
Probabilistic Numerics for Ordinary
Differential Equations

SIAM UQ 2024

Nathanael Bosch

29. February 2024

some of the presented work is supported
by the European Research Council.



Background
▶ Ordinary differential equations and how to solve them

Central statement: ODE solving is state estimation
▶ “ODE filters”: How to solve ODEs with extended Kalman filtering and smoothing

Fun with ODE filters
▶ Generalizing ODE filters to other related problems (higher-order ODEs, DAEs, …)
▶ ODE filters for parameter inference

@nathanaelbosch 1



Background
▶ Ordinary differential equations and how to solve them

Central statement: ODE solving is state estimation
▶ “ODE filters”: How to solve ODEs with extended Kalman filtering and smoothing

Fun with ODE filters
▶ Generalizing ODE filters to other related problems (higher-order ODEs, DAEs, …)
▶ ODE filters for parameter inference

@nathanaelbosch 1



Background
▶ Ordinary differential equations and how to solve them

Central statement: ODE solving is state estimation
▶ “ODE filters”: How to solve ODEs with extended Kalman filtering and smoothing

Fun with ODE filters
▶ Generalizing ODE filters to other related problems (higher-order ODEs, DAEs, …)
▶ ODE filters for parameter inference

@nathanaelbosch 1



Background: Ordinary Differential Equations
and how to solve them

@nathanaelbosch 2



Background: Ordinary Differential Equations and how to solve them
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t)
with t ∈ [0, T], vector field f : Rd × R_Rd, and initial value y(0) = y0. Goal: “Find y”.

▶ Simple example: Logistic ODE

ẏ(t) = y(t) (1− y(t)) , t ∈ [0, 10], y(0) = 0.1.

Numerical ODE solvers:

▶ Forward Euler:
ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t)

▶ Backward Euler:
ŷ(t+ h) = ŷ(t) + hf(ŷ(t+ h), t+ h)

▶ Runge–Kutta:
ŷ(t+ h) = ŷ(t) + h

∑s
i=1 bif(ỹi, t+ cih)

▶ Multistep:
ŷ(t+ h) = ŷ(t) + h

∑s−1
i=0 bif(ŷ(t− ih), t− ih)

Forward Euler for different step sizes:

0.0

0.5

1.0

P(
t)

step size = 0.5

0.0

0.5

1.0

P(
t)

step size = 0.1

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
t

0.0

0.5

1.0

P(
t)

step size = 0.01

⇒ It is “correct” only in the limit h_ 0!
Numerical ODE solvers estimate y(t) by evaluating f on a discrete set of points.

@nathanaelbosch 3



Background: Ordinary Differential Equations and how to solve them
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t)
with t ∈ [0, T], vector field f : Rd × R_Rd, and initial value y(0) = y0. Goal: “Find y”.

Numerical ODE solvers:
▶ Forward Euler:

ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t)

▶ Backward Euler:
ŷ(t+ h) = ŷ(t) + hf(ŷ(t+ h), t+ h)

▶ Runge–Kutta:
ŷ(t+ h) = ŷ(t) + h

∑s
i=1 bif(ỹi, t+ cih)

▶ Multistep:
ŷ(t+ h) = ŷ(t) + h

∑s−1
i=0 bif(ŷ(t− ih), t− ih)

Forward Euler for different step sizes:

0.0

0.5

1.0

P(
t)

step size = 0.5

0.0

0.5

1.0

P(
t)

step size = 0.1

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
t

0.0

0.5

1.0

P(
t)

step size = 0.01

⇒ It is “correct” only in the limit h_ 0!
Numerical ODE solvers estimate y(t) by evaluating f on a discrete set of points.

@nathanaelbosch 3



Background: Ordinary Differential Equations and how to solve them
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t)
with t ∈ [0, T], vector field f : Rd × R_Rd, and initial value y(0) = y0. Goal: “Find y”.

Numerical ODE solvers:
▶ Forward Euler:

ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t)
▶ Backward Euler:

ŷ(t+ h) = ŷ(t) + hf(ŷ(t+ h), t+ h)

▶ Runge–Kutta:
ŷ(t+ h) = ŷ(t) + h

∑s
i=1 bif(ỹi, t+ cih)

▶ Multistep:
ŷ(t+ h) = ŷ(t) + h

∑s−1
i=0 bif(ŷ(t− ih), t− ih)

Forward Euler for different step sizes:

0.0

0.5

1.0

P(
t)

step size = 0.5

0.0

0.5

1.0

P(
t)

step size = 0.1

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
t

0.0

0.5

1.0

P(
t)

step size = 0.01

⇒ It is “correct” only in the limit h_ 0!
Numerical ODE solvers estimate y(t) by evaluating f on a discrete set of points.

@nathanaelbosch 3



Background: Ordinary Differential Equations and how to solve them
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t)
with t ∈ [0, T], vector field f : Rd × R_Rd, and initial value y(0) = y0. Goal: “Find y”.

Numerical ODE solvers:
▶ Forward Euler:

ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t)
▶ Backward Euler:

ŷ(t+ h) = ŷ(t) + hf(ŷ(t+ h), t+ h)
▶ Runge–Kutta:

ŷ(t+ h) = ŷ(t) + h
∑s

i=1 bif(ỹi, t+ cih)

▶ Multistep:
ŷ(t+ h) = ŷ(t) + h

∑s−1
i=0 bif(ŷ(t− ih), t− ih)

Forward Euler for different step sizes:

0.0

0.5

1.0

P(
t)

step size = 0.5

0.0

0.5

1.0

P(
t)

step size = 0.1

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
t

0.0

0.5

1.0

P(
t)

step size = 0.01

⇒ It is “correct” only in the limit h_ 0!
Numerical ODE solvers estimate y(t) by evaluating f on a discrete set of points.

@nathanaelbosch 3



Background: Ordinary Differential Equations and how to solve them
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t)
with t ∈ [0, T], vector field f : Rd × R_Rd, and initial value y(0) = y0. Goal: “Find y”.

Numerical ODE solvers:
▶ Forward Euler:

ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t)
▶ Backward Euler:

ŷ(t+ h) = ŷ(t) + hf(ŷ(t+ h), t+ h)
▶ Runge–Kutta:

ŷ(t+ h) = ŷ(t) + h
∑s

i=1 bif(ỹi, t+ cih)
▶ Multistep:

ŷ(t+ h) = ŷ(t) + h
∑s−1

i=0 bif(ŷ(t− ih), t− ih)

Forward Euler for different step sizes:

0.0

0.5

1.0

P(
t)

step size = 0.5

0.0

0.5

1.0

P(
t)

step size = 0.1

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
t

0.0

0.5

1.0

P(
t)

step size = 0.01

⇒ It is “correct” only in the limit h_ 0!
Numerical ODE solvers estimate y(t) by evaluating f on a discrete set of points.

@nathanaelbosch 3



Background: Ordinary Differential Equations and how to solve them
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t)
with t ∈ [0, T], vector field f : Rd × R_Rd, and initial value y(0) = y0. Goal: “Find y”.

Numerical ODE solvers:
▶ Forward Euler:

ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t)
▶ Backward Euler:

ŷ(t+ h) = ŷ(t) + hf(ŷ(t+ h), t+ h)
▶ Runge–Kutta:

ŷ(t+ h) = ŷ(t) + h
∑s

i=1 bif(ỹi, t+ cih)
▶ Multistep:

ŷ(t+ h) = ŷ(t) + h
∑s−1

i=0 bif(ŷ(t− ih), t− ih)

Forward Euler for different step sizes:

0.0

0.5

1.0

P(
t)

step size = 0.5

0.0

0.5

1.0

P(
t)

step size = 0.1

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
t

0.0

0.5

1.0

P(
t)

step size = 0.01

⇒ It is “correct” only in the limit h_ 0!

Numerical ODE solvers estimate y(t) by evaluating f on a discrete set of points.

@nathanaelbosch 3



Background: Ordinary Differential Equations and how to solve them
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t)
with t ∈ [0, T], vector field f : Rd × R_Rd, and initial value y(0) = y0. Goal: “Find y”.

Numerical ODE solvers:
▶ Forward Euler:

ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t)
▶ Backward Euler:

ŷ(t+ h) = ŷ(t) + hf(ŷ(t+ h), t+ h)
▶ Runge–Kutta:

ŷ(t+ h) = ŷ(t) + h
∑s

i=1 bif(ỹi, t+ cih)
▶ Multistep:

ŷ(t+ h) = ŷ(t) + h
∑s−1

i=0 bif(ŷ(t− ih), t− ih)

Forward Euler for different step sizes:

0.0

0.5

1.0

P(
t)

step size = 0.5

0.0

0.5

1.0

P(
t)

step size = 0.1

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
t

0.0

0.5

1.0

P(
t)

step size = 0.01

⇒ It is “correct” only in the limit h_ 0!
Numerical ODE solvers estimate y(t) by evaluating f on a discrete set of points.

@nathanaelbosch 3



Probabilistic numerical ODE solvers
or “How to treat ODEs as a Bayesian state estimation problem”

@nathanaelbosch 4



Probabilistic Numerical ODE Solvers
How to treat ODEs as the state estimation problem that they really are

p
(
y(t) | y(0) = y0, {ẏ(tn) = f (y(tn), tn)}N

n=1

)
with vector field f : Rd × R_Rd, initial value y0, and time discretization {tn}N

n=1.

▶ Prior: y(t) ∼ GP

a Gauss–Markov process with state-space representation x(t):
x(0) ∼ N (µ−

0 ,Σ
−
0 ),

dx(t) = Fx(t)dt+ σΓdw(t),
y(m)(t) = Emx(t), m = 1, . . . , ν.

⇒
x(0) ∼ N (µ−

0 ,Σ
−
0 ),

x(ti+1) | x(ti) ∼ N
(
A(∆i)x(t), σ2Q(∆i)

)
,

y(m)(t) = Emx(t), m = 1, . . . , ν.

where ∆i := ti+1 − ti, and (A,Q) can be computed from (F,Γ).

▶ Likelihood: (aka “observation model” or “information operator”)

z0 = E0x(0)− y0 = 0, & z(tn) = E1x(tn)− f(E0x(tn), tn) = 0.

▶ Inference:

Extended Kalman filter/smoother (or other Bayesian filtering and smoothing methods).

@nathanaelbosch 5



Probabilistic Numerical ODE Solvers
How to treat ODEs as the state estimation problem that they really are

p
(
y(t) | y(0) = y0, {ẏ(tn) = f (y(tn), tn)}N

n=1

)
with vector field f : Rd × R_Rd, initial value y0, and time discretization {tn}N

n=1.

▶ Prior: y(t) ∼ GP

a Gauss–Markov process with state-space representation x(t):
x(0) ∼ N (µ−

0 ,Σ
−
0 ),

dx(t) = Fx(t)dt+ σΓdw(t),
y(m)(t) = Emx(t), m = 1, . . . , ν.

⇒
x(0) ∼ N (µ−

0 ,Σ
−
0 ),

x(ti+1) | x(ti) ∼ N
(
A(∆i)x(t), σ2Q(∆i)

)
,

y(m)(t) = Emx(t), m = 1, . . . , ν.

where ∆i := ti+1 − ti, and (A,Q) can be computed from (F,Γ).

▶ Likelihood: (aka “observation model” or “information operator”)

z0 = E0x(0)− y0 = 0, & z(tn) = E1x(tn)− f(E0x(tn), tn) = 0.

▶ Inference:

Extended Kalman filter/smoother (or other Bayesian filtering and smoothing methods).

@nathanaelbosch 5



Probabilistic Numerical ODE Solvers
How to treat ODEs as the state estimation problem that they really are

p
(
y(t) | y(0) = y0, {ẏ(tn) = f (y(tn), tn)}N

n=1

)
with vector field f : Rd × R_Rd, initial value y0, and time discretization {tn}N

n=1.

▶ Prior: y(t) ∼ GP a Gauss–Markov process

with state-space representation x(t):
x(0) ∼ N (µ−

0 ,Σ
−
0 ),

dx(t) = Fx(t)dt+ σΓdw(t),
y(m)(t) = Emx(t), m = 1, . . . , ν.

⇒
x(0) ∼ N (µ−

0 ,Σ
−
0 ),

x(ti+1) | x(ti) ∼ N
(
A(∆i)x(t), σ2Q(∆i)

)
,

y(m)(t) = Emx(t), m = 1, . . . , ν.

where ∆i := ti+1 − ti, and (A,Q) can be computed from (F,Γ).

▶ Likelihood: (aka “observation model” or “information operator”)

z0 = E0x(0)− y0 = 0, & z(tn) = E1x(tn)− f(E0x(tn), tn) = 0.

▶ Inference:

Extended Kalman filter/smoother (or other Bayesian filtering and smoothing methods).

@nathanaelbosch 5



Probabilistic Numerical ODE Solvers
How to treat ODEs as the state estimation problem that they really are

p
(
y(t) | y(0) = y0, {ẏ(tn) = f (y(tn), tn)}N

n=1

)
with vector field f : Rd × R_Rd, initial value y0, and time discretization {tn}N

n=1.

▶ Prior: y(t) ∼ GP a Gauss–Markov process with state-space representation x(t):
x(0) ∼ N (µ−

0 ,Σ
−
0 ),

dx(t) = Fx(t)dt+ σΓdw(t),
y(m)(t) = Emx(t), m = 1, . . . , ν.

⇒
x(0) ∼ N (µ−

0 ,Σ
−
0 ),

x(ti+1) | x(ti) ∼ N
(
A(∆i)x(t), σ2Q(∆i)

)
,

y(m)(t) = Emx(t), m = 1, . . . , ν.

where ∆i := ti+1 − ti, and (A,Q) can be computed from (F,Γ).
▶ Likelihood: (aka “observation model” or “information operator”)

z0 = E0x(0)− y0 = 0, & z(tn) = E1x(tn)− f(E0x(tn), tn) = 0.

▶ Inference:

Extended Kalman filter/smoother (or other Bayesian filtering and smoothing methods).

@nathanaelbosch 5



Probabilistic Numerical ODE Solvers
How to treat ODEs as the state estimation problem that they really are

p
(
y(t) | y(0) = y0, {ẏ(tn) = f (y(tn), tn)}N

n=1

)
with vector field f : Rd × R_Rd, initial value y0, and time discretization {tn}N

n=1.

▶ Prior: y(t) ∼ GP a Gauss–Markov process with state-space representation x(t):
x(0) ∼ N (µ−

0 ,Σ
−
0 ),

dx(t) = Fx(t)dt+ σΓdw(t),
y(m)(t) = Emx(t), m = 1, . . . , ν.

⇒
x(0) ∼ N (µ−

0 ,Σ
−
0 ),

x(ti+1) | x(ti) ∼ N
(
A(∆i)x(t), σ2Q(∆i)

)
,

y(m)(t) = Emx(t), m = 1, . . . , ν.

where ∆i := ti+1 − ti, and (A,Q) can be computed from (F,Γ).

▶ Likelihood: (aka “observation model” or “information operator”)

z0 = E0x(0)− y0 = 0, & z(tn) = E1x(tn)− f(E0x(tn), tn) = 0.

▶ Inference:

Extended Kalman filter/smoother (or other Bayesian filtering and smoothing methods).

@nathanaelbosch 5



Probabilistic Numerical ODE Solvers
How to treat ODEs as the state estimation problem that they really are

p
(
y(t) | y(0) = y0, {ẏ(tn) = f (y(tn), tn)}N

n=1

)
with vector field f : Rd × R_Rd, initial value y0, and time discretization {tn}N

n=1.

▶ Prior: y(t) ∼ GP a Gauss–Markov process with state-space representation x(t):
x(0) ∼ N (µ−

0 ,Σ
−
0 ),

dx(t) = Fx(t)dt+ σΓdw(t),
y(m)(t) = Emx(t), m = 1, . . . , ν.

⇒
x(0) ∼ N (µ−

0 ,Σ
−
0 ),

x(ti+1) | x(ti) ∼ N
(
A(∆i)x(t), σ2Q(∆i)

)
,

y(m)(t) = Emx(t), m = 1, . . . , ν.

where ∆i := ti+1 − ti, and (A,Q) can be computed from (F,Γ).
▶ Likelihood: (aka “observation model” or “information operator”)

z0 = E0x(0)− y0 = 0, & z(tn) = E1x(tn)− f(E0x(tn), tn) = 0.

▶ Inference:

Extended Kalman filter/smoother (or other Bayesian filtering and smoothing methods).

@nathanaelbosch 5



Probabilistic Numerical ODE Solvers
How to treat ODEs as the state estimation problem that they really are

p
(
y(t) | y(0) = y0, {ẏ(tn) = f (y(tn), tn)}N

n=1

)
with vector field f : Rd × R_Rd, initial value y0, and time discretization {tn}N

n=1.

▶ Prior: y(t) ∼ GP a Gauss–Markov process with state-space representation x(t):
x(0) ∼ N (µ−

0 ,Σ
−
0 ),

dx(t) = Fx(t)dt+ σΓdw(t),
y(m)(t) = Emx(t), m = 1, . . . , ν.

⇒
x(0) ∼ N (µ−

0 ,Σ
−
0 ),

x(ti+1) | x(ti) ∼ N
(
A(∆i)x(t), σ2Q(∆i)

)
,

y(m)(t) = Emx(t), m = 1, . . . , ν.

where ∆i := ti+1 − ti, and (A,Q) can be computed from (F,Γ).
▶ Likelihood: (aka “observation model” or “information operator”)

z0 = E0x(0)− y0 = 0, & z(tn) = E1x(tn)− f(E0x(tn), tn) = 0.

▶ Inference:

Extended Kalman filter/smoother (or other Bayesian filtering and smoothing methods).

@nathanaelbosch 5



Probabilistic Numerical ODE Solvers
How to treat ODEs as the state estimation problem that they really are

p
(
y(t) | y(0) = y0, {ẏ(tn) = f (y(tn), tn)}N

n=1

)
with vector field f : Rd × R_Rd, initial value y0, and time discretization {tn}N

n=1.

▶ Prior: y(t) ∼ GP a Gauss–Markov process with state-space representation x(t):
x(0) ∼ N (µ−

0 ,Σ
−
0 ),

dx(t) = Fx(t)dt+ σΓdw(t),
y(m)(t) = Emx(t), m = 1, . . . , ν.

⇒
x(0) ∼ N (µ−

0 ,Σ
−
0 ),

x(ti+1) | x(ti) ∼ N
(
A(∆i)x(t), σ2Q(∆i)

)
,

y(m)(t) = Emx(t), m = 1, . . . , ν.

where ∆i := ti+1 − ti, and (A,Q) can be computed from (F,Γ).
▶ Likelihood: (aka “observation model” or “information operator”)

z0 = E0x(0)− y0 = 0, & z(tn) = E1x(tn)− f(E0x(tn), tn) = 0.

▶ Inference: Extended Kalman filter/smoother (or other Bayesian filtering and smoothing methods).
@nathanaelbosch 5



Probabilistic Numerical ODE Solvers in pictures

EKF−−→

@nathanaelbosch 6



Probabilistic Numerical ODE Solvers in pictures

EKF−−→

@nathanaelbosch 6



Probabilistic Numerical ODE Solvers in pictures

EKF−−→

@nathanaelbosch 6



Probabilistic Numerical ODE Solvers in action
Fixed steps — the vanilla way as introduced so far

@nathanaelbosch 7



Probabilistic Numerical ODE Solvers in code
We can solve ODEs with basically just an extended Kalman filter

Algorithm The extended Kalman ODE filter

1 procedure EXTENDED KALMAN ODE FILTER((µ−
0 ,Σ

−
0 ), (A,Q), (f, x0), {ti}N

i=1)
2 µ0,Σ0 ^ KF_UPDATE(µ−

0 ,Σ
−
0 , E0, 0d×d, x0) � Initial update to fit the initial value

3 for k ∈ {1, . . . ,N} do
4 hk ^ tk − tk−1 � Step size

5 µ−
k ,Σ

−
k ^ KF_PREDICT(µk−1,Σk−1, A(hk),Q(hk)) � Kalman filter prediction

6 mk(X) := E1X− f(E0X, tk) � Define the non-linear observation model

7 µk,Σk ^ EKF_UPDATE(µ−
k ,Σ

−
k ,mk, 0d×d,0d) � Extended Kalman filter update

8 end for
9 return (µk,Σk)

N
k=1

10 end procedure

EXTENDED KALMAN ODE SMOOTHER: Just run a RTS smoother after the filter!

@nathanaelbosch 8



The state of filtering-based probabilistic numerical ODE solvers
▶ Properties and features:

▶ Polynomial convergence rates [Kersting et al., 2020, Tronarp et al., 2021]

▶ A-stability [Tronarp et al., 2019]

▶ L-stable probabilistic exponential integrators [Bosch et al., 2023b]

▶ Complexity: O
(
d3
)
for the A-stable semi-implicit method, O(d) for an explicit method with coarser

covariances [Krämer et al., 2022]

▶ Step-size adaptation and calibration: [Bosch et al., 2021]

▶ Parallel-in-time formulation [Bosch et al., 2023a]

▶ More related differential equation problems:

▶ Higher-order ODEs, DAEs, Hamiltonian systems [Bosch et al., 2022]

▶ Boundary value problems (BVPs) [Krämer and Hennig, 2021]

▶ Partial differential equations (PDEs) via method of lines [Krämer et al., 2022]

▶ Inverse problems

▶ Parameter inference in ODEs with ODE filters [Tronarp et al., 2022]

▶ Efficient latent force inference [Schmidt et al., 2021]

Probabilistic Numerics: Computation as Machine Learning
Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022

@nathanaelbosch 9



The state of filtering-based probabilistic numerical ODE solvers
▶ Properties and features:

▶ Polynomial convergence rates [Kersting et al., 2020, Tronarp et al., 2021]

▶ A-stability [Tronarp et al., 2019]

▶ L-stable probabilistic exponential integrators [Bosch et al., 2023b]

▶ Complexity: O
(
d3
)
for the A-stable semi-implicit method, O(d) for an explicit method with coarser

covariances [Krämer et al., 2022]

▶ Step-size adaptation and calibration: [Bosch et al., 2021]

▶ Parallel-in-time formulation [Bosch et al., 2023a]

▶ More related differential equation problems:

▶ Higher-order ODEs, DAEs, Hamiltonian systems [Bosch et al., 2022]

▶ Boundary value problems (BVPs) [Krämer and Hennig, 2021]

▶ Partial differential equations (PDEs) via method of lines [Krämer et al., 2022]

▶ Inverse problems

▶ Parameter inference in ODEs with ODE filters [Tronarp et al., 2022]

▶ Efficient latent force inference [Schmidt et al., 2021]

Probabilistic Numerics: Computation as Machine Learning
Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022

@nathanaelbosch 9



The state of filtering-based probabilistic numerical ODE solvers
▶ Properties and features:

▶ Polynomial convergence rates [Kersting et al., 2020, Tronarp et al., 2021]

▶ A-stability [Tronarp et al., 2019]

▶ L-stable probabilistic exponential integrators [Bosch et al., 2023b]

▶ Complexity: O
(
d3
)
for the A-stable semi-implicit method, O(d) for an explicit method with coarser

covariances [Krämer et al., 2022]

▶ Step-size adaptation and calibration: [Bosch et al., 2021]

▶ Parallel-in-time formulation [Bosch et al., 2023a]

▶ More related differential equation problems:

▶ Higher-order ODEs, DAEs, Hamiltonian systems [Bosch et al., 2022]

▶ Boundary value problems (BVPs) [Krämer and Hennig, 2021]

▶ Partial differential equations (PDEs) via method of lines [Krämer et al., 2022]

▶ Inverse problems

▶ Parameter inference in ODEs with ODE filters [Tronarp et al., 2022]

▶ Efficient latent force inference [Schmidt et al., 2021]

Probabilistic Numerics: Computation as Machine Learning
Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022

@nathanaelbosch 9



The state of filtering-based probabilistic numerical ODE solvers
▶ Properties and features:

▶ Polynomial convergence rates [Kersting et al., 2020, Tronarp et al., 2021]

▶ A-stability [Tronarp et al., 2019]

▶ L-stable probabilistic exponential integrators [Bosch et al., 2023b]

▶ Complexity: O
(
d3
)
for the A-stable semi-implicit method, O(d) for an explicit method with coarser

covariances [Krämer et al., 2022]

▶ Step-size adaptation and calibration: [Bosch et al., 2021]

▶ Parallel-in-time formulation [Bosch et al., 2023a]

▶ More related differential equation problems:

▶ Higher-order ODEs, DAEs, Hamiltonian systems [Bosch et al., 2022]

▶ Boundary value problems (BVPs) [Krämer and Hennig, 2021]

▶ Partial differential equations (PDEs) via method of lines [Krämer et al., 2022]

▶ Inverse problems

▶ Parameter inference in ODEs with ODE filters [Tronarp et al., 2022]

▶ Efficient latent force inference [Schmidt et al., 2021]

Probabilistic Numerics: Computation as Machine Learning
Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022

@nathanaelbosch 9



The state of filtering-based probabilistic numerical ODE solvers
▶ Properties and features:

▶ Polynomial convergence rates [Kersting et al., 2020, Tronarp et al., 2021]

▶ A-stability [Tronarp et al., 2019]

▶ L-stable probabilistic exponential integrators [Bosch et al., 2023b]

▶ Complexity: O
(
d3
)
for the A-stable semi-implicit method, O(d) for an explicit method with coarser

covariances [Krämer et al., 2022]

▶ Step-size adaptation and calibration: [Bosch et al., 2021]

▶ Parallel-in-time formulation [Bosch et al., 2023a]

▶ More related differential equation problems:

▶ Higher-order ODEs, DAEs, Hamiltonian systems [Bosch et al., 2022]

▶ Boundary value problems (BVPs) [Krämer and Hennig, 2021]

▶ Partial differential equations (PDEs) via method of lines [Krämer et al., 2022]

▶ Inverse problems

▶ Parameter inference in ODEs with ODE filters [Tronarp et al., 2022]

▶ Efficient latent force inference [Schmidt et al., 2021]

Probabilistic Numerics: Computation as Machine Learning
Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022

@nathanaelbosch 9



The state of filtering-based probabilistic numerical ODE solvers
▶ Properties and features:

▶ Polynomial convergence rates [Kersting et al., 2020, Tronarp et al., 2021]

▶ A-stability [Tronarp et al., 2019]

▶ L-stable probabilistic exponential integrators [Bosch et al., 2023b]

▶ Complexity: O
(
d3
)
for the A-stable semi-implicit method, O(d) for an explicit method with coarser

covariances [Krämer et al., 2022]

▶ Step-size adaptation and calibration: [Bosch et al., 2021]

▶ Parallel-in-time formulation [Bosch et al., 2023a]

▶ More related differential equation problems:

▶ Higher-order ODEs, DAEs, Hamiltonian systems [Bosch et al., 2022]

▶ Boundary value problems (BVPs) [Krämer and Hennig, 2021]

▶ Partial differential equations (PDEs) via method of lines [Krämer et al., 2022]

▶ Inverse problems

▶ Parameter inference in ODEs with ODE filters [Tronarp et al., 2022]

▶ Efficient latent force inference [Schmidt et al., 2021]

Probabilistic Numerics: Computation as Machine Learning
Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022

@nathanaelbosch 9



The state of filtering-based probabilistic numerical ODE solvers
▶ Properties and features:

▶ Polynomial convergence rates [Kersting et al., 2020, Tronarp et al., 2021]

▶ A-stability [Tronarp et al., 2019]

▶ L-stable probabilistic exponential integrators [Bosch et al., 2023b]

▶ Complexity: O
(
d3
)
for the A-stable semi-implicit method, O(d) for an explicit method with coarser

covariances [Krämer et al., 2022]

▶ Step-size adaptation and calibration: [Bosch et al., 2021]

▶ Parallel-in-time formulation [Bosch et al., 2023a]

▶ More related differential equation problems:
▶ Higher-order ODEs, DAEs, Hamiltonian systems [Bosch et al., 2022]

▶ Boundary value problems (BVPs) [Krämer and Hennig, 2021]

▶ Partial differential equations (PDEs) via method of lines [Krämer et al., 2022]

▶ Inverse problems

▶ Parameter inference in ODEs with ODE filters [Tronarp et al., 2022]

▶ Efficient latent force inference [Schmidt et al., 2021]

Probabilistic Numerics: Computation as Machine Learning
Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022

@nathanaelbosch 9



The state of filtering-based probabilistic numerical ODE solvers
▶ Properties and features:

▶ Polynomial convergence rates [Kersting et al., 2020, Tronarp et al., 2021]

▶ A-stability [Tronarp et al., 2019]

▶ L-stable probabilistic exponential integrators [Bosch et al., 2023b]

▶ Complexity: O
(
d3
)
for the A-stable semi-implicit method, O(d) for an explicit method with coarser

covariances [Krämer et al., 2022]

▶ Step-size adaptation and calibration: [Bosch et al., 2021]

▶ Parallel-in-time formulation [Bosch et al., 2023a]

▶ More related differential equation problems:
▶ Higher-order ODEs, DAEs, Hamiltonian systems [Bosch et al., 2022]

▶ Boundary value problems (BVPs) [Krämer and Hennig, 2021]

▶ Partial differential equations (PDEs) via method of lines [Krämer et al., 2022]

▶ Inverse problems
▶ Parameter inference in ODEs with ODE filters [Tronarp et al., 2022]

▶ Efficient latent force inference [Schmidt et al., 2021]

Probabilistic Numerics: Computation as Machine Learning
Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022

@nathanaelbosch 9



The state of filtering-based probabilistic numerical ODE solvers
▶ Properties and features:

▶ Polynomial convergence rates [Kersting et al., 2020, Tronarp et al., 2021]

▶ A-stability [Tronarp et al., 2019]

▶ L-stable probabilistic exponential integrators [Bosch et al., 2023b]

▶ Complexity: O
(
d3
)
for the A-stable semi-implicit method, O(d) for an explicit method with coarser

covariances [Krämer et al., 2022]

▶ Step-size adaptation and calibration: [Bosch et al., 2021]

▶ Parallel-in-time formulation [Bosch et al., 2023a]

▶ More related differential equation problems:
▶ Higher-order ODEs, DAEs, Hamiltonian systems [Bosch et al., 2022]

▶ Boundary value problems (BVPs) [Krämer and Hennig, 2021]

▶ Partial differential equations (PDEs) via method of lines [Krämer et al., 2022]

▶ Inverse problems
▶ Parameter inference in ODEs with ODE filters [Tronarp et al., 2022]

▶ Efficient latent force inference [Schmidt et al., 2021]

Probabilistic Numerics: Computation as Machine Learning
Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022

@nathanaelbosch 9



The state of filtering-based probabilistic numerical ODE solvers
▶ Properties and features:

▶ Polynomial convergence rates [Kersting et al., 2020, Tronarp et al., 2021]

▶ A-stability [Tronarp et al., 2019]

▶ L-stable probabilistic exponential integrators [Bosch et al., 2023b]

▶ Complexity: O
(
d3
)
for the A-stable semi-implicit method, O(d) for an explicit method with coarser

covariances [Krämer et al., 2022]

▶ Step-size adaptation and calibration: [Bosch et al., 2021]

▶ Parallel-in-time formulation [Bosch et al., 2023a]

▶ More related differential equation problems:
▶ Higher-order ODEs, DAEs, Hamiltonian systems [Bosch et al., 2022]

▶ Boundary value problems (BVPs) [Krämer and Hennig, 2021]

▶ Partial differential equations (PDEs) via method of lines [Krämer et al., 2022]

▶ Inverse problems
▶ Parameter inference in ODEs with ODE filters [Tronarp et al., 2022]

▶ Efficient latent force inference [Schmidt et al., 2021]

Probabilistic Numerics: Computation as Machine Learning
Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022

@nathanaelbosch 9



Flexible Information Operators
or: “How to solve other problems than ODEs with essentially the same algorithm as before”

(it’s all just likelihood models)

@nathanaelbosch 10



Flexible Information Operators
or: “How to solve other problems than ODEs with essentially the same algorithm as before”

(it’s all just likelihood models)

@nathanaelbosch 10



Extending ODE filters to other related differential equation problems
ODE filters can solve much more than the ODEs that we saw so far! [Bosch et al., 2022, Krämer and Hennig, 2021]

Numerical problems setting: Initial value problem with first-order ODE

ẏ(t) = f(y(t), t), y(0) = y0.

This leads to the probabilistic state estimation problem:

Initial distribution: x(0) ∼ N
(
x(0);µ−

0 ,Σ
−
0

)
Prior / dynamics model: x(t+ h) | x(t) ∼ N (x(t+ h); A(h)x(t),Q(h))

ODE likelihood: z(ti) | x(ti) ∼ δ (z(ti); E1x(ti)− f(E0x(ti), ti)) , zi ≜ 0

Initial value likelihood: zinit | x(0) ∼ δ
(
zinit; E0x(0)

)
, zinit ≜ y0

The measurement model provides a very flexible way to easily encode desired properties.
But it’s all just Bayesian state estimation!

@nathanaelbosch 11



Extending ODE filters to other related differential equation problems
ODE filters can solve much more than the ODEs that we saw so far! [Bosch et al., 2022, Krämer and Hennig, 2021]

Numerical problems setting: Initial value problem with second-order ODE

ÿ(t) = f(ẏ(t), y(t), t), y(0) = y0, ẏ(0) = ẏ0.

This leads to the probabilistic state estimation problem:

Initial distribution: x(0) ∼ N
(
x(0);µ−

0 ,Σ
−
0

)
Prior / dynamics model: x(t+ h) | x(t) ∼ N (x(t+ h); A(h)x(t),Q(h))

ODE likelihood: z(ti) | x(ti) ∼ δ (z(ti); E1x(ti)− f(E0x(ti), ti)) , zi ≜ 0

Initial value likelihood: zinit | x(0) ∼ δ
(
zinit; E0x(0)

)
, zinit ≜ y0

The measurement model provides a very flexible way to easily encode desired properties.
But it’s all just Bayesian state estimation!

@nathanaelbosch 11



Extending ODE filters to other related differential equation problems
ODE filters can solve much more than the ODEs that we saw so far! [Bosch et al., 2022, Krämer and Hennig, 2021]

Numerical problems setting: Initial value problem with second-order ODE

ÿ(t) = f(ẏ(t), y(t), t), y(0) = y0, ẏ(0) = ẏ0.

This leads to the probabilistic state estimation problem:

Initial distribution: x(0) ∼ N
(
x(0);µ−

0 ,Σ
−
0

)
Prior / dynamics model: x(t+ h) | x(t) ∼ N (x(t+ h); A(h)x(t),Q(h))

ODE likelihood: z(ti) | x(ti) ∼ δ (z(ti); E2x(ti)− f(E1x(ti), E0x(ti), ti)) , zi ≜ 0

Initial value likelihood: zinit | x(0) ∼ δ
(
zinit; E0x(0)

)
, zinit ≜ y0

Initial derivative likelihood: zinit1 | x(0)∼ δ
(
zinit1 ; E1x(0)

)
, zinit1 ≜ ẏ0

The measurement model provides a very flexible way to easily encode desired properties.
But it’s all just Bayesian state estimation!

@nathanaelbosch 11



Extending ODE filters to other related differential equation problems
ODE filters can solve much more than the ODEs that we saw so far! [Bosch et al., 2022, Krämer and Hennig, 2021]

Numerical problems setting: Initial value problem with first-order ODE and conserved quantities

ẏ(t) = f(y(t), t), y(0) = y0. g(y(t), ẏ(t)) = 0.

This leads to the probabilistic state estimation problem:

Initial distribution: x(0) ∼ N
(
x(0);µ−

0 ,Σ
−
0

)
Prior / dynamics model: x(t+ h) | x(t) ∼ N (x(t+ h); A(h)x(t),Q(h))

ODE likelihood: z(ti) | x(ti) ∼ δ (z(ti); E1x(ti)− f(E0x(ti), ti)) , zi ≜ 0

Initial value likelihood: zinit | x(0) ∼ δ
(
zinit; E0x(0)

)
, zinit ≜ y0

The measurement model provides a very flexible way to easily encode desired properties.
But it’s all just Bayesian state estimation!

@nathanaelbosch 11



Extending ODE filters to other related differential equation problems
ODE filters can solve much more than the ODEs that we saw so far! [Bosch et al., 2022, Krämer and Hennig, 2021]

Numerical problems setting: Initial value problem with first-order ODE and conserved quantities

ẏ(t) = f(y(t), t), y(0) = y0. g(y(t), ẏ(t)) = 0.

This leads to the probabilistic state estimation problem:

Initial distribution: x(0) ∼ N
(
x(0);µ−

0 ,Σ
−
0

)
Prior / dynamics model: x(t+ h) | x(t) ∼ N (x(t+ h); A(h)x(t),Q(h))

ODE likelihood: z(ti) | x(ti) ∼ δ (z(ti); E1x(ti)− f(E0x(ti), ti)) , zi ≜ 0

Conservation law likelihood: zci (ti) | z(ti)∼ δ (zci (ti); g(E0x(t), E1x(t))) , zci ≜ 0

Initial value likelihood: zinit | x(0) ∼ δ
(
zinit; E0x(0)

)
, zinit ≜ y0

The measurement model provides a very flexible way to easily encode desired properties.
But it’s all just Bayesian state estimation!

@nathanaelbosch 11



Extending ODE filters to other related differential equation problems
ODE filters can solve much more than the ODEs that we saw so far! [Bosch et al., 2022, Krämer and Hennig, 2021]

Numerical problems setting: Initial value problem with second-order ODE and conserved quantities

ÿ(t) = f(ẏ(t), y(t), t), y(0) = y0, ẏ(0) = ẏ0. g(y(t), ẏ(t)) = 0.

This leads to the probabilistic state estimation problem:

Initial distribution: x(0) ∼ N
(
x(0);µ−

0 ,Σ
−
0

)
Prior / dynamics model: x(t+ h) | x(t) ∼ N (x(t+ h); A(h)x(t),Q(h))

ODE likelihood: z(ti) | x(ti) ∼ δ (z(ti); E2x(ti)− f(E1x(ti), E0x(ti), ti)) , zi ≜ 0

Conservation law likelihood: zci (ti) | z(ti)∼ δ (zci (ti); g(E0x(t), E1x(t))) , zci ≜ 0

Initial value likelihood: zinit | x(0) ∼ δ
(
zinit; E0x(0)

)
, zinit ≜ y0

Initial derivative likelihood:

The measurement model provides a very flexible way to easily encode desired properties.
But it’s all just Bayesian state estimation!

@nathanaelbosch 11



Extending ODE filters to other related differential equation problems
ODE filters can solve much more than the ODEs that we saw so far! [Bosch et al., 2022, Krämer and Hennig, 2021]

Numerical problems setting: Initial value problem with second-order ODE and conserved quantities

ÿ(t) = f(ẏ(t), y(t), t), y(0) = y0, ẏ(0) = ẏ0. g(y(t), ẏ(t)) = 0.

This leads to the probabilistic state estimation problem:

Initial distribution: x(0) ∼ N
(
x(0);µ−

0 ,Σ
−
0

)
Prior / dynamics model: x(t+ h) | x(t) ∼ N (x(t+ h); A(h)x(t),Q(h))

ODE likelihood: z(ti) | x(ti) ∼ δ (z(ti); E1x(ti)− f(E0x(ti), ti)E2x(ti)− f(E1x(ti), E0x(ti), ti)) , zi ≜ 0

Conservation law likelihood: zci (ti) | z(ti)∼ δ (zci (ti); g(E0x(t), E1x(t))) , zci ≜ 0

Initial value likelihood: zinit | x(0) ∼ δ
(
zinit; E0x(0)

)
, zinit ≜ y0

Initial derivative likelihood:

The measurement model provides a very flexible way to easily encode desired properties.
But it’s all just Bayesian state estimation!

First-order ODE

C
o
n
v
e
n
ti

o
n

a
l

Second-order ODE

C
o
n
se

rv
e
d

 e
n
e
rg

y

@nathanaelbosch 11



Extending ODE filters to other related differential equation problems
ODE filters can solve much more than the ODEs that we saw so far! [Bosch et al., 2022, Krämer and Hennig, 2021]

Numerical problems setting: Initial value problem with second-order ODE and conserved quantities

ÿ(t) = f(ẏ(t), y(t), t), y(0) = y0, ẏ(0) = ẏ0. g(y(t), ẏ(t)) = 0.

This leads to the probabilistic state estimation problem:

Initial distribution: x(0) ∼ N
(
x(0);µ−

0 ,Σ
−
0

)
Prior / dynamics model: x(t+ h) | x(t) ∼ N (x(t+ h); A(h)x(t),Q(h))

ODE likelihood: z(ti) | x(ti) ∼ δ (z(ti); E1x(ti)− f(E0x(ti), ti)E2x(ti)− f(E1x(ti), E0x(ti), ti)) , zi ≜ 0

Conservation law likelihood: zci (ti) | z(ti)∼ δ (zci (ti); g(E0x(t), E1x(t))) , zci ≜ 0

Initial value likelihood: zinit | x(0) ∼ δ
(
zinit; E0x(0)

)
, zinit ≜ y0

Initial derivative likelihood:

The measurement model provides a very flexible way to easily encode desired properties.
But it’s all just Bayesian state estimation!

@nathanaelbosch 11



Extending ODE filters to other related differential equation problems
ODE filters can solve much more than the ODEs that we saw so far! [Bosch et al., 2022, Krämer and Hennig, 2021]

Numerical problems setting: Initial value problem with differential-algebraic equation (DAE)

0 = F (ẏ(t), y(t), t) , y(0) = y0.

This leads to the probabilistic state estimation problem:

Initial distribution: x(0) ∼ N
(
x(0);µ−

0 ,Σ
−
0

)
Prior / dynamics model: x(t+ h) | x(t) ∼ N (x(t+ h); A(h)x(t),Q(h))

ODE likelihood: z(ti) | x(ti) ∼ δ (z(ti); E1x(ti)− f(E0x(ti), ti)) , zi ≜ 0

Initial value likelihood: zinit | x(0) ∼ δ
(
zinit; E0x(0)

)
, zinit ≜ y0

The measurement model provides a very flexible way to easily encode desired properties.
But it’s all just Bayesian state estimation!

@nathanaelbosch 11



Extending ODE filters to other related differential equation problems
ODE filters can solve much more than the ODEs that we saw so far! [Bosch et al., 2022, Krämer and Hennig, 2021]

Numerical problems setting: Initial value problem with differential-algebraic equation (DAE)

0 = F (ẏ(t), y(t), t) , y(0) = y0.

This leads to the probabilistic state estimation problem:

Initial distribution: x(0) ∼ N
(
x(0);µ−

0 ,Σ
−
0

)
Prior / dynamics model: x(t+ h) | x(t) ∼ N (x(t+ h); A(h)x(t),Q(h))

DAE likelihood: z(ti) | x(ti) ∼ δ (z(ti); F (E1x(ti), E0x(ti), ti)) , zi ≜ 0

Initial value likelihood: zinit | x(0) ∼ δ
(
zinit; E0x(0)

)
, zinit ≜ y0

The measurement model provides a very flexible way to easily encode desired properties.
But it’s all just Bayesian state estimation!

@nathanaelbosch 11



Extending ODE filters to other related differential equation problems
ODE filters can solve much more than the ODEs that we saw so far! [Bosch et al., 2022, Krämer and Hennig, 2021]

Numerical problems setting: Boundary value problem (BVP) with first-order ODE

ẏ(t) = f(y(t), t), Ly(0) = y0, Ry(T) = yT.

This leads to the probabilistic state estimation problem:

Initial distribution: x(0) ∼ N
(
x(0);µ−

0 ,Σ
−
0

)
Prior / dynamics model: x(t+ h) | x(t) ∼ N (x(t+ h); A(h)x(t),Q(h))

ODE likelihood: z(ti) | x(ti) ∼ δ (z(ti); ) , zi ≜ 0

Initial value likelihood: zinit | x(0) ∼ δ
(
zinit; E0x(0)

)
, zinit ≜ y0

The measurement model provides a very flexible way to easily encode desired properties.
But it’s all just Bayesian state estimation!

@nathanaelbosch 11



Extending ODE filters to other related differential equation problems
ODE filters can solve much more than the ODEs that we saw so far! [Bosch et al., 2022, Krämer and Hennig, 2021]

Numerical problems setting: Boundary value problem (BVP) with first-order ODE

ẏ(t) = f(y(t), t), Ly(0) = y0, Ry(T) = yT.

This leads to the probabilistic state estimation problem:

Initial distribution: x(0) ∼ N
(
x(0);µ−

0 ,Σ
−
0

)
Prior / dynamics model: x(t+ h) | x(t) ∼ N (x(t+ h); A(h)x(t),Q(h))

ODE likelihood: z(ti) | x(ti) ∼ δ (z(ti); ) , zi ≜ 0

Initial value likelihood: zinit | x(0) ∼ δ
(
zinit; LE0x(0)

)
, zinit ≜ y0

Boundary value likelihood: zR1 | x(T)∼ δ
(
zR1; RE0x(T)

)
, zinit1 ≜ yT

The measurement model provides a very flexible way to easily encode desired properties.
But it’s all just Bayesian state estimation!

@nathanaelbosch 11



Extending ODE filters to other related differential equation problems
ODE filters can solve much more than the ODEs that we saw so far! [Bosch et al., 2022, Krämer and Hennig, 2021]

Numerical problems setting: Boundary value problem (BVP) with first-order ODE

ẏ(t) = f(y(t), t), Ly(0) = y0, Ry(T) = yT.

This leads to the probabilistic state estimation problem:

Initial distribution: x(0) ∼ N
(
x(0);µ−

0 ,Σ
−
0

)
Prior / dynamics model: x(t+ h) | x(t) ∼ N (x(t+ h); A(h)x(t),Q(h))

ODE likelihood: z(ti) | x(ti) ∼ δ (z(ti); ) , zi ≜ 0

Initial value likelihood: zinit | x(0) ∼ δ
(
zinit; LE0x(0)

)
, zinit ≜ y0

Boundary value likelihood: zR1 | x(T)∼ δ
(
zR1; RE0x(T)

)
, zinit1 ≜ yT

The measurement model provides a very flexible way to easily encode desired properties.
But it’s all just Bayesian state estimation!

@nathanaelbosch 11



Probabilistic Numerics for ODE Parameter Inference
Using the ODE solution as a “physics-enhanced” prior for regression

@nathanaelbosch 12



“Forward” and “Inverse” Problems
Going from formula to plot, or from plot to formula

Forward Problem

ẏθ = fθ(yθ, t) yθ(t0) = y0(θ).

solve===⇒

Inverse Problem

θ̂ = arg max
θ

p (D | θ)

Problem: The marginal likelihood
p(D | θ) =

∏
N (u(t); yθ(t), Rθ) is intractable.

(because the true ODE solution is intractable!)

find⇐==

@nathanaelbosch 13



“Forward” and “Inverse” Problems
Going from formula to plot, or from plot to formula

Forward Problem

ẏθ = fθ(yθ, t) yθ(t0) = y0(θ).

solve===⇒

Inverse Problem

θ̂ = arg max
θ

p (D | θ)

Problem: The marginal likelihood
p(D | θ) =

∏
N (u(t); yθ(t), Rθ) is intractable.

(because the true ODE solution is intractable!)

find⇐==

@nathanaelbosch 13



“Forward” and “Inverse” Problems
Going from formula to plot, or from plot to formula

Forward Problem

ẏθ = fθ(yθ, t) yθ(t0) = y0(θ).

solve===⇒

Inverse Problem

θ̂ = arg max
θ

p (D | θ)

Problem: The marginal likelihood
p(D | θ) =

∏
N (u(t); yθ(t), Rθ) is intractable.

(because the true ODE solution is intractable!)

find⇐==

@nathanaelbosch 13



Context: Between classic integration and gradient matching
We’re doing both: Integrating first, then GP regression

1. Classical Numerical Integration
▶ (i) Solve the IVP to compute ŷθ(t)
▶ (ii) Approximate the marginal likelihood as M̂(θ) =

∏
n N (u(tn); ŷθ(tn), Rθ)

▶ (iii) Optimize to get θ̂ = arg maxM̂(θ)

2. Gradient Matching
▶ (i) Fit a curve ŷ(t) to the data {u(ti)}
▶ (ii) Estimate θ by minimizing ˙̂y(t)− fθ(ŷ(t))

Exists in both classic (splines) or probabilistic versions (GPs)
3. Probabilistic Numerical Integration

▶
M̂PN(θ, κ) =

∫ ∏
n

N (u(tn); y(tn), Rθ)︸ ︷︷ ︸
Likelihood

· γPN (y(t1:N) | θ, κ)︸ ︷︷ ︸
PN ODE Solution

dy(t1:N) (1)

▶ (i) Probabilistically solve IVP to compute γPN(y(t) | θ, κ)
▶ (ii) Perform Kalman filtering on the data, with γPN as a “physics-enhanced” prior
▶ (iii) Optimize the approximate marginal likelihood

@nathanaelbosch 14



Context: Between classic integration and gradient matching
We’re doing both: Integrating first, then GP regression

1. Classical Numerical Integration
▶ (i) Solve the IVP to compute ŷθ(t)
▶ (ii) Approximate the marginal likelihood as M̂(θ) =

∏
n N (u(tn); ŷθ(tn), Rθ)

▶ (iii) Optimize to get θ̂ = arg maxM̂(θ)

2. Gradient Matching
▶ (i) Fit a curve ŷ(t) to the data {u(ti)}
▶ (ii) Estimate θ by minimizing ˙̂y(t)− fθ(ŷ(t))

Exists in both classic (splines) or probabilistic versions (GPs)

3. Probabilistic Numerical Integration

▶
M̂PN(θ, κ) =

∫ ∏
n

N (u(tn); y(tn), Rθ)︸ ︷︷ ︸
Likelihood

· γPN (y(t1:N) | θ, κ)︸ ︷︷ ︸
PN ODE Solution

dy(t1:N) (1)

▶ (i) Probabilistically solve IVP to compute γPN(y(t) | θ, κ)
▶ (ii) Perform Kalman filtering on the data, with γPN as a “physics-enhanced” prior
▶ (iii) Optimize the approximate marginal likelihood

@nathanaelbosch 14



Context: Between classic integration and gradient matching
We’re doing both: Integrating first, then GP regression

1. Classical Numerical Integration
▶ (i) Solve the IVP to compute ŷθ(t)
▶ (ii) Approximate the marginal likelihood as M̂(θ) =

∏
n N (u(tn); ŷθ(tn), Rθ)

▶ (iii) Optimize to get θ̂ = arg maxM̂(θ)

2. Gradient Matching
▶ (i) Fit a curve ŷ(t) to the data {u(ti)}
▶ (ii) Estimate θ by minimizing ˙̂y(t)− fθ(ŷ(t))

Exists in both classic (splines) or probabilistic versions (GPs)
3. Probabilistic Numerical Integration

▶
M̂PN(θ, κ) =

∫ ∏
n

N (u(tn); y(tn), Rθ)︸ ︷︷ ︸
Likelihood

· γPN (y(t1:N) | θ, κ)︸ ︷︷ ︸
PN ODE Solution

dy(t1:N) (1)

▶ (i) Probabilistically solve IVP to compute γPN(y(t) | θ, κ)
▶ (ii) Perform Kalman filtering on the data, with γPN as a “physics-enhanced” prior
▶ (iii) Optimize the approximate marginal likelihood

@nathanaelbosch 14



Context: Between classic integration and gradient matching
We’re doing both: Integrating first, then GP regression

1. Classical Numerical Integration
▶ (i) Solve the IVP to compute ŷθ(t)
▶ (ii) Approximate the marginal likelihood as M̂(θ) =

∏
n N (u(tn); ŷθ(tn), Rθ)

▶ (iii) Optimize to get θ̂ = arg maxM̂(θ)

2. Gradient Matching
▶ (i) Fit a curve ŷ(t) to the data {u(ti)}
▶ (ii) Estimate θ by minimizing ˙̂y(t)− fθ(ŷ(t))

Exists in both classic (splines) or probabilistic versions (GPs)
3. Probabilistic Numerical Integration

▶
M̂PN(θ, κ) =

∫ ∏
n

N (u(tn); y(tn), Rθ)︸ ︷︷ ︸
Likelihood

· γPN (y(t1:N) | θ, κ)︸ ︷︷ ︸
PN ODE Solution

dy(t1:N) (1)

▶ (i) Probabilistically solve IVP to compute γPN(y(t) | θ, κ)
▶ (ii) Perform Kalman filtering on the data, with γPN as a “physics-enhanced” prior
▶ (iii) Optimize the approximate marginal likelihood

@nathanaelbosch 14



Context: Between classic integration and gradient matching
We’re doing both: Integrating first, then GP regression

1. Classical Numerical Integration
▶ (i) Solve the IVP to compute ŷθ(t)
▶ (ii) Approximate the marginal likelihood as M̂(θ) =

∏
n N (u(tn); ŷθ(tn), Rθ)

▶ (iii) Optimize to get θ̂ = arg maxM̂(θ)

2. Gradient Matching
▶ (i) Fit a curve ŷ(t) to the data {u(ti)}
▶ (ii) Estimate θ by minimizing ˙̂y(t)− fθ(ŷ(t))

Exists in both classic (splines) or probabilistic versions (GPs)
3. Probabilistic Numerical Integration

▶
M̂PN(θ, κ) =

∫ ∏
n

N (u(tn); y(tn), Rθ)︸ ︷︷ ︸
Likelihood

· γPN (y(t1:N) | θ, κ)︸ ︷︷ ︸
PN ODE Solution

dy(t1:N) (1)

▶ (i) Probabilistically solve IVP to compute γPN(y(t) | θ, κ)

▶ (ii) Perform Kalman filtering on the data, with γPN as a “physics-enhanced” prior
▶ (iii) Optimize the approximate marginal likelihood

@nathanaelbosch 14



Context: Between classic integration and gradient matching
We’re doing both: Integrating first, then GP regression

1. Classical Numerical Integration
▶ (i) Solve the IVP to compute ŷθ(t)
▶ (ii) Approximate the marginal likelihood as M̂(θ) =

∏
n N (u(tn); ŷθ(tn), Rθ)

▶ (iii) Optimize to get θ̂ = arg maxM̂(θ)

2. Gradient Matching
▶ (i) Fit a curve ŷ(t) to the data {u(ti)}
▶ (ii) Estimate θ by minimizing ˙̂y(t)− fθ(ŷ(t))

Exists in both classic (splines) or probabilistic versions (GPs)
3. Probabilistic Numerical Integration

▶
M̂PN(θ, κ) =

∫ ∏
n

N (u(tn); y(tn), Rθ)︸ ︷︷ ︸
Likelihood

· γPN (y(t1:N) | θ, κ)︸ ︷︷ ︸
PN ODE Solution

dy(t1:N) (1)

▶ (i) Probabilistically solve IVP to compute γPN(y(t) | θ, κ)
▶ (ii) Perform Kalman filtering on the data, with γPN as a “physics-enhanced” prior

▶ (iii) Optimize the approximate marginal likelihood

@nathanaelbosch 14



Context: Between classic integration and gradient matching
We’re doing both: Integrating first, then GP regression

1. Classical Numerical Integration
▶ (i) Solve the IVP to compute ŷθ(t)
▶ (ii) Approximate the marginal likelihood as M̂(θ) =

∏
n N (u(tn); ŷθ(tn), Rθ)

▶ (iii) Optimize to get θ̂ = arg maxM̂(θ)

2. Gradient Matching
▶ (i) Fit a curve ŷ(t) to the data {u(ti)}
▶ (ii) Estimate θ by minimizing ˙̂y(t)− fθ(ŷ(t))

Exists in both classic (splines) or probabilistic versions (GPs)
3. Probabilistic Numerical Integration

▶
M̂PN(θ, κ) =

∫ ∏
n

N (u(tn); y(tn), Rθ)︸ ︷︷ ︸
Likelihood

· γPN (y(t1:N) | θ, κ)︸ ︷︷ ︸
PN ODE Solution

dy(t1:N) (1)

▶ (i) Probabilistically solve IVP to compute γPN(y(t) | θ, κ)
▶ (ii) Perform Kalman filtering on the data, with γPN as a “physics-enhanced” prior
▶ (iii) Optimize the approximate marginal likelihood

@nathanaelbosch 14



Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=1@nathanaelbosch 15



Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=2@nathanaelbosch 15



Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=3@nathanaelbosch 15



Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=4@nathanaelbosch 15



Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=5@nathanaelbosch 15



Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=10@nathanaelbosch 15



Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=15@nathanaelbosch 15



Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=20@nathanaelbosch 15



Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=25@nathanaelbosch 15



Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=30@nathanaelbosch 15



Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=35@nathanaelbosch 15



Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=40@nathanaelbosch 15



Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=45@nathanaelbosch 15



Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=50@nathanaelbosch 15



Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=55@nathanaelbosch 15



Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=60@nathanaelbosch 15



Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=61@nathanaelbosch 15



Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=62@nathanaelbosch 15



Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=63@nathanaelbosch 15



Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=63@nathanaelbosch 15



Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=64@nathanaelbosch 15



Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=65@nathanaelbosch 15



Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=66@nathanaelbosch 15



Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=67@nathanaelbosch 15



Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=68@nathanaelbosch 15



Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=69@nathanaelbosch 15



Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=70@nathanaelbosch 15



Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=71@nathanaelbosch 15



Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=72@nathanaelbosch 15



Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=73@nathanaelbosch 15



Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=74@nathanaelbosch 15



Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=75@nathanaelbosch 15



Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=76@nathanaelbosch 15



Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=77@nathanaelbosch 15



Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=78@nathanaelbosch 15



Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=79@nathanaelbosch 15



Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=80@nathanaelbosch 15



Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=90@nathanaelbosch 15



Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=100@nathanaelbosch 15



Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly

Figure: i=100 DONE@nathanaelbosch 15



Inference in a partially observed oscillatory system
The probabilistic solver can escape the local optimum

0 10

-2

2

0 10

-2

2

0 10

-2

2

0 10

-2

2

0 10

-2

2
A B

C D E

RK

FENRIR

Position

Velocity

Data

@nathanaelbosch 16



Gradient-based parameter inference in a Hodgkin–Huxley neuron

@nathanaelbosch 17



Summary
▶ ODE solving is state estimation

⇒ treat initial value problems as state estimation problems
▶ “ODE filters”: How to solve ODEs with Bayesian filtering and smoothing
▶ Flexible information operators to solve more than just standard ODEs
▶ Parameter inference: Being uncertain about the ODE solution allows you to update on data

Software packages https://github.com/nathanaelbosch/ProbNumDiffEq.jl
]add ProbNumDiffEq

https://github.com/probabilistic-numerics/probnum
pip install probnum

https://github.com/pnkraemer/probdiffeq
pip install probdiffeq

@nathanaelbosch 18

https://github.com/nathanaelbosch/ProbNumDiffEq.jl
https://github.com/probabilistic-numerics/probnum
https://github.com/pnkraemer/probdiffeq


Bibliography I

▶ Bosch, N., Corenflos, A., Yaghoobi, F., Tronarp, F., Hennig, P., and Särkkä, S. (2023a).
Parallel-in-time probabilistic numerical ODE solvers.

▶ Bosch, N., Hennig, P., and Tronarp, F. (2021).
Calibrated adaptive probabilistic ODE solvers.
In Banerjee, A. and Fukumizu, K., editors, Proceedings of The 24th International Conference on
Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine Learning Research, pages
3466–3474. PMLR.

▶ Bosch, N., Hennig, P., and Tronarp, F. (2023b).
Probabilistic exponential integrators.
In Thirty-seventh Conference on Neural Information Processing Systems.

▶ Bosch, N., Tronarp, F., and Hennig, P. (2022).
Pick-and-mix information operators for probabilistic ODE solvers.
In Camps-Valls, G., Ruiz, F. J. R., and Valera, I., editors, Proceedings of The 25th International
Conference on Artificial Intelligence and Statistics, volume 151 of Proceedings of Machine Learning
Research, pages 10015–10027. PMLR.

@nathanaelbosch 19



Bibliography II

▶ Kersting, H., Sullivan, T. J., and Hennig, P. (2020).
Convergence rates of gaussian ode filters.
Statistics and Computing, 30(6):1791–1816.

▶ Krämer, N., Bosch, N., Schmidt, J., and Hennig, P. (2022).
Probabilistic ODE solutions in millions of dimensions.
In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., and Sabato, S., editors, Proceedings of
the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine
Learning Research, pages 11634–11649. PMLR.

▶ Krämer, N. and Hennig, P. (2020).
Stable implementation of probabilistic ode solvers.
CoRR.

▶ Krämer, N. and Hennig, P. (2021).
Linear-time probabilistic solution of boundary value problems.
In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W., editors, Advances in Neural
Information Processing Systems, volume 34, pages 11160–11171. Curran Associates, Inc.

@nathanaelbosch 20



Bibliography III

▶ Krämer, N., Schmidt, J., and Hennig, P. (2022).
Probabilistic numerical method of lines for time-dependent partial differential equations.
In Camps-Valls, G., Ruiz, F. J. R., and Valera, I., editors, Proceedings of The 25th International
Conference on Artificial Intelligence and Statistics, volume 151 of Proceedings of Machine Learning
Research, pages 625–639. PMLR.

▶ Schmidt, J., Krämer, N., and Hennig, P. (2021).
A probabilistic state space model for joint inference from differential equations and data.
In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W., editors, Advances in Neural
Information Processing Systems, volume 34, pages 12374–12385. Curran Associates, Inc.

▶ Tronarp, F., Bosch, N., and Hennig, P. (2022).
Fenrir: Physics-enhanced regression for initial value problems.
In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., and Sabato, S., editors, Proceedings of
the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine
Learning Research, pages 21776–21794. PMLR.

@nathanaelbosch 21



Bibliography IV

▶ Tronarp, F., Kersting, H., Särkkä, S., and Hennig, P. (2019).
Probabilistic solutions to ordinary differential equations as nonlinear Bayesian filtering: a new
perspective.
Statistics and Computing, 29(6):1297–1315.

▶ Tronarp, F., Särkkä, S., and Hennig, P. (2021).
Bayesian ode solvers: the maximum a posteriori estimate.
Statistics and Computing, 31(3):23.

@nathanaelbosch 22


	pbs@ARFix@1: 
	pbs@ARFix@2: 
	pbs@ARFix@3: 
	pbs@ARFix@4: 
	pbs@ARFix@5: 
	pbs@ARFix@6: 
	pbs@ARFix@7: 
	pbs@ARFix@8: 
	pbs@ARFix@9: 
	pbs@ARFix@10: 
	pbs@ARFix@11: 
	pbs@ARFix@12: 
	pbs@ARFix@13: 
	pbs@ARFix@14: 
	pbs@ARFix@15: 
	pbs@ARFix@16: 
	pbs@ARFix@17: 
	pbs@ARFix@18: 
	pbs@ARFix@19: 
	pbs@ARFix@20: 
	pbs@ARFix@21: 
	pbs@ARFix@22: 
	pbs@ARFix@23: 
	pbs@ARFix@24: 
	pbs@ARFix@25: 
	pbs@ARFix@26: 
	pbs@ARFix@27: 
	pbs@ARFix@28: 
	pbs@ARFix@29: 
	pbs@ARFix@30: 
	pbs@ARFix@31: 
	pbs@ARFix@32: 
	pbs@ARFix@33: 
	pbs@ARFix@34: 
	pbs@ARFix@35: 
	pbs@ARFix@36: 
	pbs@ARFix@37: 
	pbs@ARFix@38: 
	pbs@ARFix@39: 
	pbs@ARFix@40: 
	pbs@ARFix@41: 
	pbs@ARFix@42: 
	pbs@ARFix@43: 
	pbs@ARFix@44: 
	pbs@ARFix@45: 
	pbs@ARFix@46: 
	pbs@ARFix@47: 
	pbs@ARFix@48: 
	pbs@ARFix@49: 
	pbs@ARFix@50: 
	pbs@ARFix@51: 
	pbs@ARFix@52: 
	pbs@ARFix@53: 
	pbs@ARFix@54: 
	pbs@ARFix@55: 
	pbs@ARFix@56: 
	pbs@ARFix@57: 
	pbs@ARFix@58: 
	pbs@ARFix@59: 
	pbs@ARFix@60: 
	pbs@ARFix@61: 
	pbs@ARFix@62: 
	pbs@ARFix@63: 
	pbs@ARFix@64: 
	pbs@ARFix@65: 
	pbs@ARFix@66: 
	pbs@ARFix@67: 
	pbs@ARFix@68: 
	pbs@ARFix@69: 
	pbs@ARFix@70: 
	pbs@ARFix@71: 
	pbs@ARFix@72: 
	pbs@ARFix@73: 
	pbs@ARFix@74: 
	pbs@ARFix@75: 
	pbs@ARFix@76: 
	pbs@ARFix@77: 
	pbs@ARFix@78: 
	pbs@ARFix@79: 
	pbs@ARFix@80: 
	pbs@ARFix@81: 
	pbs@ARFix@82: 
	pbs@ARFix@83: 
	pbs@ARFix@84: 
	pbs@ARFix@85: 
	pbs@ARFix@86: 
	pbs@ARFix@87: 
	pbs@ARFix@88: 
	pbs@ARFix@89: 
	pbs@ARFix@90: 
	pbs@ARFix@91: 
	pbs@ARFix@92: 
	pbs@ARFix@93: 
	pbs@ARFix@94: 
	pbs@ARFix@95: 
	pbs@ARFix@96: 
	pbs@ARFix@97: 
	pbs@ARFix@98: 
	pbs@ARFix@99: 
	pbs@ARFix@100: 
	pbs@ARFix@101: 
	pbs@ARFix@102: 
	pbs@ARFix@103: 
	pbs@ARFix@104: 
	pbs@ARFix@105: 
	pbs@ARFix@106: 
	pbs@ARFix@107: 
	pbs@ARFix@108: 
	pbs@ARFix@109: 


