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Background
▶ Ordinary differential equations and how to solve them

Central statement: ODE solving is state estimation
▶ “ODE filters”: How to solve ODEs with extended Kalman filtering and smoothing

Fun with ODE filters
▶ Generalizing ODE filters to other related problems (higher-order ODEs, DAEs, …)
▶ ODE filters for parameter inference
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Background: Ordinary Differential Equations and how to solve them
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t)
with t ∈ [0, T], vector field f : Rd × R_Rd, and initial value y(0) = y0. Goal: “Find y”.

▶ Simple example: Logistic ODE

ẏ(t) = y(t) (1− y(t)) , t ∈ [0, 10], y(0) = 0.1.

Numerical ODE solvers:

▶ Forward Euler:
ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t)

▶ Backward Euler:
ŷ(t+ h) = ŷ(t) + hf(ŷ(t+ h), t+ h)

▶ Runge–Kutta:
ŷ(t+ h) = ŷ(t) + h

∑s
i=1 bif(ỹi, t+ cih)

▶ Multistep:
ŷ(t+ h) = ŷ(t) + h

∑s−1
i=0 bif(ŷ(t− ih), t− ih)

Forward Euler for different step sizes:
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⇒ It is “correct” only in the limit h_ 0!
Numerical ODE solvers estimate y(t) by evaluating f on a discrete set of points.
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ŷ(t+ h) = ŷ(t) + h
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ŷ(t+ h) = ŷ(t) + h
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Probabilistic numerical ODE solvers
or “How to treat ODEs as a Bayesian state estimation problem”
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Probabilistic Numerical ODE Solvers
How to treat ODEs as the state estimation problem that they really are

p
(
y(t) | y(0) = y0, {ẏ(tn) = f (y(tn), tn)}N

n=1

)
with vector field f : Rd × R_Rd, initial value y0, and time discretization {tn}N

n=1.

▶ Prior: y(t) ∼ GP

a Gauss–Markov process with state-space representation x(t):
x(0) ∼ N (µ−

0 ,Σ
−
0 ),

dx(t) = Fx(t)dt+ σΓdw(t),
y(m)(t) = Emx(t), m = 1, . . . , ν.

⇒
x(0) ∼ N (µ−

0 ,Σ
−
0 ),

x(ti+1) | x(ti) ∼ N
(
A(∆i)x(t), σ2Q(∆i)

)
,

y(m)(t) = Emx(t), m = 1, . . . , ν.

where ∆i := ti+1 − ti, and (A,Q) can be computed from (F,Γ).

▶ Likelihood: (aka “observation model” or “information operator”)

z0 = E0x(0)− y0 = 0, & z(tn) = E1x(tn)− f(E0x(tn), tn) = 0.

▶ Inference:

Extended Kalman filter/smoother (or other Bayesian filtering and smoothing methods).
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Probabilistic Numerical ODE Solvers in pictures

EKF−−→
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Probabilistic Numerical ODE Solvers in action
Fixed steps — the vanilla way as introduced so far
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Probabilistic Numerical ODE Solvers in code
We can solve ODEs with basically just an extended Kalman filter

Algorithm The extended Kalman ODE filter

1 procedure EXTENDED KALMAN ODE FILTER((µ−
0 ,Σ

−
0 ), (A,Q), (f, x0), {ti}N

i=1)
2 µ0,Σ0 ^ KF_UPDATE(µ−

0 ,Σ
−
0 , E0, 0d×d, x0) � Initial update to fit the initial value

3 for k ∈ {1, . . . ,N} do
4 hk ^ tk − tk−1 � Step size

5 µ−
k ,Σ

−
k ^ KF_PREDICT(µk−1,Σk−1, A(hk),Q(hk)) � Kalman filter prediction

6 mk(X) := E1X− f(E0X, tk) � Define the non-linear observation model

7 µk,Σk ^ EKF_UPDATE(µ−
k ,Σ

−
k ,mk, 0d×d,0d) � Extended Kalman filter update

8 end for
9 return (µk,Σk)

N
k=1

10 end procedure

EXTENDED KALMAN ODE SMOOTHER: Just run a RTS smoother after the filter!
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The state of filtering-based probabilistic numerical ODE solvers
▶ Properties and features:

▶ Polynomial convergence rates [Kersting et al., 2020, Tronarp et al., 2021]

▶ A-stability [Tronarp et al., 2019]

▶ L-stable probabilistic exponential integrators [Bosch et al., 2023b]

▶ Complexity: O
(
d3
)
for the A-stable semi-implicit method, O(d) for an explicit method with coarser

covariances [Krämer et al., 2022]

▶ Step-size adaptation and calibration: [Bosch et al., 2021]

▶ Parallel-in-time formulation [Bosch et al., 2023a]

▶ More related differential equation problems:

▶ Higher-order ODEs, DAEs, Hamiltonian systems [Bosch et al., 2022]

▶ Boundary value problems (BVPs) [Krämer and Hennig, 2021]

▶ Partial differential equations (PDEs) via method of lines [Krämer et al., 2022]

▶ Inverse problems

▶ Parameter inference in ODEs with ODE filters [Tronarp et al., 2022]

▶ Efficient latent force inference [Schmidt et al., 2021]

Probabilistic Numerics: Computation as Machine Learning
Philipp Hennig, Michael A. Osborne, Hans P. Kersting, 2022
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Extending ODE filters to other related differential equation problems
ODE filters can solve much more than the ODEs that we saw so far! [Bosch et al., 2022, Krämer and Hennig, 2021]

Numerical problems setting: Initial value problem with first-order ODE

ẏ(t) = f(y(t), t), y(0) = y0.

This leads to the probabilistic state estimation problem:

Initial distribution: x(0) ∼ N
(
x(0);µ−

0 ,Σ
−
0

)
Prior / dynamics model: x(t+ h) | x(t) ∼ N (x(t+ h); A(h)x(t),Q(h))

ODE likelihood: z(ti) | x(ti) ∼ δ (z(ti); E1x(ti)− f(E0x(ti), ti)) , zi ≜ 0

Initial value likelihood: zinit | x(0) ∼ δ
(
zinit; E0x(0)

)
, zinit ≜ y0

The measurement model provides a very flexible way to easily encode desired properties.
But it’s all just Bayesian state estimation!

@nathanaelbosch 11



Extending ODE filters to other related differential equation problems
ODE filters can solve much more than the ODEs that we saw so far! [Bosch et al., 2022, Krämer and Hennig, 2021]

Numerical problems setting: Initial value problem with second-order ODE
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Probabilistic Numerics for ODE Parameter Inference
Using the ODE solution as a “physics-enhanced” prior for regression
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“Forward” and “Inverse” Problems
Going from formula to plot, or from plot to formula

Forward Problem

ẏθ = fθ(yθ, t) yθ(t0) = y0(θ).

solve===⇒

Inverse Problem

θ̂ = arg max
θ

p (D | θ)

Problem: The marginal likelihood
p(D | θ) =

∏
N (u(t); yθ(t), Rθ) is intractable.

(because the true ODE solution is intractable!)

find⇐==
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Context: Between classic integration and gradient matching
We’re doing both: Integrating first, then GP regression

1. Classical Numerical Integration
▶ (i) Solve the IVP to compute ŷθ(t)
▶ (ii) Approximate the marginal likelihood as M̂(θ) =

∏
n N (u(tn); ŷθ(tn), Rθ)

▶ (iii) Optimize to get θ̂ = arg maxM̂(θ)

2. Gradient Matching
▶ (i) Fit a curve ŷ(t) to the data {u(ti)}
▶ (ii) Estimate θ by minimizing ˙̂y(t)− fθ(ŷ(t))

Exists in both classic (splines) or probabilistic versions (GPs)
3. Probabilistic Numerical Integration

▶
M̂PN(θ, κ) =

∫ ∏
n

N (u(tn); y(tn), Rθ)︸ ︷︷ ︸
Likelihood

· γPN (y(t1:N) | θ, κ)︸ ︷︷ ︸
PN ODE Solution

dy(t1:N) (1)

▶ (i) Probabilistically solve IVP to compute γPN(y(t) | θ, κ)
▶ (ii) Perform Kalman filtering on the data, with γPN as a “physics-enhanced” prior
▶ (iii) Optimize the approximate marginal likelihood

@nathanaelbosch 14



Context: Between classic integration and gradient matching
We’re doing both: Integrating first, then GP regression

1. Classical Numerical Integration
▶ (i) Solve the IVP to compute ŷθ(t)
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▶ (iii) Optimize to get θ̂ = arg maxM̂(θ)

2. Gradient Matching
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Exists in both classic (splines) or probabilistic versions (GPs)
3. Probabilistic Numerical Integration

▶
M̂PN(θ, κ) =

∫ ∏
n

N (u(tn); y(tn), Rθ)︸ ︷︷ ︸
Likelihood

· γPN (y(t1:N) | θ, κ)︸ ︷︷ ︸
PN ODE Solution

dy(t1:N) (1)

▶ (i) Probabilistically solve IVP to compute γPN(y(t) | θ, κ)

▶ (ii) Perform Kalman filtering on the data, with γPN as a “physics-enhanced” prior
▶ (iii) Optimize the approximate marginal likelihood

@nathanaelbosch 14



Context: Between classic integration and gradient matching
We’re doing both: Integrating first, then GP regression

1. Classical Numerical Integration
▶ (i) Solve the IVP to compute ŷθ(t)
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Example: Probabilistic Numerical Integration
Optimizing ODE parameters and prior hyperparameters jointly
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Example: Probabilistic Numerical Integration
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Inference in a partially observed oscillatory system
The probabilistic solver can escape the local optimum
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Gradient-based parameter inference in a Hodgkin–Huxley neuron
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Summary
▶ ODE solving is state estimation

⇒ treat initial value problems as state estimation problems
▶ “ODE filters”: How to solve ODEs with Bayesian filtering and smoothing
▶ Flexible information operators to solve more than just standard ODEs
▶ Parameter inference: Being uncertain about the ODE solution allows you to update on data

Software packages https://github.com/nathanaelbosch/ProbNumDiffEq.jl
]add ProbNumDiffEq

https://github.com/probabilistic-numerics/probnum
pip install probnum

https://github.com/pnkraemer/probdiffeq
pip install probdiffeq
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