

▶ Inverse problems

▶ Probabilistic numerics-based parameter inference in ODEs [Tronarp et al., 2022]

▶ Efficient inference of time-varying latent forces [Schmidt et al., 2021]

Probabilistic Numerics: Computation as Machine Learning
Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022

@nathanaelbosch 14

The state of filtering-based probabilistic numerical ODE solvers
▶ Properties and features:

▶ Polynomial convergence rates [Kersting et al., 2020, Tronarp et al., 2021]

▶ A-stability [Tronarp et al., 2019]

▶ L-stable probabilistic exponential integrators [Bosch et al., 2023b]

▶ Connection to multi-step methods in Nordsieck form [Schober et al., 2019]

▶ Complexity: O
(
d3
)
for the A-stable semi-implicit method,

Complexity: O(d) for an explicit version with coarser covariances [Krämer et al., 2022]

▶ Step-size adaptation and calibration [Bosch et al., 2021]

▶ Parallel-in-time formulation withO(log(N)) complexity [Bosch et al., 2023a]

▶ More related differential equation problems:

▶ Higher-order ODEs, DAEs, Hamiltonian systems [Bosch et al., 2022]

▶ Boundary value problems (BVPs) [Krämer and Hennig, 2021]

▶ Partial differential equations (PDEs) via method of lines [Krämer et al., 2022]

▶ Inverse problems

▶ Probabilistic numerics-based parameter inference in ODEs [Tronarp et al., 2022]

▶ Efficient inference of time-varying latent forces [Schmidt et al., 2021]

Probabilistic Numerics: Computation as Machine Learning
Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022

@nathanaelbosch 14

The state of filtering-based probabilistic numerical ODE solvers
▶ Properties and features:

▶ Polynomial convergence rates [Kersting et al., 2020, Tronarp et al., 2021]

▶ A-stability [Tronarp et al., 2019]

▶ L-stable probabilistic exponential integrators [Bosch et al., 2023b]

▶ Connection to multi-step methods in Nordsieck form [Schober et al., 2019]

▶ Complexity: O
(
d3
)
for the A-stable semi-implicit method,

Complexity: O(d) for an explicit version with coarser covariances [Krämer et al., 2022]

▶ Step-size adaptation and calibration [Bosch et al., 2021]

▶ Parallel-in-time formulation withO(log(N)) complexity [Bosch et al., 2023a]

▶ More related differential equation problems:
▶ Higher-order ODEs, DAEs, Hamiltonian systems [Bosch et al., 2022]

▶ Boundary value problems (BVPs) [Krämer and Hennig, 2021]

▶ Partial differential equations (PDEs) via method of lines [Krämer et al., 2022]

▶ Inverse problems

▶ Probabilistic numerics-based parameter inference in ODEs [Tronarp et al., 2022]

▶ Efficient inference of time-varying latent forces [Schmidt et al., 2021]

Probabilistic Numerics: Computation as Machine Learning
Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022

@nathanaelbosch 14

The state of filtering-based probabilistic numerical ODE solvers
▶ Properties and features:

▶ Polynomial convergence rates [Kersting et al., 2020, Tronarp et al., 2021]

▶ A-stability [Tronarp et al., 2019]

▶ L-stable probabilistic exponential integrators [Bosch et al., 2023b]

▶ Connection to multi-step methods in Nordsieck form [Schober et al., 2019]

▶ Complexity: O
(
d3
)
for the A-stable semi-implicit method,

Complexity: O(d) for an explicit version with coarser covariances [Krämer et al., 2022]

▶ Step-size adaptation and calibration [Bosch et al., 2021]

▶ Parallel-in-time formulation withO(log(N)) complexity [Bosch et al., 2023a]

▶ More related differential equation problems:
▶ Higher-order ODEs, DAEs, Hamiltonian systems [Bosch et al., 2022]

▶ Boundary value problems (BVPs) [Krämer and Hennig, 2021]

▶ Partial differential equations (PDEs) via method of lines [Krämer et al., 2022]

▶ Inverse problems
▶ Probabilistic numerics-based parameter inference in ODEs [Tronarp et al., 2022]

▶ Efficient inference of time-varying latent forces [Schmidt et al., 2021]

Probabilistic Numerics: Computation as Machine Learning
Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022

@nathanaelbosch 14

The state of filtering-based probabilistic numerical ODE solvers
▶ Properties and features:

▶ Polynomial convergence rates [Kersting et al., 2020, Tronarp et al., 2021]

▶ A-stability [Tronarp et al., 2019]

▶ L-stable probabilistic exponential integrators [Bosch et al., 2023b]

▶ Connection to multi-step methods in Nordsieck form [Schober et al., 2019]

▶ Complexity: O
(
d3
)
for the A-stable semi-implicit method,

Complexity: O(d) for an explicit version with coarser covariances [Krämer et al., 2022]

▶ Step-size adaptation and calibration [Bosch et al., 2021]

▶ Parallel-in-time formulation withO(log(N)) complexity [Bosch et al., 2023a]

▶ More related differential equation problems:
▶ Higher-order ODEs, DAEs, Hamiltonian systems [Bosch et al., 2022]

▶ Boundary value problems (BVPs) [Krämer and Hennig, 2021]

▶ Partial differential equations (PDEs) via method of lines [Krämer et al., 2022]

▶ Inverse problems
▶ Probabilistic numerics-based parameter inference in ODEs [Tronarp et al., 2022]

▶ Efficient inference of time-varying latent forces [Schmidt et al., 2021]

Probabilistic Numerics: Computation as Machine Learning
Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022

@nathanaelbosch 14

The state of filtering-based probabilistic numerical ODE solvers
▶ Properties and features:

▶ Polynomial convergence rates [Kersting et al., 2020, Tronarp et al., 2021]

▶ A-stability [Tronarp et al., 2019]

▶ L-stable probabilistic exponential integrators [Bosch et al., 2023b]

▶ Connection to multi-step methods in Nordsieck form [Schober et al., 2019]

▶ Complexity: O
(
d3
)
for the A-stable semi-implicit method,

Complexity: O(d) for an explicit version with coarser covariances [Krämer et al., 2022]

▶ Step-size adaptation and calibration [Bosch et al., 2021]

▶ Parallel-in-time formulation withO(log(N)) complexity [Bosch et al., 2023a]

▶ More related differential equation problems:
▶ Higher-order ODEs, DAEs, Hamiltonian systems [Bosch et al., 2022]

▶ Boundary value problems (BVPs) [Krämer and Hennig, 2021]

▶ Partial differential equations (PDEs) via method of lines [Krämer et al., 2022]

▶ Inverse problems
▶ Probabilistic numerics-based parameter inference in ODEs [Tronarp et al., 2022]

▶ Efficient inference of time-varying latent forces [Schmidt et al., 2021]

Probabilistic Numerics: Computation as Machine Learning
Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022

@nathanaelbosch 14

Flexible Information Operators
or: “How to solve other problems than ODEs with essentially the same algorithm as before”

(it’s all just likelihood models)

@nathanaelbosch 15

Flexible Information Operators
or: “How to solve other problems than ODEs with essentially the same algorithm as before”

(it’s all just likelihood models)

@nathanaelbosch 15

Extending ODE filters to other related differential equation problems
ODE filters can solve much more than the ODEs that we saw so far! [Bosch et al., 2022, Krämer and Hennig, 2021]

Numerical problems setting: Initial value problem with first-order ODE

ẏ(t) = f(y(t), t), y(0) = y0.

This leads to the probabilistic state estimation problem:

Initial distribution: x(0) ∼ N
(
x(0);µ−

0 ,Σ
−
0
)

Prior / dynamics model: x(t+ h) | x(t) ∼ N (x(t+ h); A(h)x(t),Q(h))

ODE likelihood: z(ti) | x(ti) ∼ δ (z(ti); E1x(ti)− f(E0x(ti), ti)) , zi ≜ 0

Initial value likelihood: zinit | x(0) ∼ δ
(
zinit; E0x(0)

)
, zinit ≜ y0

The measurement model provides a very flexible way to easily encode desired properties.
But it’s all just Bayesian state estimation! ⇒ Inference with Bayesian filtering and smoothing.

@nathanaelbosch 16

Extending ODE filters to other related differential equation problems
ODE filters can solve much more than the ODEs that we saw so far! [Bosch et al., 2022, Krämer and Hennig, 2021]

Numerical problems setting: Initial value problem with second-order ODE

ÿ(t) = f(ẏ(t), y(t), t), y(0) = y0, ẏ(0) = ẏ0.

This leads to the probabilistic state estimation problem:

Initial distribution: x(0) ∼ N
(
x(0);µ−

0 ,Σ
−
0
)

Prior / dynamics model: x(t+ h) | x(t) ∼ N (x(t+ h); A(h)x(t),Q(h))

ODE likelihood: z(ti) | x(ti) ∼ δ (z(ti); E1x(ti)− f(E0x(ti), ti)) , zi ≜ 0

Initial value likelihood: zinit | x(0) ∼ δ
(
zinit; E0x(0)

)
, zinit ≜ y0

The measurement model provides a very flexible way to easily encode desired properties.
But it’s all just Bayesian state estimation! ⇒ Inference with Bayesian filtering and smoothing.

@nathanaelbosch 16

Extending ODE filters to other related differential equation problems
ODE filters can solve much more than the ODEs that we saw so far! [Bosch et al., 2022, Krämer and Hennig, 2021]

Numerical problems setting: Initial value problem with second-order ODE

ÿ(t) = f(ẏ(t), y(t), t), y(0) = y0, ẏ(0) = ẏ0.

This leads to the probabilistic state estimation problem:

Initial distribution: x(0) ∼ N
(
x(0);µ−

0 ,Σ
−
0
)

Prior / dynamics model: x(t+ h) | x(t) ∼ N (x(t+ h); A(h)x(t),Q(h))

ODE likelihood: z(ti) | x(ti) ∼ δ (z(ti); E2x(ti)− f(E1x(ti), E0x(ti), ti)) , zi ≜ 0

Initial value likelihood: zinit | x(0) ∼ δ
(
zinit; E0x(0)

)
, zinit ≜ y0

Initial derivative likelihood: zinit1 | x(0)∼ δ
(
zinit1 ; E1x(0)

)
, zinit1 ≜ ẏ0

The measurement model provides a very flexible way to easily encode desired properties.
But it’s all just Bayesian state estimation! ⇒ Inference with Bayesian filtering and smoothing.

@nathanaelbosch 16

Extending ODE filters to other related differential equation problems
ODE filters can solve much more than the ODEs that we saw so far! [Bosch et al., 2022, Krämer and Hennig, 2021]

Numerical problems setting: Initial value problem with first-order ODE and conserved quantities

ẏ(t) = f(y(t), t), y(0) = y0. g(y(t), ẏ(t)) = 0.

This leads to the probabilistic state estimation problem:

Initial distribution: x(0) ∼ N
(
x(0);µ−

0 ,Σ
−
0
)

Prior / dynamics model: x(t+ h) | x(t) ∼ N (x(t+ h); A(h)x(t),Q(h))

ODE likelihood: z(ti) | x(ti) ∼ δ (z(ti); E1x(ti)− f(E0x(ti), ti)) , zi ≜ 0

Initial value likelihood: zinit | x(0) ∼ δ
(
zinit; E0x(0)

)
, zinit ≜ y0

The measurement model provides a very flexible way to easily encode desired properties.
But it’s all just Bayesian state estimation! ⇒ Inference with Bayesian filtering and smoothing.

@nathanaelbosch 16

Extending ODE filters to other related differential equation problems
ODE filters can solve much more than the ODEs that we saw so far! [Bosch et al., 2022, Krämer and Hennig, 2021]

Numerical problems setting: Initial value problem with first-order ODE and conserved quantities

ẏ(t) = f(y(t), t), y(0) = y0. g(y(t), ẏ(t)) = 0.

This leads to the probabilistic state estimation problem:

Initial distribution: x(0) ∼ N
(
x(0);µ−

0 ,Σ
−
0
)

Prior / dynamics model: x(t+ h) | x(t) ∼ N (x(t+ h); A(h)x(t),Q(h))

ODE likelihood: z(ti) | x(ti) ∼ δ (z(ti); E1x(ti)− f(E0x(ti), ti)) , zi ≜ 0

Conservation law likelihood: zci (ti) | z(ti)∼ δ (zci (ti); g(E0x(t), E1x(t))) , zci ≜ 0

Initial value likelihood: zinit | x(0) ∼ δ
(
zinit; E0x(0)

)
, zinit ≜ y0

The measurement model provides a very flexible way to easily encode desired properties.
But it’s all just Bayesian state estimation! ⇒ Inference with Bayesian filtering and smoothing.

@nathanaelbosch 16

Extending ODE filters to other related differential equation problems
ODE filters can solve much more than the ODEs that we saw so far! [Bosch et al., 2022, Krämer and Hennig, 2021]

Numerical problems setting: Initial value problem with second-order ODE and conserved quantities

ÿ(t) = f(ẏ(t), y(t), t), y(0) = y0, ẏ(0) = ẏ0. g(y(t), ẏ(t)) = 0.

This leads to the probabilistic state estimation problem:

Initial distribution: x(0) ∼ N
(
x(0);µ−

0 ,Σ
−
0
)

Prior / dynamics model: x(t+ h) | x(t) ∼ N (x(t+ h); A(h)x(t),Q(h))

ODE likelihood: z(ti) | x(ti) ∼ δ (z(ti); E2x(ti)− f(E1x(ti), E0x(ti), ti)) , zi ≜ 0

Conservation law likelihood: zci (ti) | z(ti)∼ δ (zci (ti); g(E0x(t), E1x(t))) , zci ≜ 0

Initial value likelihood: zinit | x(0) ∼ δ
(
zinit; E0x(0)

)
, zinit ≜ y0

Initial derivative likelihood: zinit1 | x(0)∼ δ
(
zinit1 ; E1x(0)

)
, zinit1 ≜ ẏ0

The measurement model provides a very flexible way to easily encode desired properties.
But it’s all just Bayesian state estimation! ⇒ Inference with Bayesian filtering and smoothing.

@nathanaelbosch 16

Extending ODE filters to other related differential equation problems
ODE filters can solve much more than the ODEs that we saw so far! [Bosch et al., 2022, Krämer and Hennig, 2021]

Numerical problems setting: Initial value problem with second-order ODE and conserved quantities

ÿ(t) = f(ẏ(t), y(t), t), y(0) = y0, ẏ(0) = ẏ0. g(y(t), ẏ(t)) = 0.

This leads to the probabilistic state estimation problem:

Initial distribution: x(0) ∼ N
(
x(0);µ−

0 ,Σ
−
0
)

Prior / dynamics model: x(t+ h) | x(t) ∼ N (x(t+ h); A(h)x(t),Q(h))

ODE likelihood: z(ti) | x(ti) ∼ δ (z(ti); E2x(ti)− f(E1x(ti), E0x(ti), ti)) , zi ≜ 0

Conservation law likelihood: zci (ti) | z(ti)∼ δ (zci (ti); g(E0x(t), E1x(t))) , zci ≜ 0

Initial value likelihood: zinit | x(0) ∼ δ
(
zinit; E0x(0)

)
, zinit ≜ y0

Initial derivative likelihood: zinit1 | x(0)∼ δ
(
zinit1 ; E1x(0)

)
, zinit1 ≜ ẏ0

The measurement model provides a very flexible way to easily encode desired properties.
But it’s all just Bayesian state estimation! ⇒ Inference with Bayesian filtering and smoothing.

First-order ODE

C
o
n
v
e
n
ti

o
n

a
l

Second-order ODE

C
o
n
se

rv
e
d

 e
n
e
rg

y

@nathanaelbosch 16

Extending ODE filters to other related differential equation problems
ODE filters can solve much more than the ODEs that we saw so far! [Bosch et al., 2022, Krämer and Hennig, 2021]

Numerical problems setting: Initial value problem with second-order ODE and conserved quantities

ÿ(t) = f(ẏ(t), y(t), t), y(0) = y0, ẏ(0) = ẏ0. g(y(t), ẏ(t)) = 0.

This leads to the probabilistic state estimation problem:

Initial distribution: x(0) ∼ N
(
x(0);µ−

0 ,Σ
−
0
)

Prior / dynamics model: x(t+ h) | x(t) ∼ N (x(t+ h); A(h)x(t),Q(h))

ODE likelihood: z(ti) | x(ti) ∼ δ (z(ti); E2x(ti)− f(E1x(ti), E0x(ti), ti)) , zi ≜ 0

Conservation law likelihood: zci (ti) | z(ti)∼ δ (zci (ti); g(E0x(t), E1x(t))) , zci ≜ 0

Initial value likelihood: zinit | x(0) ∼ δ
(
zinit; E0x(0)

)
, zinit ≜ y0

Initial derivative likelihood: zinit1 | x(0)∼ δ
(
zinit1 ; E1x(0)

)
, zinit1 ≜ ẏ0

The measurement model provides a very flexible way to easily encode desired properties.
But it’s all just Bayesian state estimation! ⇒ Inference with Bayesian filtering and smoothing.

@nathanaelbosch 16

Extending ODE filters to other related differential equation problems
ODE filters can solve much more than the ODEs that we saw so far! [Bosch et al., 2022, Krämer and Hennig, 2021]

Numerical problems setting: Initial value problem with differential-algebraic equation (DAE)

0 = F (ẏ(t), y(t), t) , y(0) = y0.

This leads to the probabilistic state estimation problem:

Initial distribution: x(0) ∼ N
(
x(0);µ−

0 ,Σ
−
0
)

Prior / dynamics model: x(t+ h) | x(t) ∼ N (x(t+ h); A(h)x(t),Q(h))

ODE likelihood: z(ti) | x(ti) ∼ δ (z(ti); E1x(ti)− f(E0x(ti), ti)) , zi ≜ 0

Initial value likelihood: zinit | x(0) ∼ δ
(
zinit; E0x(0)

)
, zinit ≜ y0

The measurement model provides a very flexible way to easily encode desired properties.
But it’s all just Bayesian state estimation! ⇒ Inference with Bayesian filtering and smoothing.

@nathanaelbosch 16

Extending ODE filters to other related differential equation problems
ODE filters can solve much more than the ODEs that we saw so far! [Bosch et al., 2022, Krämer and Hennig, 2021]

Numerical problems setting: Initial value problem with differential-algebraic equation (DAE)

0 = F (ẏ(t), y(t), t) , y(0) = y0.

This leads to the probabilistic state estimation problem:

Initial distribution: x(0) ∼ N
(
x(0);µ−

0 ,Σ
−
0
)

Prior / dynamics model: x(t+ h) | x(t) ∼ N (x(t+ h); A(h)x(t),Q(h))

DAE likelihood: z(ti) | x(ti) ∼ δ (z(ti); F (E1x(ti), E0x(ti), ti)) , zi ≜ 0

Initial value likelihood: zinit | x(0) ∼ δ
(
zinit; E0x(0)

)
, zinit ≜ y0

The measurement model provides a very flexible way to easily encode desired properties.
But it’s all just Bayesian state estimation! ⇒ Inference with Bayesian filtering and smoothing.

@nathanaelbosch 16

Extending ODE filters to other related differential equation problems
ODE filters can solve much more than the ODEs that we saw so far! [Bosch et al., 2022, Krämer and Hennig, 2021]

Numerical problems setting: Boundary value problem (BVP) with first-order ODE

ẏ(t) = f(y(t), t), Ly(0) = y0, Ry(T) = yT.

This leads to the probabilistic state estimation problem:

Initial distribution: x(0) ∼ N
(
x(0);µ−

0 ,Σ
−
0
)

Prior / dynamics model: x(t+ h) | x(t) ∼ N (x(t+ h); A(h)x(t),Q(h))

ODE likelihood: z(ti) | x(ti) ∼ δ (z(ti); E1x(ti)− f(E0x(ti), ti)) , zi ≜ 0

Initial value likelihood: zinit | x(0) ∼ δ
(
zinit; E0x(0)

)
, zinit ≜ y0

The measurement model provides a very flexible way to easily encode desired properties.
But it’s all just Bayesian state estimation! ⇒ Inference with Bayesian filtering and smoothing.

@nathanaelbosch 16

Extending ODE filters to other related differential equation problems
ODE filters can solve much more than the ODEs that we saw so far! [Bosch et al., 2022, Krämer and Hennig, 2021]

Numerical problems setting: Boundary value problem (BVP) with first-order ODE

ẏ(t) = f(y(t), t), Ly(0) = y0, Ry(T) = yT.

This leads to the probabilistic state estimation problem:

Initial distribution: x(0) ∼ N
(
x(0);µ−

0 ,Σ
−
0
)

Prior / dynamics model: x(t+ h) | x(t) ∼ N (x(t+ h); A(h)x(t),Q(h))

ODE likelihood: z(ti) | x(ti) ∼ δ (z(ti); E1x(ti)− f(E0x(ti), ti)) , zi ≜ 0

Initial value likelihood: zinit | x(0) ∼ δ
(
zinit; LE0x(0)

)
, zinit ≜ y0

Boundary value likelihood: zR1 | x(T)∼ δ
(
zR1 ; RE0x(T)

)
, zinit1 ≜ yT

The measurement model provides a very flexible way to easily encode desired properties.
But it’s all just Bayesian state estimation! ⇒ Inference with Bayesian filtering and smoothing.

@nathanaelbosch 16

Extending ODE filters to other related differential equation problems
ODE filters can solve much more than the ODEs that we saw so far! [Bosch et al., 2022, Krämer and Hennig, 2021]

Numerical problems setting: Boundary value problem (BVP) with first-order ODE

ẏ(t) = f(y(t), t), Ly(0) = y0, Ry(T) = yT.

This leads to the probabilistic state estimation problem:

Initial distribution: x(0) ∼ N
(
x(0);µ−

0 ,Σ
−
0
)

Prior / dynamics model: x(t+ h) | x(t) ∼ N (x(t+ h); A(h)x(t),Q(h))

ODE likelihood: z(ti) | x(ti) ∼ δ (z(ti); E1x(ti)− f(E0x(ti), ti)) , zi ≜ 0

Initial value likelihood: zinit | x(0) ∼ δ
(
zinit; LE0x(0)

)
, zinit ≜ y0

Boundary value likelihood: zR1 | x(T)∼ δ
(
zR1 ; RE0x(T)

)
, zinit1 ≜ yT

The measurement model provides a very flexible way to easily encode desired properties.
But it’s all just Bayesian state estimation! ⇒ Inference with Bayesian filtering and smoothing.

@nathanaelbosch 16

Probabilistic Numerics for ODE Parameter Inference
Using the ODE solution as a “physics-enhanced” prior for regression

@nathanaelbosch 17

“Forward” and “Inverse” Problems
Going from formula to plot, or from plot to formula

Forward Problem

ẏθ = fθ(yθ, t) yθ(t0) = y0(θ).

solve
===⇒

Inverse Problem

p(θ | D) ∝ p(D | θ)p(θ)

Problem: The marginal likelihood
p(D | θ) =

∏N
i=1N (u(ti); yθ(ti), Rθ)

is intractable (because yθ is intractable)

find⇐==

@nathanaelbosch 18

“Forward” and “Inverse” Problems
Going from formula to plot, or from plot to formula

Forward Problem

ẏθ = fθ(yθ, t) yθ(t0) = y0(θ).

solve
===⇒

Inverse Problem

p(θ | D) ∝ p(D | θ)p(θ)

Problem: The marginal likelihood
p(D | θ) =

∏N
i=1N (u(ti); yθ(ti), Rθ)

is intractable (because yθ is intractable)

find⇐==

@nathanaelbosch 18

“Forward” and “Inverse” Problems
Going from formula to plot, or from plot to formula

Forward Problem

ẏθ = fθ(yθ, t) yθ(t0) = y0(θ).

solve
===⇒

Inverse Problem

p(θ | D) ∝ p(D | θ)p(θ)

Problem: The marginal likelihood
p(D | θ) =

∏N
i=1N (u(ti); yθ(ti), Rθ)

is intractable (because yθ is intractable)

find⇐==

@nathanaelbosch 18

Between classic integration and gradient matching
We’re doing both: Integrating first, then GP regression

▶ Classical Numerical Integration
▶ (i) Solve the IVP to compute ŷθ(t)
▶ (ii) Approximate the marginal likelihood as M̂(θ) =

∏
n N (u(tn); ŷθ(tn), Rθ)

▶ (iii) Optimize to get θ̂ = arg maxM̂(θ)

▶ Gradient Matching
▶ (i) Fit a curve ŷ(t) to the data {u(ti)}i=1N
▶ (ii) Estimate θ by minimizing ˙̂y(t)− fθ(ŷ(t))

Exists in both classic (splines) or probabilistic versions (GPs)
▶ Probabilistic Numerical Integration

M̂PN(θ, κ) =

∫ ∏
n
N (u(tn); y(tn), Rθ)︸ ︷︷ ︸

Likelihood

· pPN (y(t1:N) | θ, κ)︸ ︷︷ ︸
PN ODE Solution

dy(t1:N) (1)

▶ (i) Probabilistically solve IVP to compute pPN(y(t) | θ, κ)
▶ (ii) Perform Kalman filtering on the data, with pPN as a “physics-enhanced” prior
▶ (iii) Optimize the approximate marginal likelihood

@nathanaelbosch 19

Between classic integration and gradient matching
We’re doing both: Integrating first, then GP regression

▶ Classical Numerical Integration
▶ (i) Solve the IVP to compute ŷθ(t)
▶ (ii) Approximate the marginal likelihood as M̂(θ) =

∏
n N (u(tn); ŷθ(tn), Rθ)

▶ (iii) Optimize to get θ̂ = arg maxM̂(θ)
▶ Gradient Matching

▶ (i) Fit a curve ŷ(t) to the data {u(ti)}i=1N
▶ (ii) Estimate θ by minimizing ˙̂y(t)− fθ(ŷ(t))

Exists in both classic (splines) or probabilistic versions (GPs)

▶ Probabilistic Numerical Integration

M̂PN(θ, κ) =

∫ ∏
n
N (u(tn); y(tn), Rθ)︸ ︷︷ ︸

Likelihood

· pPN (y(t1:N) | θ, κ)︸ ︷︷ ︸
PN ODE Solution

dy(t1:N) (1)

▶ (i) Probabilistically solve IVP to compute pPN(y(t) | θ, κ)
▶ (ii) Perform Kalman filtering on the data, with pPN as a “physics-enhanced” prior
▶ (iii) Optimize the approximate marginal likelihood

@nathanaelbosch 19

Between classic integration and gradient matching
We’re doing both: Integrating first, then GP regression

▶ Classical Numerical Integration
▶ (i) Solve the IVP to compute ŷθ(t)
▶ (ii) Approximate the marginal likelihood as M̂(θ) =

∏
n N (u(tn); ŷθ(tn), Rθ)

▶ (iii) Optimize to get θ̂ = arg maxM̂(θ)
▶ Gradient Matching

▶ (i) Fit a curve ŷ(t) to the data {u(ti)}i=1N
▶ (ii) Estimate θ by minimizing ˙̂y(t)− fθ(ŷ(t))

Exists in both classic (splines) or probabilistic versions (GPs)
▶ Probabilistic Numerical Integration

M̂PN(θ, κ) =

∫ ∏
n
N (u(tn); y(tn), Rθ)︸ ︷︷ ︸

Likelihood

· pPN (y(t1:N) | θ, κ)︸ ︷︷ ︸
PN ODE Solution

dy(t1:N) (1)

▶ (i) Probabilistically solve IVP to compute pPN(y(t) | θ, κ)
▶ (ii) Perform Kalman filtering on the data, with pPN as a “physics-enhanced” prior
▶ (iii) Optimize the approximate marginal likelihood

@nathanaelbosch 19

Between classic integration and gradient matching
We’re doing both: Integrating first, then GP regression

▶ Classical Numerical Integration
▶ (i) Solve the IVP to compute ŷθ(t)
▶ (ii) Approximate the marginal likelihood as M̂(θ) =

∏
n N (u(tn); ŷθ(tn), Rθ)

▶ (iii) Optimize to get θ̂ = arg maxM̂(θ)
▶ Gradient Matching

▶ (i) Fit a curve ŷ(t) to the data {u(ti)}i=1N
▶ (ii) Estimate θ by minimizing ˙̂y(t)− fθ(ŷ(t))

Exists in both classic (splines) or probabilistic versions (GPs)
▶ Probabilistic Numerical Integration

M̂PN(θ, κ) =

∫ ∏
n
N (u(tn); y(tn), Rθ)︸ ︷︷ ︸

Likelihood

· pPN (y(t1:N) | θ, κ)︸ ︷︷ ︸
PN ODE Solution

dy(t1:N) (1)

▶ (i) Probabilistically solve IVP to compute pPN(y(t) | θ, κ)
▶ (ii) Perform Kalman filtering on the data, with pPN as a “physics-enhanced” prior
▶ (iii) Optimize the approximate marginal likelihood

@nathanaelbosch 19

Between classic integration and gradient matching
We’re doing both: Integrating first, then GP regression

▶ Classical Numerical Integration
▶ (i) Solve the IVP to compute ŷθ(t)
▶ (ii) Approximate the marginal likelihood as M̂(θ) =

∏
n N (u(tn); ŷθ(tn), Rθ)

▶ (iii) Optimize to get θ̂ = arg maxM̂(θ)
▶ Gradient Matching

▶ (i) Fit a curve ŷ(t) to the data {u(ti)}i=1N
▶ (ii) Estimate θ by minimizing ˙̂y(t)− fθ(ŷ(t))

Exists in both classic (splines) or probabilistic versions (GPs)
▶ Probabilistic Numerical Integration

M̂PN(θ, κ) =

∫ ∏
n
N (u(tn); y(tn), Rθ)︸ ︷︷ ︸

Likelihood

· pPN (y(t1:N) | θ, κ)︸ ︷︷ ︸
PN ODE Solution

dy(t1:N) (1)

▶ (i) Probabilistically solve IVP to compute pPN(y(t) | θ, κ)

▶ (ii) Perform Kalman filtering on the data, with pPN as a “physics-enhanced” prior
▶ (iii) Optimize the approximate marginal likelihood

@nathanaelbosch 19

Between classic integration and gradient matching
We’re doing both: Integrating first, then GP regression

▶ Classical Numerical Integration
▶ (i) Solve the IVP to compute ŷθ(t)
▶ (ii) Approximate the marginal likelihood as M̂(θ) =

∏
n N (u(tn); ŷθ(tn), Rθ)

▶ (iii) Optimize to get θ̂ = arg maxM̂(θ)
▶ Gradient Matching

▶ (i) Fit a curve ŷ(t) to the data {u(ti)}i=1N
▶ (ii) Estimate θ by minimizing ˙̂y(t)− fθ(ŷ(t))

Exists in both classic (splines) or probabilistic versions (GPs)
▶ Probabilistic Numerical Integration

M̂PN(θ, κ) =

∫ ∏
n
N (u(tn); y(tn), Rθ)︸ ︷︷ ︸

Likelihood

· pPN (y(t1:N) | θ, κ)︸ ︷︷ ︸
PN ODE Solution

dy(t1:N) (1)

▶ (i) Probabilistically solve IVP to compute pPN(y(t) | θ, κ)
▶ (ii) Perform Kalman filtering on the data, with pPN as a “physics-enhanced” prior

▶ (iii) Optimize the approximate marginal likelihood

@nathanaelbosch 19

Between classic integration and gradient matching
We’re doing both: Integrating first, then GP regression

▶ Classical Numerical Integration
▶ (i) Solve the IVP to compute ŷθ(t)
▶ (ii) Approximate the marginal likelihood as M̂(θ) =

∏
n N (u(tn); ŷθ(tn), Rθ)

▶ (iii) Optimize to get θ̂ = arg maxM̂(θ)
▶ Gradient Matching

▶ (i) Fit a curve ŷ(t) to the data {u(ti)}i=1N
▶ (ii) Estimate θ by minimizing ˙̂y(t)− fθ(ŷ(t))

Exists in both classic (splines) or probabilistic versions (GPs)
▶ Probabilistic Numerical Integration

M̂PN(θ, κ) =

∫ ∏
n
N (u(tn); y(tn), Rθ)︸ ︷︷ ︸

Likelihood

· pPN (y(t1:N) | θ, κ)︸ ︷︷ ︸
PN ODE Solution

dy(t1:N) (1)

▶ (i) Probabilistically solve IVP to compute pPN(y(t) | θ, κ)
▶ (ii) Perform Kalman filtering on the data, with pPN as a “physics-enhanced” prior
▶ (iii) Optimize the approximate marginal likelihood

@nathanaelbosch 19

Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=1@nathanaelbosch 20

Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=2@nathanaelbosch 20

Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=3@nathanaelbosch 20

Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=4@nathanaelbosch 20

Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=5@nathanaelbosch 20

Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=10@nathanaelbosch 20

Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=15@nathanaelbosch 20

Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=20@nathanaelbosch 20

Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=25@nathanaelbosch 20

Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=30@nathanaelbosch 20

Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=35@nathanaelbosch 20

Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=40@nathanaelbosch 20

Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=45@nathanaelbosch 20

Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=50@nathanaelbosch 20

Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=55@nathanaelbosch 20

Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=60@nathanaelbosch 20

Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=61@nathanaelbosch 20

Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=62@nathanaelbosch 20

Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=63@nathanaelbosch 20

Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=63@nathanaelbosch 20

Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=64@nathanaelbosch 20

Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=65@nathanaelbosch 20

Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=66@nathanaelbosch 20

Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=67@nathanaelbosch 20

Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=68@nathanaelbosch 20

Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=69@nathanaelbosch 20

Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=70@nathanaelbosch 20

Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=71@nathanaelbosch 20

Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=72@nathanaelbosch 20

Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=73@nathanaelbosch 20

Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=74@nathanaelbosch 20

Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=75@nathanaelbosch 20

Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=76@nathanaelbosch 20

Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=77@nathanaelbosch 20

Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=78@nathanaelbosch 20

Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=79@nathanaelbosch 20

Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=80@nathanaelbosch 20

Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=90@nathanaelbosch 20

Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=100@nathanaelbosch 20

Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=100 DONE@nathanaelbosch 20

Probabilistic numerics can help escape local optima
By becoming uncertain enough about the ODE solution the method can interpolate the data and continue from there

0 10

-2

2

0 10

-2

2

0 10

-2

2

0 10

-2

2

0 10

-2

2
A B

C D E

RK

FENRIR

Position

Velocity

Data

Figure: Learning the length of a simple pendulum with Runge–Kutta (RK) and probabilistic numerics (FENRIR).
Out-of-phase initial condition shown on the left, optimization progress shown left to right.

@nathanaelbosch 21

Gradient-based parameter inference in a Hodgkin–Huxley neuron

@nathanaelbosch 22

Summary
▶ ODE solving is state estimation
⇒ treat initial value problems as state estimation problems

▶ “ODE filters”: How to solve ODEs with Bayesian filtering and smoothing
▶ Flexible information operators to solve more than just standard ODEs
▶ Parameter inference: Being uncertain about the ODE solution allows you to update on data

Software packages https:∕∕github.com∕nathanaelbosch∕ProbNumDiffEq.jl

]add ProbNumDiffEq

https:∕∕github.com∕probabilistic-numerics∕probnum

pip install probnum

https:∕∕github.com∕pnkraemer∕probdiffeq
pip install probdiffeq

@nathanaelbosch 23

https://github.com/nathanaelbosch/ProbNumDiffEq.jl
https://github.com/probabilistic-numerics/probnum
https://github.com/pnkraemer/probdiffeq

Bibliography I

▶ Bosch, N., Corenflos, A., Yaghoobi, F., Tronarp, F., Hennig, P., and Särkkä, S. (2023a).
Parallel-in-time probabilistic numerical ODE solvers.

▶ Bosch, N., Hennig, P., and Tronarp, F. (2021).
Calibrated adaptive probabilistic ODE solvers.
In Banerjee, A. and Fukumizu, K., editors, Proceedings of The 24th International Conference on
Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine Learning Research, pages
3466–3474. PMLR.

▶ Bosch, N., Hennig, P., and Tronarp, F. (2023b).
Probabilistic exponential integrators.
In Thirty-seventh Conference on Neural Information Processing Systems.

▶ Bosch, N., Tronarp, F., and Hennig, P. (2022).
Pick-and-mix information operators for probabilistic ODE solvers.
In Camps-Valls, G., Ruiz, F. J. R., and Valera, I., editors, Proceedings of The 25th International
Conference on Artificial Intelligence and Statistics, volume 151 of Proceedings of Machine Learning
Research, pages 10015–10027. PMLR.

@nathanaelbosch 24

Bibliography II

▶ Kersting, H., Sullivan, T. J., and Hennig, P. (2020).
Convergence rates of gaussian ode filters.
Statistics and Computing, 30(6):1791–1816.

▶ Krämer, N., Bosch, N., Schmidt, J., and Hennig, P. (2022).
Probabilistic ODE solutions in millions of dimensions.
In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., and Sabato, S., editors, Proceedings of
the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine
Learning Research, pages 11634–11649. PMLR.

▶ Krämer, N. and Hennig, P. (2020).
Stable implementation of probabilistic ode solvers.
CoRR.

▶ Krämer, N. and Hennig, P. (2021).
Linear-time probabilistic solution of boundary value problems.
In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W., editors, Advances in Neural
Information Processing Systems, volume 34, pages 11160–11171. Curran Associates, Inc.

@nathanaelbosch 25

Bibliography III

▶ Krämer, N., Schmidt, J., and Hennig, P. (2022).
Probabilistic numerical method of lines for time-dependent partial differential equations.
In Camps-Valls, G., Ruiz, F. J. R., and Valera, I., editors, Proceedings of The 25th International
Conference on Artificial Intelligence and Statistics, volume 151 of Proceedings of Machine Learning
Research, pages 625–639. PMLR.

▶ Schmidt, J., Krämer, N., and Hennig, P. (2021).
A probabilistic state space model for joint inference from differential equations and data.
In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W., editors, Advances in Neural
Information Processing Systems, volume 34, pages 12374–12385. Curran Associates, Inc.

▶ Schober, M., Särkkä, S., and Hennig, P. (2019).
A probabilistic model for the numerical solution of initial value problems.
Statistics and Computing, 29(1):99–122.

@nathanaelbosch 26

Bibliography IV

▶ Tronarp, F., Bosch, N., and Hennig, P. (2022).
Fenrir: Physics-enhanced regression for initial value problems.
In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., and Sabato, S., editors, Proceedings of
the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine
Learning Research, pages 21776–21794. PMLR.

▶ Tronarp, F., Kersting, H., Särkkä, S., and Hennig, P. (2019).
Probabilistic solutions to ordinary differential equations as nonlinear Bayesian filtering: a new
perspective.
Statistics and Computing, 29(6):1297–1315.

▶ Tronarp, F., Särkkä, S., and Hennig, P. (2021).
Bayesian ode solvers: the maximum a posteriori estimate.
Statistics and Computing, 31(3):23.

@nathanaelbosch 27

BACKUP

@nathanaelbosch 28

Background: Extended Kalman filtering and smoothing
Bayesian filters and smoothers estimate an unknown state (often continuous) from observations

Non-linear Gaussian state-estimation problem:

Initial distribution: x0 ∼ N (x0;µ0,Σ0) ,

Prior / dynamics: xi+1 | xi ∼ N (xi+1; f(xi),Qi) ,

Likelihood / measurement: zi | xi ∼ N (zi;m(xi), Ri) ,

Data: D = {zi}Ni=1.

The extended Kalman filter/smoother (EKF/EKS) recursively
computes Gaussian approximations:

Predict: p(xi | z1:i−1) ≈ N (xi;µP
i ,Σ

P
i),

Filter: p(xi | z1:i) ≈ N (xi;µi,Σi),

Smooth: p(xi | z1:N) ≈ N (xi;µS
i ,Σ

S
i),

Likelihood: p(zi | z1:i−1) ≈ N (zi; ẑi, Si).

EKF PREDICT

µP
i+1 = f(µi),

ΣP
i+1 = Jf(µi)ΣiJf(µi)

⊤ + Qi.

EKF UPDATE

ẑi = m(µP
i),

Si = Jm(µP
i)Σ

P
i Jm(µ

P
i)

⊤ + Ri,

Ki = ΣP
i Jm(µ

P
i)

⊤S−1
i ,

µi = µP
i + Ki (yi − ŷi) ,

Σi = ΣP
i − KiSiK⊤i .

Similarly SMOOTH.
@nathanaelbosch 29

The extended Kalman ODE filter – building blocks
The well-known predict and update steps for (extended) Kalman filtering

Algorithm Kalman filter prediction
1 procedure KF_PREDICT(µ,Σ, A,Q)
2 µP ← Aµ � Predict mean

3 ΣP ← AΣA⊤ + Q � Predict covariance

4 return µP,ΣP

5 end procedure

Algorithm Extended Kalman filter update
1 procedure EKF_UPDATE(µ,Σ, h, R, y)
2 ŷ← h(µ) � evaluate the observation model

3 H← Jh(µ) � Jacobian of the observation model

4 S← HΣH⊤ + R � Measurement covariance

5 K← ΣH⊤S−1 � Kalman gain

6 µF ← µ+ K(y− ŷ) � update mean

7 ΣF ← Σ− KSK⊤ � update covariance

8 return µF,ΣF

9 end procedure

(KF_UPDATE analog but with affine h)

@nathanaelbosch 30

Local calibration and step-size adaptation
Fixed steps — the vanilla way as introduced so far

Calibration
▶ Problem: The Gauss–Markov prior

has hyperparameters. How to
choose them?

▶ Most notably: The diffusion σ
(basically acts as an output scale)

▶ Solution: (Quasi-)MLE
(can be done in closed form here)

Step-size adaptation
▶ Local error estimates from

measurement residuals
▶ Step-size selection with PI-control

(similar as in classic solvers)

@nathanaelbosch 31

Local calibration and step-size adaptation
Fixed steps — the vanilla way as introduced so far

Calibration
▶ Problem: The Gauss–Markov prior

has hyperparameters. How to
choose them?

▶ Most notably: The diffusion σ
(basically acts as an output scale)

▶ Solution: (Quasi-)MLE
(can be done in closed form here)

Step-size adaptation
▶ Local error estimates from

measurement residuals
▶ Step-size selection with PI-control

(similar as in classic solvers)

@nathanaelbosch 31

Local calibration and step-size adaptation
Local calibration by estimating a time-varying diffusion model σ(t)

Calibration
▶ Problem: The Gauss–Markov prior

has hyperparameters. How to
choose them?

▶ Most notably: The diffusion σ
(basically acts as an output scale)

▶ Solution: (Quasi-)MLE
(can be done in closed form here)

Step-size adaptation
▶ Local error estimates from

measurement residuals
▶ Step-size selection with PI-control

(similar as in classic solvers)

@nathanaelbosch 31

Local calibration and step-size adaptation
Adaptive step-size selection via local error estimation from the measurement residuals

Calibration
▶ Problem: The Gauss–Markov prior

has hyperparameters. How to
choose them?

▶ Most notably: The diffusion σ
(basically acts as an output scale)

▶ Solution: (Quasi-)MLE
(can be done in closed form here)

Step-size adaptation
▶ Local error estimates from

measurement residuals
▶ Step-size selection with PI-control

(similar as in classic solvers)

@nathanaelbosch 31

Prior: The ν-times integrated Wiener process
A very convenient prior with closed-form transition densities

▶ ν-times integrated Wiener process prior: x(t) ∼ IWP(q)

dx(i)(t) = x(i+1)(t)dt, i = 0, . . . , q− 1,

dx(q)(t) = σdW(t),
x(0) ∼ N (µ0,Σ0).

▶ Corresponds to Taylor-polynomial + perturbation:

x(0)(t) =
q∑

m=0

x(m)(0)
tm

m!
+ σ

∫ t

0

t− τ

q!
dW(τ)

@nathanaelbosch 32

On linearization strategies and their influence on A-Stability
We can actually approximate the Jacobian in the EKF and still get sensible results / algorithms! [Tronarp et al., 2019]

▶ Measurement model: m(x(t), t) = x(1)(t)− f(x(0)(t), t)
▶ A standard extended Kalman filter computes the Jacobian of the measurement mode:

Jm(ξ) = E1 − Jf(E0ξ, t)E0 \⇒ This algorithm is often called EK1.
▶ Turns out the following also works: Jf ≈ 0 and then Jm(ξ) ≈ E1 \⇒ The resulting algorithm is

often called EK0.

A comparison of EK1 and EK0:

Jacobian type A-stable uncertainties speed
EK1 H = E1 − Jf(E0µp)E0 semi-implicit yes more expressive slower (O(Nd3q3))
EK0 H = E1 explicit no simpler faster (O(Ndq3))

@nathanaelbosch 33

Uncertainty calibration or “how to choose prior hyperparameters”
Hyperparameters of the prior have a strong influence on posteriors – so we need to estimate them [Tronarp et al., 2019]

▶ Problem: The prior hyperparameter σ strongly influences covariances. How to choose it?
▶ Standard approach: Maximize the marginal likelihood:

σ̂ = arg max p(DPN | σ) = p(z1:N | σ) = p(z1 | σ)
N∏

k=2

p(zk|z1:k−1, σ).

▶ The EKF provides Gaussian estimates p(zk | z1:k−1) ≈ N (zk; ẑk, Sk).
⇒ Quasi-maximum likelihood estimate:

σ̂ = arg max p(DPN | σ) = arg max
N∑

k=1

log p(zk | z1:k−1, σ)

▶ In our specific context there is a closed-form solution (proof: [Tronarp et al., 2019]):

σ̂2 =
1
Nd

N∑
i=1

(zi − ẑi)
⊤ S−1

i (zi − ẑi) ,

and we don’t even need to run the filter again! Just adjust the estimated covariances:
Σi ← σ̂2 · Σi, ∀i ∈ {1, . . . ,N}.

@nathanaelbosch 34

Numerically stable implementation: Square-root filtering
When steps get small numerical stability suffers — so better work with matrix square-roots directly [Krämer and Hennig, 2020]

▶ Problem: The computed covariances can have negative eigenvalues due to finite precision
arithmetic and numerical round-off, in particular with small step sizes. Failure example: demo.jl

▶ It holds: A matrix M ∈ Rd×d is positive semi-definite if and only if there exists a matrix B ∈ Rd×d

such that M = BB⊤.
▶ Kalman filtering and smoothing in square-root form — a minimal derivation:

▶ Central operation in PREDICT/UPDATE/SMOOTH: M = ABA⊤ + C.
▶ Predict: ΣP = AΣA⊤ + Q
▶ Update (in Joseph form): Σ = (I − KH)ΣP(I − KH)⊤ + KRK⊤
▶ Smooth (in Joseph form): Λ = (I − GA)Σ(I − GA)⊤ + GΛ+G⊤ + GQG⊤

▶ This can be formulated on the square-root level: Let M = ML(ML)
⊤, B = BL(BL)

⊤, C = CL(CL)
⊤:

M = ABA⊤ + C,

⇔ ML(ML)
⊤ = ABL(BL)

⊤A⊤ + CL(CL)
⊤ =

[
ABL CL

]
·
[
ABL CL

]⊤
doing QR

([
ABL CL

]⊤)
⇔ = R⊤Q⊤QR = R⊤R. ⇒ ML := R⊤

⇒ PREDICT/UPDATE/SMOOTH can be formulated directly on square-roots to preserve PSD-ness!

⇒ To solve ODEs in a stable way, use the square-root Kalman filters / smoothers!
@nathanaelbosch 35

Visual Example: EKF

IVP:

y′(t) = 3y(1− y), y(0) = 0.1, t ∈ [0, 1.5].

Step 0:

@nathanaelbosch 36

Visual Example: EKF

IVP:

y′(t) = 3y(1− y), y(0) = 0.1, t ∈ [0, 1.5].

Step 0:

@nathanaelbosch 36

Visual Example: EKF

IVP:

y′(t) = 3y(1− y), y(0) = 0.1, t ∈ [0, 1.5].

Step 1:

@nathanaelbosch 37

Visual Example: EKF

IVP:

y′(t) = 3y(1− y), y(0) = 0.1, t ∈ [0, 1.5].

Step 2:

@nathanaelbosch 38

Visual Example: EKF

IVP:

y′(t) = 3y(1− y), y(0) = 0.1, t ∈ [0, 1.5].

Step 3:

@nathanaelbosch 39

Visual Example: EKF

IVP:

y′(t) = 3y(1− y), y(0) = 0.1, t ∈ [0, 1.5].

Step 4:

@nathanaelbosch 40

Visual Example: EKF

IVP:

y′(t) = 3y(1− y), y(0) = 0.1, t ∈ [0, 1.5].

Step 5:

@nathanaelbosch 41

Visual Example: EKF

IVP:

y′(t) = 3y(1− y), y(0) = 0.1, t ∈ [0, 1.5].

Step 6:

@nathanaelbosch 42

Visual Example: EKF

IVP:

y′(t) = 3y(1− y), y(0) = 0.1, t ∈ [0, 1.5].

Step 7:

@nathanaelbosch 43

Visual Example: EKF

IVP:

y′(t) = 3y(1− y), y(0) = 0.1, t ∈ [0, 1.5].

Step 8:

@nathanaelbosch 44

Visual Example: EKF

IVP:

y′(t) = 3y(1− y), y(0) = 0.1, t ∈ [0, 1.5].

Step 9:

@nathanaelbosch 45

Visual Example: EKF

IVP:

y′(t) = 3y(1− y), y(0) = 0.1, t ∈ [0, 1.5].

Step 10:

@nathanaelbosch 46

