Probabilistic Numerics for Ordinary DIfferential Equations
 SIAM UQ 2024

Nathanael Bosch
29. February 2024

EBERHARD KARLS
UNIVERSITAT TUBINGEN
imprs-is
:itaigirc Bome of the presented work is supported

Background

- Ordinary differential equations and how to solve them

Background

- Ordinary differential equations and how to solve them

Central statement: ODE solving is state estimation

- "ODE filters": How to solve ODEs with extended Kalman filtering and smoothing

Background

- Ordinary differential equations and how to solve them

Central statement: ODE solving is state estimation

- "ODE filters": How to solve ODEs with extended Kalman filtering and smoothing

Fun with ODE filters

- Generalizing ODE filters to other related problems (higher-order ODEs, DAEs, ...)
- ODE filters for parameter inference

Background: Ordinary Differential Equations and how to solve them

$$
\dot{y}(t)=f(y(t), t)
$$

with $t \in[0, T]$, vector field $f: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$, and initial value $y(0)=y_{0}$. Goal: "Find y^{\prime}.

- Simple example: Logistic ODE

$$
\dot{y}(t)=y(t)(1-y(t)), \quad t \in[0,10], \quad y(0)=0.1
$$

$$
\dot{y}(t)=f(y(t), t)
$$

with $t \in[0, T]$, vector field $f: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$, and initial value $y(0)=y_{0}$. Goal: "Find $y^{\prime \prime}$.

Numerical ODE solvers:

- Forward Euler:

$$
\hat{y}(t+h)=\hat{y}(t)+h f(\hat{y}(t), t)
$$

$$
\dot{y}(t)=f(y(t), t)
$$

with $t \in[0, T]$, vector field $f: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$, and initial value $y(0)=y_{0}$. Goal: "Find y^{\prime}.

Numerical ODE solvers:

- Forward Euler:

$$
\hat{y}(t+h)=\hat{y}(t)+h f(\hat{y}(t), t)
$$

- Backward Euler:

$$
\hat{y}(t+h)=\hat{y}(t)+h f(\hat{y}(t+h), t+h)
$$

$$
\dot{y}(t)=f(y(t), t)
$$

with $t \in[0, T]$, vector field $f: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$, and initial value $y(0)=y_{0}$. Goal: "Find $y^{\prime \prime}$.

Numerical ODE solvers:

- Forward Euler:

$$
\hat{y}(t+h)=\hat{y}(t)+h f(\hat{y}(t), t)
$$

- Backward Euler:

$$
\hat{y}(t+h)=\hat{y}(t)+h f(\hat{y}(t+h), t+h)
$$

- Runge-Kutta:

$$
\hat{y}(t+h)=\hat{y}(t)+h \sum_{i=1}^{s} b_{i} f\left(\tilde{y}_{i}, t+c_{i} h\right)
$$

$$
\dot{y}(t)=f(y(t), t)
$$

with $t \in[0, T]$, vector field $f: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$, and initial value $y(0)=y_{0}$. Goal: "Find $y^{\prime \prime}$.

Numerical ODE solvers:

- Forward Euler:

$$
\hat{y}(t+h)=\hat{y}(t)+h f(\hat{y}(t), t)
$$

- Backward Euler:

$$
\hat{y}(t+h)=\hat{y}(t)+h f(\hat{y}(t+h), t+h)
$$

- Runge-Kutta:

$$
\hat{y}(t+h)=\hat{y}(t)+h \sum_{i=1}^{s} b_{i} f\left(\tilde{y}_{i}, t+c_{i} h\right)
$$

- Multistep:

$$
\hat{y}(t+h)=\hat{y}(t)+h \sum_{i=0}^{s-1} b_{i} f(\hat{y}(t-i h), t-i h)
$$

Background: Ordinary Differential Equations and how to solve them UNvivisim

 Numerical ODE solvers try to estimate an unknown function by evaluating the vector field$$
\dot{y}(t)=f(y(t), t)
$$

with $t \in[0, T]$, vector field $f: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$, and initial value $y(0)=y_{0}$. Goal: "Find $y^{\prime \prime}$.

Numerical ODE solvers:

- Forward Euler
$\hat{y}(t+h)=\hat{y}(t)+h f(\hat{y}(t), t)$
- Backward Euler
$\hat{y}(t+h)=\hat{y}(t)+h f(\hat{y}(t+h), t+h)$
- Runge-Kutta:
$\hat{y}(t+h)=\hat{y}(t)+h \sum_{i=1}^{s} b_{i} f\left(\tilde{y}_{i}, t+c_{i} h\right)$
- Multistep:
$\hat{y}(t+h)=\hat{y}(t)+h \sum_{i=0}^{s-1} b_{i} f(\hat{y}(t-i h), t-i h)$

Forward Euler for different step sizes:

$$
\dot{y}(t)=f(y(t), t)
$$

with $t \in[0, T]$, vector field $f: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$, and initial value $y(0)=y_{0}$. Goal: "Find $y^{\prime \prime}$.

Numerical ODE solvers:

- Forward Euler
$\hat{y}(t+h)=\hat{y}(t)+h f(\hat{y}(t), t)$
- Backward Euler:
$\hat{y}(t+h)=\hat{y}(t)+h f(\hat{y}(t+h), t+h)$
- Runge-Kutta:
$\hat{y}(t+h)=\hat{y}(t)+h \sum_{i=1}^{s} b_{i} f\left(\tilde{y}_{i}, t+c_{i} h\right)$
- Multistep:
$\hat{y}(t+h)=\hat{y}(t)+h \sum_{i=0}^{s-1} b_{i} f(\hat{y}(t-i h), t-i h)$

Forward Euler for different step sizes:

Numerical ODE solvers estimate $y(t)$ by evaluating f on a discrete set of points.

Probabilistic numerical ODE solvers

or "How to treat ODEs as a Bayesian state estimation problem"

$$
P\left(y(t) \mid y(0)=V_{0},\left\{\dot{V}\left(t_{n}\right)=f\left(y\left(t_{n}\right), t_{n}\right)\right\}_{n=1}^{N}\right)
$$

with vector field $f: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$, initial value y_{0}, and time discretization $\left\{t_{n}\right\}_{n=1}^{N}$.

$$
p\left(y(t) \mid y(0)=y_{0},\left\{\dot{y}\left(t_{n}\right)=f\left(y\left(t_{n}\right), t_{n}\right)\right\}_{n=1}^{N}\right)
$$

with vector field $f: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$, initial value y_{0}, and time discretization $\left\{t_{n}\right\}_{n=1}^{N}$.

- Prior: $y(t) \sim \mathcal{G P}$

$$
p\left(y(t) \mid y(0)=y_{0},\left\{\dot{y}\left(t_{n}\right)=f\left(y\left(t_{n}\right), t_{n}\right)\right\}_{n=1}^{N}\right)
$$

with vector field $f: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$, initial value y_{0}, and time discretization $\left\{t_{n}\right\}_{n=1}^{N}$.

- Prior: $y(t) \sim \mathcal{G P}$ a Gauss-Markov process

$$
P\left(y(t) \mid y(0)=V_{0},\left\{\dot{y}\left(t_{n}\right)=f\left(y\left(t_{n}\right), t_{n}\right)\right\}_{n=1}^{N}\right)
$$

with vector field $f: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$, initial value y_{0}, and time discretization $\left\{t_{n}\right\}_{n=1}^{N}$.

- Prior: $y(t) \sim \mathcal{G P}$ a Gauss-Markov process with state-space representation $x(t)$:

$$
\begin{aligned}
x(0) & \sim \mathcal{N}\left(\mu_{0}^{-}, \Sigma_{0}^{-}\right), \\
\mathrm{d} x(t) & =F x(t) \mathrm{d} t+\sigma \Gamma \mathrm{d} w(t), \\
y^{(m)}(t) & =E_{m} x(t), \quad m=1, \ldots, \nu .
\end{aligned}
$$

$$
p\left(y(t) \mid y(0)=y_{0},\left\{\dot{y}\left(t_{n}\right)=f\left(y\left(t_{n}\right), t_{n}\right)\right\}_{n=1}^{N}\right)
$$

with vector field $f: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$, initial value y_{0}, and time discretization $\left\{t_{n}\right\}_{n=1}^{N}$.

- Prior: $y(t) \sim \mathcal{G P}$ a Gauss-Markov process with state-space representation $x(t)$:

$$
\begin{aligned}
& x(0) \sim \mathcal{N}\left(\mu_{0}^{-}, \Sigma_{0}^{-}\right), \\
& x(0) \sim \mathcal{N}\left(\mu_{0}^{-}, \Sigma_{0}^{-}\right), \\
& \mathrm{d} x(t)=F x(t) \mathrm{d} t+\sigma \Gamma \mathrm{d} w(t), \quad \Rightarrow \quad x\left(t_{i+1}\right) \mid x\left(t_{i}\right) \sim \mathcal{N}\left(A\left(\Delta_{i}\right) x(t), \sigma^{2} Q\left(\Delta_{i}\right)\right), \\
& y^{(m)}(t)=E_{m} x(t), \quad m=1, \ldots, \nu . \quad y^{(m)}(t)=E_{m} x(t), \quad m=1, \ldots, \nu . \\
& \text { where } \Delta_{i}:=t_{i+1}-t_{i} \text {, and }(A, Q) \text { can be computed from }(F, \Gamma) \text {. }
\end{aligned}
$$

$$
p\left(y(t) \mid y(0)=y_{0},\left\{\dot{y}\left(t_{n}\right)=f\left(y\left(t_{n}\right), t_{n}\right)\right\}_{n=1}^{N}\right)
$$

with vector field $f: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$, initial value y_{0}, and time discretization $\left\{t_{n}\right\}_{n=1}^{N}$.

- Prior: $y(t) \sim \mathcal{G P}$ a Gauss-Markov process with state-space representation $x(t)$:

$$
\begin{array}{rlrl}
x(0) & \sim \mathcal{N}\left(\mu_{0}^{-}, \Sigma_{0}^{-}\right), & x(0) & \sim \mathcal{N}\left(\mu_{0}^{-}, \Sigma_{0}^{-}\right), \\
\mathrm{dx}(t) & =F x(t) \mathrm{d} t+\sigma \Gamma \mathrm{d} w(t), & \Rightarrow & x\left(t_{i+1}\right) \mid x\left(t_{i}\right) \\
y^{(m)}(t) & \sim \mathcal{N}\left(A\left(\Delta_{i}\right) x(t), \sigma^{2} Q\left(\Delta_{i}\right)\right), \\
y_{m} x(t), \quad m=1, \ldots, \nu . & & y^{(m)}(t) & =E_{m} x(t), \quad m=1, \ldots, \nu .
\end{array}
$$

where $\Delta_{i}:=t_{i+1}-t_{i}$, and (A, Q) can be computed from (F, Γ).

- Likelihood: (aka "observation model" or "information operator")

$$
z_{0}=E_{0} x(0)-y_{0}=0, \quad \& \quad z\left(t_{n}\right)=E_{1} x\left(t_{n}\right)-f\left(E_{0} x\left(t_{n}\right), t_{n}\right)=0 .
$$

$$
p\left(y(t) \mid y(0)=y_{0},\left\{\dot{y}\left(t_{n}\right)=f\left(y\left(t_{n}\right), t_{n}\right)\right\}_{n=1}^{N}\right)
$$

with vector field $f: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$, initial value y_{0}, and time discretization $\left\{t_{n}\right\}_{n=1}^{N}$.

- Prior: $y(t) \sim \mathcal{G P}$ a Gauss-Markov process with state-space representation $x(t)$:

$$
\left.\begin{array}{rlrl}
x(0) & \sim \mathcal{N}\left(\mu_{0}^{-}, \Sigma_{0}^{-}\right), & x(0) & \sim \mathcal{N}\left(\mu_{0}^{-}, \Sigma_{0}^{-}\right) \\
\mathrm{d} x(t) & =F x(t) \mathrm{d} t+\sigma \Gamma \mathrm{d} w(t), & \Rightarrow & x\left(t_{i+1}\right) \mid x\left(t_{i}\right)
\end{array}\right) \sim \mathcal{N}\left(A\left(\Delta_{i}\right) x(t), \sigma^{2} Q\left(\Delta_{i}\right)\right),
$$

where $\Delta_{i}:=t_{i+1}-t_{i}$, and (A, Q) can be computed from (F, Γ).

- Likelihood: (aka "observation model" or "information operator")

$$
z_{0}=E_{0} x(0)-y_{0}=0, \quad \& \quad z\left(t_{n}\right)=E_{1} x\left(t_{n}\right)-f\left(E_{0} x\left(t_{n}\right), t_{n}\right)=0
$$

- Inference:

$$
p\left(y(t) \mid y(0)=y_{0},\left\{\dot{y}\left(t_{n}\right)=f\left(y\left(t_{n}\right), t_{n}\right)\right\}_{n=1}^{N}\right)
$$

with vector field $f: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$, initial value y_{0}, and time discretization $\left\{t_{n}\right\}_{n=1}^{N}$.

- Prior: $y(t) \sim \mathcal{G P}$ a Gauss-Markov process with state-space representation $x(t)$:

$$
\left.\begin{array}{rlrl}
x(0) & \sim \mathcal{N}\left(\mu_{0}^{-}, \Sigma_{0}^{-}\right), & x(0) & \sim \mathcal{N}\left(\mu_{0}^{-}, \Sigma_{0}^{-}\right), \\
\mathrm{d} x(t) & =F x(t) \mathrm{d} t+\sigma \Gamma \mathrm{d} w(t), & \Rightarrow & x\left(t_{i+1}\right) \mid x\left(t_{i}\right)
\end{array}\right) \sim \mathcal{N}\left(A\left(\Delta_{i}\right) x(t), \sigma^{2} Q\left(\Delta_{i}\right)\right),
$$

where $\Delta_{i}:=t_{i+1}-t_{i}$, and (A, Q) can be computed from (F, Γ).

- Likelihood: (aka "observation model" or "information operator")

$$
z_{0}=E_{0} x(0)-y_{0}=0, \quad \& \quad z\left(t_{n}\right)=E_{1} x\left(t_{n}\right)-f\left(E_{0} x\left(t_{n}\right), t_{n}\right)=0
$$

- Inference: Extended Kalman filter/smoother (or other Bayesian filtering and smoothing methods).

Prior

Prior

Prior


```
Algorithm The extended Kalman ODE filter
    procedure EXTENDED KALMAN ODE FILTER \(\left(\left(\mu_{0}^{-}, \Sigma_{0}^{-}\right),(A, Q),\left(f, x_{0}\right),\left\{t_{i}\right\}_{i=1}^{N}\right)\)
    \(\mu_{0}, \Sigma_{0} \longleftarrow \operatorname{KF}\) _UPDATE \(\left(\mu_{0}^{-}, \Sigma_{0}^{-}, E_{0}, 0_{d \times d}, x_{0}\right) \quad / /\) Initial update to fit the initial value
    for \(k \in\{1, \ldots, N\}\) do
            \(h_{k} \leftarrow t_{k}-t_{k-1}\) // step size
            \(\mu_{k}^{-}, \Sigma_{k}^{-} \triangleleft \operatorname{KF}\) _PREDICT \(\left(\mu_{k-1}, \Sigma_{k-1}, A\left(h_{k}\right), Q\left(h_{k}\right)\right) \quad / / ~ K a l m a n ~ f i l t e r ~ p r e d i c t i o n ~\)
            \(m_{k}(X):=E_{1} X-f\left(E_{0} X, t_{k}\right) \quad / /\) Define the non-linear observation model
            \(\mu_{k}, \Sigma_{k} \longleftarrow E K F \_U P D A T E ~\left(\mu_{k}^{-}, \Sigma_{k}^{-}, m_{k}, 0_{d \times d}, \mathbf{0}_{d}\right) \quad / /\) Extended Kalman filter update
        end for
        return \(\left(\mu_{k}, \Sigma_{k}\right)_{k=1}^{N}\)
    end procedure
```

Extended Kalman ODE smoother: Just run a RTS smoother after the filter!

- Properties and features:
- Polynomial convergence rates [kersting etal., 2020, Tronarpe etal. 2021]
- Properties and features:
- Polynomial convergence rates [kersting etal. 2020, Tronarp etal, 2021]
- A-stability [Tronarp etal, 2019]
- Properties and features:
- Polynomial convergence rates kersting etal. 2020, Tronap etal, 2021]
- A-stability [Tronarp etal, 2019]
- L-stable probabilistic exponential integrators [Bosch et al. 2023b]
- Properties and features:
- Polynomial convergence rates [kersting et al., 2020, Tronarp et al, 2027]
- A-stability [Tronarp etal, 2019]
- L-stable probabilistic exponential integrators |Bosch etal, 2023b
- Complexity: $\mathcal{O}\left(d^{3}\right)$ for the A-stable semi-implicit method, $\mathcal{O}(d)$ for an explicit method with coarser covariances [Krämeretal. 2022]
- Properties and features:
- Polynomial convergence rates [kersting et al, 2020, Tronarpetal, 2021]
- A-stability [Tronarp etal, 2019]
- L-stable probabilistic exponential integrators [Bosch etal, 2023b]
- Complexity: $\mathcal{O}\left(d^{3}\right)$ for the A-stable semi-implicit method, $\mathcal{O}(d)$ for an explicit method with coarser covariances
- Step-size adaptation and calibration: [Bosch etal. 202]]
- Properties and features:
- Polynomial convergence rates [kersting et al, 2020, Tronarpetal, 2021]
- A-stability [Tronarp etal. 2019]
- L-stable probabilistic exponential integrators [Bosch etal, 2023b]
- Complexity: $\mathcal{O}\left(d^{3}\right)$ for the A-stable semi-implicit method, $\mathcal{O}(d)$ for an explicit method with coarser covariances [krämeretal., 2022]
- Step-size adaptation and calibration: [Bosch et al, 2027]
- Parallel-in-time formulation [Bosch etal. 2023a]
- Properties and features:
- Polynomial convergence rates [Kersting et al. 2020, Tronarpet al, 2021]
- A-stability [Tronarp et al, 2019]
- L-stable probabilistic exponential integrators [Bosch etal, 2023b)
- Complexity: $\mathcal{O}\left(d^{3}\right)$ for the A-stable semi-implicit method, $\mathcal{O}(d)$ for an explicit method with coarser covariances [krimeretal. 2022]
- Step-size adaptation and calibration: (Bosch et al, 2021]
- Parallel-in-time formulation
- More related differential equation problems:
- Higher-order ODEs, DAEs, Hamiltonian systems [Bosch etal., 2022]
- Boundary value problems (BVPs) [kämer and Hennig, 2021]
- Partial differential equations (PDEs) via method of lines [këmere tal, 2022]
- Properties and features:
- Polynomial convergence rates [Kersting et al. 2020, Tronarp et al, 2021]
- A-stability [Tronarp et al, 2019]
- L-stable probabilistic exponential integrators [bosch etal. 2023b]
- Complexity: $\mathcal{O}\left(d^{3}\right)$ for the A-stable semi-implicit method, $\mathcal{O}(d)$ for an explicit method with coarser covariances [krimeretal. 2022]
- Step-size adaptation and calibration: (Bosch et al, 2027]
- Parallel-in-time formulation [Bosch etal, 2023a]
- More related differential equation problems:
- Higher-order ODEs, DAEs, Hamiltonian systems [Bosch etal, 2022]
- Boundary value problems (BVPs) [këmer and Hennig, 2021]
- Partial differential equations (PDEs) via method of lines [kameretal, 2022]
- Inverse problems
- Parameter inference in ODEs with ODE filters [Tronarpe tal, 2022]
- Efficient latent force inference [schmidt etal. 202]]
- Properties and features:
- Polynomial convergence rates [Kersting et al. 2020, Tronarp et al, 2021]
- A-stability [Tronarp et al, 2019]
- L-stable probabilistic exponential integrators [bosch etal. 2023b]
- Complexity: $\mathcal{O}\left(d^{3}\right)$ for the A-stable semi-implicit method, $\mathcal{O}(d)$ for an explicit method with coarser covariances [kämer tal., 2022]
- Step-size adaptation and calibration: (Boschetal, 2027]
- Parallel-in-time formulation [Bosch etal. 2023a]
- More related differential equation problems:
- Higher-order ODEs, DAEs, Hamiltonian systems [Bosch etal, 2022]
- Boundary value problems (BVPs) [Kämer and Hennig, 2021]
- Partial differential equations (PDES) via method of lines [krameretal., 2022]
- Inverse problems
- Parameter inference in ODEs with ODE filters [Tronarpet tal. 2022]
- Efficient latent force inference [schmidt et al. 202]]

Probabilistic Numerics: Computation as Machine Learning
Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022

- Properties and features:
- Polynomial convergence rates [Kersting et al. 2020, Tronarp et al, 2021]
- A-stability [Tronarp et al, 2019]
- L-stable probabilistic exponential integrators [bosch etal. 2023b]
- Complexity: $\mathcal{O}\left(d^{3}\right)$ for the A-stable semi-implicit method, $\mathcal{O}(d)$ for an explicit method with coarser covariances [kämer tal., 2022]
- Step-size adaptation and calibration: [Bosch etal, 202]
- Parallel-in-time formulation
- More related differential equation problems:
- Higher-order ODEs, DAEs, Hamiltonian systems [Bosch etal., 2022]
- Boundary value problems (BVPs) [kämer and Hennig, 202]
- Inverse problems
- Parameter inference in ODEs with ODE filters [Tronarpe tal, 2022]
- Efficient latent force inference [schmidte tal. 202]|

Probabilistic Numerics: Computation as Machine Learning Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022

Flexible Information Operators

or: "How to solve other problems than ODEs with essentially the same algorithm as before"

Flexible Information Operators

or: "How to solve other problems than ODEs with essentially the same algorithm as before" (it's all just likelihood models)

Numerical problems setting: Initial value problem with first-order ODE

$$
\dot{y}(t)=f(y(t), t), \quad y(0)=y_{0} .
$$

This leads to the probabilistic state estimation problem:

Initial distribution:
Prior / dynamics model:
ODE likelihood:
Initial value likelihood:

$$
\begin{aligned}
x(0) & \sim \mathcal{N}\left(x(0) ; \mu_{0}^{-}, \Sigma_{0}^{-}\right) & & \\
x(t+h) \mid x(t) & \sim \mathcal{N}(x(t+h) ; A(h) x(t), Q(h)) & & \\
z\left(t_{i}\right) \mid x\left(t_{i}\right) & \sim \delta\left(z\left(t_{i}\right) ; E_{1} x\left(t_{i}\right)-f\left(E_{0} x\left(t_{i}\right), t_{i}\right)\right), & & z_{i} \triangleq 0 \\
z^{\text {init }} \mid x(0) & \sim \delta\left(z^{\text {init }} ; E_{0} x(0)\right), & & z^{\text {init }} \triangleq y_{0}
\end{aligned}
$$

Numerical problems setting: Initial value problem with second-order ODE

$$
\ddot{y}(t)=f(\dot{y}(t), y(t), t), \quad y(0)=y_{0}, \quad \dot{y}(0)=\dot{y}_{0} .
$$

This leads to the probabilistic state estimation problem:

Initial distribution:
Prior / dynamics model:
ODE likelihood:
Initial value likelihood:

$$
\begin{aligned}
x(0) & \sim \mathcal{N}\left(x(0) ; \mu_{0}^{-}, \Sigma_{0}^{-}\right) & & \\
x(t+h) \mid x(t) & \sim \mathcal{N}(x(t+h) ; A(h) x(t), Q(h)) & & \\
z\left(t_{i}\right) \mid x\left(t_{i}\right) & \sim \delta\left(z\left(t_{i}\right) ; E_{1} x\left(t_{i}\right)-f\left(E_{0} x\left(t_{i}\right), t_{i}\right)\right), & & z_{i} \triangleq 0 \\
z^{\text {init }} \mid x(0) & \sim \delta\left(z^{\text {init }} ; E_{0} x(0)\right), & & z^{\text {init }} \triangleq y_{0}
\end{aligned}
$$

Numerical problems setting: Initial value problem with second-order ODE

$$
\ddot{y}(t)=f(\dot{y}(t), y(t), t), \quad y(0)=y_{0}, \quad \dot{y}(0)=\dot{y}_{0} .
$$

This leads to the probabilistic state estimation problem:

Initial distribution:
Prior / dynamics model:
ODE likelihood:
Initial value likelihood:
Initial derivative likelihood:

$$
\begin{aligned}
x(0) & \sim \mathcal{N}\left(x(0) ; \mu_{0}^{-}, \Sigma_{0}^{-}\right) & & \\
x(t+h) \mid x(t) & \sim \mathcal{N}(x(t+h) ; A(h) x(t), Q(h)) & & \\
z\left(t_{i}\right) \mid x\left(t_{i}\right) & \sim \delta\left(z\left(t_{i}\right) ; E_{2} x\left(t_{i}\right)-f\left(E_{1} x\left(t_{i}\right), E_{0} x\left(t_{i}\right), t_{i}\right)\right), & & z_{i} \triangleq 0 \\
z^{\text {init }} \mid x(0) & \sim \delta\left(z^{\text {init }} ; E_{0} x(0)\right), & & z^{\text {init }} \triangleq y_{0} \\
z_{1}^{\text {init }} \mid x(0) & \sim \delta\left(z_{1}^{\text {init }} ; E_{1} x(0)\right), & & z_{1}^{\text {init }} \triangleq \dot{y}_{0}
\end{aligned}
$$

Numerical problems setting: Initial value problem with first-order ODE and conserved quantities

$$
\dot{y}(t)=f(y(t), t), \quad y(0)=y_{0} . \quad g(y(t), \dot{y}(t))=0 .
$$

This leads to the probabilistic state estimation problem:

Initial distribution: Prior / dynamics model: ODE likelihood:

Initial value likelihood:

$$
\begin{aligned}
x(0) & \sim \mathcal{N}\left(x(0) ; \mu_{0}^{-}, \Sigma_{0}^{-}\right) & & \\
x(t+h) \mid x(t) & \sim \mathcal{N}(x(t+h) ; A(h) x(t), Q(h)) & & \\
z\left(t_{i}\right) \mid x\left(t_{i}\right) & \sim \delta\left(z\left(t_{i}\right) ; E_{1} x\left(t_{i}\right)-f\left(E_{0} x\left(t_{i}\right), t_{i}\right)\right), & & z_{i} \triangleq 0 \\
z^{\text {init }} \mid x(0) & \sim \delta\left(z^{\text {init }} ; E_{0} x(0)\right), & & z^{\text {init }} \triangleq y_{0}
\end{aligned}
$$

Numerical problems setting: Initial value problem with first-order ODE and conserved quantities

$$
\dot{y}(t)=f(y(t), t), \quad y(0)=y_{0} . \quad g(y(t), \dot{y}(t))=0 .
$$

This leads to the probabilistic state estimation problem:

Initial distribution:
Prior / dynamics model:
ODE likelihood:
Conservation law likelihood:
Initial value likelihood:

$$
\begin{aligned}
x(0) & \sim \mathcal{N}\left(x(0) ; \mu_{0}^{-}, \Sigma_{0}^{-}\right) & & \\
x(t+h) \mid x(t) & \sim \mathcal{N}(x(t+h) ; A(h) x(t), Q(h)) & & \\
z\left(t_{i}\right) \mid x\left(t_{i}\right) & \sim \delta\left(z\left(t_{i}\right) ; E_{1} x\left(t_{i}\right)-f\left(E_{0} x\left(t_{i}\right), t_{i}\right)\right), & & z_{i} \triangleq 0 \\
z_{i}^{C}\left(t_{i}\right) \mid z\left(t_{i}\right) & \sim \delta\left(z_{i}^{c}\left(t_{i}\right) ; g\left(E_{0} x(t), E_{1} x(t)\right)\right), & & z_{i}^{c} \triangleq 0 \\
z^{\text {init }} \mid x(0) & \sim \delta\left(z^{\text {initi }} ; E_{0} x(0)\right), & & z^{\text {init }} \triangleq y_{0}
\end{aligned}
$$

Numerical problems setting: Initial value problem with second-order ODE and conserved quantities

$$
\ddot{y}(t)=f(\dot{y}(t), y(t), t), \quad y(0)=y_{0}, \quad \dot{y}(0)=\dot{y}_{0} . \quad g(y(t), \dot{y}(t))=0 .
$$

This leads to the probabilistic state estimation problem:

$$
\begin{array}{rlrl}
\text { Initial distribution: } & & x(0) & \sim \mathcal{N}\left(x(0) ; \mu_{0}^{-}, \Sigma_{0}^{-}\right) \\
\text {Prior / dynamics model: } & x(t+h) \mid x(t) & \sim \mathcal{N}(x(t+h) ; A(h) x(t), Q(h)) \\
\text { ODE likelihood: } & z\left(t_{i}\right) \mid x\left(t_{i}\right) & \sim \delta\left(z\left(t_{i}\right) ; E_{2} x\left(t_{i}\right)-f\left(E_{1} x\left(t_{i}\right), E\right.\right. \\
\text { Conservation law likelihood: } & z_{i}^{c}\left(t_{i}\right) \mid z\left(t_{i}\right) & \sim \delta\left(z_{i}^{C}\left(t_{i}\right) ; g\left(E_{0} x(t), E_{1} x(t)\right)\right), \\
\text { Initial value likelihood: } & & z^{\text {init }} \mid x(0) & \sim \delta\left(z^{\text {init }} ; E_{0} x(0)\right),
\end{array}
$$ Initial derivative likelihood:

Extending ODE filters to other related differential equation problems

Extending ODE filters to other related differential equation problems

Numerical problems setting: Initial value problem with second-order ODE and conserved quantities

$$
\ddot{y}(t)=f(\dot{y}(t), y(t), t), \quad y(0)=y_{0}, \quad \dot{y}(0)=\dot{y}_{0} . \quad g(y(t), \dot{y}(t))=0 .
$$

Numerical problems setting: Initial value problem with differential-algebraic equation (DAE)

$$
0=F(\dot{y}(t), y(t), t), \quad y(0)=y_{0} .
$$

This leads to the probabilistic state estimation problem:

Initial distribution: Prior / dynamics model: ODE likelihood:

Initial value likelihood:

$$
\begin{aligned}
x(0) & \sim \mathcal{N}\left(x(0) ; \mu_{0}^{-}, \Sigma_{0}^{-}\right) & & \\
x(t+h) \mid x(t) & \sim \mathcal{N}(x(t+h) ; A(h) x(t), Q(h)) & & \\
z\left(t_{i}\right) \mid x\left(t_{i}\right) & \sim \delta\left(z\left(t_{i}\right) ; E_{1} x\left(t_{i}\right)-f\left(E_{0} x\left(t_{i}\right), t_{i}\right)\right), & & z_{i} \triangleq 0 \\
z^{\text {init }} \mid x(0) & \sim \delta\left(z^{\text {init }} ; E_{0} x(0)\right), & & z^{\text {init }} \triangleq y_{0}
\end{aligned}
$$

Numerical problems setting: Initial value problem with differential-algebraic equation (DAE)

$$
0=F(\dot{y}(t), y(t), t), \quad y(0)=y_{0} .
$$

This leads to the probabilistic state estimation problem:

Initial distribution:
Prior / dynamics model: DAE likelihood:

Initial value likelihood:

$$
\begin{aligned}
x(0) & \sim \mathcal{N}\left(x(0) ; \mu_{0}^{-}, \Sigma_{0}^{-}\right) & & \\
x(t+h) \mid x(t) & \sim \mathcal{N}(x(t+h) ; A(h) x(t), Q(h)) & & \\
z\left(t_{i}\right) \mid x\left(t_{i}\right) & \sim \delta\left(z\left(t_{i}\right) ; F\left(E_{1} x\left(t_{i}\right), E_{0} x\left(t_{i}\right), t_{i}\right)\right), & & z_{i} \triangleq 0 \\
z^{\text {init }} \mid x(0) & \sim \delta\left(z^{\text {init }} ; E_{0} x(0)\right), & & z^{\text {init }} \triangleq y_{0}
\end{aligned}
$$

Numerical problems setting: Boundary value problem (BVP) with first-order ODE

$$
\dot{y}(t)=f(y(t), t), \quad L y(0)=y_{0}, \quad R y(T)=y_{T} .
$$

This leads to the probabilistic state estimation problem:

Initial distribution:
Prior / dynamics model:
ODE likelihood:
Initial value likelihood:

$$
\begin{aligned}
x(0) & \sim \mathcal{N}\left(x(0) ; \mu_{0}^{-}, \Sigma_{0}^{-}\right) & & \\
x(t+h) \mid x(t) & \sim \mathcal{N}(x(t+h) ; A(h) x(t), Q(h)) & & \\
z\left(t_{i}\right) \mid x\left(t_{i}\right) & \sim \delta\left(z\left(t_{i}\right) ;\right), & & z_{i} \triangleq 0 \\
z^{\text {init }} \mid x(0) & \sim \delta\left(z^{\text {init }} ; E_{0} x(0)\right), & & z^{\text {init }} \triangleq y_{0}
\end{aligned}
$$

Numerical problems setting: Boundary value problem (BVP) with first-order ODE

$$
\dot{y}(t)=f(y(t), t), \quad L y(0)=y_{0}, \quad R y(T)=y_{T} .
$$

This leads to the probabilistic state estimation problem:

$$
\begin{array}{rlrlrl}
\text { Initial distribution: } & x(0) & \sim \mathcal{N}\left(x(0) ; \mu_{0}^{-}, \Sigma_{0}^{-}\right) & & \\
\text {Prior / dynamics model: } & x(t+h) \mid x(t) & \sim \mathcal{N}(x(t+h) ; A(h) x(t), Q(h)) & & \\
\text { ODE likelihood: } & & z\left(t_{i}\right) \mid x\left(t_{i}\right) & \sim \delta\left(z\left(t_{i}\right) ;\right), & & z_{i} \triangleq 0 \\
\text { Initial value likelihood: } & z^{\text {init }} \mid x(0) & \sim \delta\left(z^{\text {init }} ; L E_{0} x(0)\right), & & z^{\text {init }} \triangleq y_{0} \\
\text { Boundary value likelihood: } & & z_{1}^{R} \mid x(T) & \sim \delta\left(z_{1}^{R} ; R E_{0} x(T)\right), & z_{1}^{\text {init }} \triangleq y_{T}
\end{array}
$$

Extending ODE filters to other related differential equation problems UN: Nidid

Numerical problems setting: Boundary value problem (BVP) with first-order ODE

$$
\dot{y}(t)=f(y(t), t), \quad L y(0)=y_{0}, \quad R y(T)=y_{T} .
$$

This leads to the probabilistic state estimation problem:

$$
\begin{array}{rlrl}
\text { Initial distribution: } & x(0) & \sim \mathcal{N}\left(x(0) ; \mu_{0}^{-}, \Sigma_{0}^{-}\right) & \\
\text {Prior / dynamics model: } & x(t+h) \mid x(t) & \sim \mathcal{N}(x(t+h) ; A(h) x(t), Q(h)) & \\
\text { ODE likelihood: } & z\left(t_{i}\right) \mid x\left(t_{i}\right) & \sim \delta\left(z\left(t_{i}\right) ;\right), & \\
z_{i} \triangleq 0 \\
\text { Initial value likelihood: } & z^{\text {init }} \mid x(0) & \sim \delta\left(z^{\text {init }} ; L E_{0} x(0)\right), & \\
\text { Boundary value likelihood: } & z_{1}^{\mathrm{init}} \triangleq y_{0} & x(T) & \sim \delta\left(z_{1}^{\mathrm{R}} ; R E_{0} x(T)\right),
\end{array}
$$

The measurement model provides a very flexible way to easily encode desired properties.
But it's all just Bayesian state estimation!

Probabilistic Numerics for ODE Parameter Inference

Using the ODE solution as a "physics-enhanced" prior for regression

Forward Problem

$$
\dot{y}_{\theta}=f_{\theta}\left(y_{\theta}, t\right) \quad y_{\theta}\left(t_{0}\right)=y_{0}(\theta)
$$

Forward Problem

$$
\dot{y}_{\theta}=f_{\theta}\left(y_{\theta}, t\right) \quad y_{\theta}\left(t_{0}\right)=y_{0}(\theta)
$$

Inverse Problem

$$
\hat{\theta}=\underset{\theta}{\arg \max } p(\mathcal{D} \mid \theta)
$$

Forward Problem

$$
\dot{y}_{\theta}=f_{\theta}\left(y_{\theta}, t\right) \quad y_{\theta}\left(t_{0}\right)=y_{0}(\theta) .
$$

Inverse Problem

$$
\hat{\theta}=\underset{\theta}{\arg \max } p(\mathcal{D} \mid \theta)
$$

Problem: The marginal likelihood $p(\mathcal{D} \mid \theta)=\Pi \mathcal{N}\left(u(t) ; y_{\theta}(t), R_{\theta}\right)$ is intractable. (because the true ODE solution is intractable!)

Context: Between classic integration and gradient matching

1. Classical Numerical Integration

- (i) Solve the IVP to compute $\hat{y}_{\theta}(t)$
- (ii) Approximate the marginal likelihood as $\widehat{\mathcal{M}}(\theta)=\prod_{n} \mathcal{N}\left(u\left(t_{n}\right) ; \hat{y}_{\theta}\left(t_{n}\right), R_{\theta}\right)$
- (iii) Optimize to get $\hat{\theta}=\arg \max \widehat{\mathcal{M}}(\theta)$

Context: Between classic integration and gradient matching

Classical Numerical Integration

- (i) Solve the IVP to compute $\hat{y}_{\theta}(t)$
- (ii) Approximate the marginal likelihood as $\widehat{\mathcal{M}}(\theta)=\prod_{n} \mathcal{N}\left(u\left(t_{n}\right) ; \hat{y}_{\theta}\left(t_{n}\right), R_{\theta}\right)$
- (iii) Optimize to get $\hat{\theta}=\arg \max \widehat{\mathcal{M}}(\theta)$

2. Gradient Matching

- (i) Fit a curve $\hat{y}(t)$ to the data $\left\{u\left(t_{i}\right)\right\}$
- (ii) Estimate θ by minimizing $\dot{\hat{y}}(t)-f_{\theta}(\hat{y}(t))$

Exists in both classic (splines) or probabilistic versions (GPs)

Context: Between classic integration and gradient matching

```
    Classical Numerical Integration
    - (i) Solve the IVP to compute }\mp@subsup{\hat{y}}{0}{}(t
    * (ii) Approximate the marginal likelihood as }\mathcal{M}(0)=\mp@subsup{\prod}{\Omega}{}\mathcal{N}(u(\mp@subsup{t}{n}{});\mp@subsup{\hat{y}}{0}{}(\mp@subsup{t}{n}{}),\mp@subsup{R}{0}{}
    > (iii) Optimize to get }\hat{0}=\operatorname{arg}\operatorname{max}\widehat{\mathcal{M}}(0
2. Gradient Matching
    - (i) Fit a curve }\hat{y}(t)\mathrm{ to the data {u(ti)}
    - (ii) Estimate }0\mathrm{ by minimizing }\hat{y}(t)-\mp@subsup{f}{0}{}(\hat{y}(t)
    Exists in both classic (splines) or probabilistic versions (GPs)
```

3. Probabilistic Numerical Integration

Context: Between classic integration and gradient matching

1. Classical Numerical Integration

- (i) Solve the IVP to compute $\hat{y}_{\theta}(t)$
- (ii) Approximate the marginal likelihood as $\widehat{\mathcal{M}}(\theta)=\prod_{n} \mathcal{N}\left(u\left(t_{n}\right) ; \hat{y}_{\theta}\left(t_{n}\right), R_{\theta}\right)$
- (iii) Optimize to get $\hat{\theta}=\arg \max \widehat{\mathcal{M}}(\theta)$

2. Gradient Matching

- (i) Fit a curve $\hat{y}(t)$ to the data $\left\{u\left(t_{i}\right)\right\}$
- (ii) Estimate θ by minimizing $\hat{y}(t)-f_{\theta}(\hat{y}(t))$

Exists in both classic (splines) or probabilistic versions (GPs)
3. Probabilistic Numerical Integration

$$
\begin{equation*}
\widehat{\mathcal{M}}_{P N}(\theta, \kappa)=\int \underbrace{\prod_{n} \mathcal{N}\left(u\left(t_{n}\right) ; y\left(t_{n}\right), R_{\theta}\right)}_{\text {Likelihood }} \cdot \underbrace{\gamma_{P N}\left(y\left(t_{1: N}\right) \mid \theta, \kappa\right)}_{\text {PN ODE Solution }} \mathrm{d} y\left(t_{1: N}\right) \tag{1}
\end{equation*}
$$

Context: Between classic integration and gradient matching

1. Classical Numerical Integration

- (i) Solve the IVP to compute $\hat{y}_{\theta}(t)$
- (ii) Approximate the marginal likelihood as $\widehat{\mathcal{M}}(\theta)=\prod_{n} \mathcal{N}\left(u\left(t_{n}\right) ; \hat{y}_{\theta}\left(t_{n}\right), R_{\theta}\right)$
- (iii) Optimize to get $\hat{\theta}=\arg \max \widehat{\mathcal{M}}(\theta)$

2. Gradient Matching

- (i) Fit a curve $\hat{y}(t)$ to the data $\left\{u\left(t_{i}\right)\right\}$
- (ii) Estimate θ by minimizing $\hat{y}(t)-f_{\theta}(\hat{y}(t))$

Exists in both classic (splines) or probabilistic versions (GPs)
3. Probabilistic Numerical Integration

$$
\begin{equation*}
\widehat{\mathcal{M}}_{P N}(\theta, \kappa)=\int \underbrace{\prod_{n} \mathcal{N}\left(u\left(t_{n}\right) ; y\left(t_{n}\right), R_{\theta}\right)}_{\text {Likelihood }} \cdot \underbrace{\gamma_{P N}\left(y\left(t_{1: N}\right) \mid \theta, \kappa\right)}_{\text {PN ODE Solution }} d y\left(t_{1: N}\right) \tag{1}
\end{equation*}
$$

- (i) Probabilistically solve IVP to compute $\gamma_{\text {PN }}(y(t) \mid \theta, \kappa)$

Context: Between classic integration and gradient matching

1. Classical Numerical Integration

- (i) Solve the IVP to compute $\hat{y}_{\theta}(t)$
- (ii) Approximate the marginal likelihood as $\widehat{\mathcal{M}}(\theta)=\prod_{n} \mathcal{N}\left(u\left(t_{n}\right) ; \hat{y}_{\theta}\left(t_{n}\right), R_{\theta}\right)$
- (iii) Optimize to get $\hat{\theta}=\arg \max \widehat{\mathcal{M}}(\theta)$

2. Gradient Matching

- (i) Fit a curve $\hat{y}(t)$ to the data $\left\{u\left(t_{i}\right)\right\}$
- (ii) Estimate θ by minimizing $\hat{y}(t)-f_{\theta}(\hat{y}(t))$

Exists in both classic (splines) or probabilistic versions (GPs)
3. Probabilistic Numerical Integration

$$
\begin{equation*}
\widehat{\mathcal{M}}_{P N}(\theta, \kappa)=\int \underbrace{\prod_{n} \mathcal{N}\left(u\left(t_{n}\right) ; y\left(t_{n}\right), R_{\theta}\right)}_{\text {Likelihood }} \cdot \underbrace{\gamma_{P N}\left(y\left(t_{1: N}\right) \mid \theta, \kappa\right)}_{\text {PN ODE Solution }} d y\left(t_{1: N}\right) \tag{1}
\end{equation*}
$$

- (i) Probabilistically solve IVP to compute $\gamma_{\text {PN }}(y(t) \mid \theta, \kappa)$
- (ii) Perform Kalman filtering on the data, with $\gamma_{\text {PN }}$ as a "physics-enhanced" prior

Context: Between classic integration and gradient matching

1. Classical Numerical Integration

- (i) Solve the IVP to compute $\hat{y}_{\theta}(t)$
- (ii) Approximate the marginal likelihood as $\widehat{\mathcal{M}}(\theta)=\prod_{n} \mathcal{N}\left(u\left(t_{n}\right) ; \hat{y}_{\theta}\left(t_{n}\right), R_{\theta}\right)$
- (iii) Optimize to get $\hat{\theta}=\arg \max \widehat{\mathcal{M}}(\theta)$

2. Gradient Matching

- (i) Fit a curve $\hat{y}(t)$ to the data $\left\{u\left(t_{i}\right)\right\}$
- (ii) Estimate θ by minimizing $\hat{y}(t)-f_{\theta}(\hat{y}(t))$

Exists in both classic (splines) or probabilistic versions (GPs)
3. Probabilistic Numerical Integration

$$
\begin{equation*}
\widehat{\mathcal{M}}_{P N}(\theta, \kappa)=\int \underbrace{\prod_{n} \mathcal{N}\left(u\left(t_{n}\right) ; y\left(t_{n}\right), R_{\theta}\right)}_{\text {Likelihood }} \cdot \underbrace{\gamma_{P N}\left(y\left(t_{1: N}\right) \mid \theta, \kappa\right)}_{\text {PN ODE Solution }} \mathrm{d} y\left(t_{1: N}\right) \tag{1}
\end{equation*}
$$

- (i) Probabilistically solve IVP to compute $\gamma_{\text {PN }}(y(t) \mid \theta, \kappa)$
- (ii) Perform Kalman filtering on the data, with $\gamma_{\text {PN }}$ as a "physics-enhanced" prior
- (iii) Optimize the approximate marginal likelihood

Example: Probabilistic Numerical Integration

Figure: $i=55$

Example: Probabilistic Numerical Integration

Summary

- ODE solving is state estimation \Rightarrow treat initial value problems as state estimation problems
- "ODE filters": How to solve ODEs with Bayesian filtering and smoothing
- Flexible information operators to solve more than just standard ODEs
- Parameter inference: Being uncertain about the ODE solution allows you to update on data

```
Software packages ©o https://github.com/nathanaelbosch/ProbNumDiffEq.jl
    ]add ProbNumDiffEq
    %)https://github.com/probabilistic-numerics/probnum
        pip install probnum
        https://github.com/pnkraemer/probdiffeq
        pip install probdiffeq
```

- Bosch, N., Corenflos, A., Yaghoobi, F., Tronarp, F., Hennig, P., and Särkkä, S. (2023a). Parallel-in-time probabilistic numerical ODE solvers.
- Bosch, N., Hennig, P., and Tronarp, F. (2021).

Calibrated adaptive probabilistic ODE solvers.
In Banerjee, A. and Fukumizu, K., editors, Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine Learning Research, pages 3466-3474. PMLR.

- Bosch, N., Hennig, P., and Tronarp, F. (2023b).

Probabilistic exponential integrators.
In Thirty-seventh Conference on Neural Information Processing Systems.

- Bosch, N., Tronarp, F., and Hennig, P. (2022).

Pick-and-mix information operators for probabilistic ODE solvers.
In Camps-Valls, G., Ruiz, F. J. R., and Valera, I., editors, Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, volume 151 of Proceedings of Machine Learning Research, pages 10015-10027. PMLR.

- Kersting, H., Sullivan, T. J., and Hennig, P. (2020). Convergence rates of gaussian ode filters. Statistics and Computing, 30(6):1791-1816.
- Krämer, N., Bosch, N., Schmidt, J., and Hennig, P. (2022).

Probabilistic ODE solutions in millions of dimensions.
In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., and Sabato, S., editors, Proceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages 11634-11649. PMLR.

- Krämer, N. and Hennig, P. (2020).

Stable implementation of probabilistic ode solvers. CoRR.

- Krämer, N. and Hennig, P. (2021). Linear-time probabilistic solution of boundary value problems.
In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W., editors, Advances in Neural Information Processing Systems, volume 34, pages 11160-11171. Curran Associates, Inc.
- Krämer, N., Schmidt, J., and Hennig, P. (2022).

Probabilistic numerical method of lines for time-dependent partial differential equations. In Camps-Valls, G., Ruiz, F. J. R., and Valera, I., editors, Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, volume 151 of Proceedings of Machine Learning Research, pages 625-639. PMLR.

- Schmidt, J., Krämer, N., and Hennig, P. (2021).

A probabilistic state space model for joint inference from differential equations and data.
In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W., editors, Advances in Neural Information Processing Systems, volume 34, pages 12374-12385. Curran Associates, Inc.

- Tronarp, F., Bosch, N., and Hennig, P. (2022).

Fenrir: Physics-enhanced regression for initial value problems.
In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., and Sabato, S., editors, Proceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages 21776-21794. PMLR.

- Tronarp, F., Kersting, H., Särkkä, S., and Hennig, P. (2019).

Probabilistic solutions to ordinary differential equations as nonlinear Bayesian filtering: a new perspective.
Statistics and Computing, 29(6):1297-1315.

- Tronarp, F., Särkkä, S., and Hennig, P. (2021).

Bayesian ode solvers: the maximum a posteriori estimate. Statistics and Computing, 31(3):23.

