A FLEXIBLE AND EFFICIENT FRAMEWORK FOR PROBABILISTIC NUMERICAL SIMULATION AND INFERENCE

Nathanael Bosch

26. February 2025

1

The COVID-19 pandemic — A real-world dynamical system

SIRD — A simple model for infectious diseases

The SIRD model as an ordinary differential equation

$$\frac{\cdot}{\left[\mathsf{S}(\mathsf{t})\right]} = -\beta \left[\mathsf{S}(\mathsf{t})\right] \left[\mathsf{I}(\mathsf{t})\right]$$

$$\dot{\mathbf{I}(\mathbf{t})} = \beta \, \, \dot{\mathbf{S}(\mathbf{t})} \, \, \dot{\mathbf{I}(\mathbf{t})} - \gamma \, \, \dot{\mathbf{I}(\mathbf{t})} - \delta \, \, \dot{\mathbf{I}(\mathbf{t})}$$

$$\begin{array}{c}
\dot{} \\
\hline
\mathsf{D(t)}
\end{array} = \delta \begin{array}{c}
\dot{} \\
\hline
\mathsf{I(t)}
\end{array}$$

Numerical simulation of the SIRD model

Numerical simulation of the SIRD model

How do we simulate dynamical systems?

Numerical simulation of the SIRD model

How do we simulate dynamical systems?

How accurate is the simulation?

Can we trust it?

How to simulate ordinary differential equations

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

$$\dot{y}(t) = f(y(t), t), \qquad y(0) = y_0.$$

with $t \in [0, T]$, vector field $f : \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$, and initial value $y_0 \in \mathbb{R}^d$. Goal: "Find y".

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

$$\dot{y}(t) = f(y(t), t), \qquad y(0) = y_0.$$

with $t \in [0, T]$, vector field $f : \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$, and initial value $y_0 \in \mathbb{R}^d$. Goal: "Find y".

$$\hat{y}(t+h) = \hat{y}(t) + hf(\hat{y}(t), t).$$

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

$$\dot{y}(t) = f(y(t), t), \qquad y(0) = y_0.$$

with $t \in [0, T]$, vector field $f : \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$, and initial value $y_0 \in \mathbb{R}^d$. Goal: "Find y".

$$\hat{y}(t+h) = \hat{y}(t) + hf(\hat{y}(t), t).$$

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

$$\dot{y}(t) = f(y(t), t), \qquad y(0) = y_0.$$

with $t \in [0, T]$, vector field $f : \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$, and initial value $y_0 \in \mathbb{R}^d$. Goal: "Find y".

$$\hat{y}(t+h) = \hat{y}(t) + hf(\hat{y}(t), t).$$

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

$$\dot{y}(t) = f(y(t), t), \qquad y(0) = y_0.$$

with $t \in [0, T]$, vector field $f : \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$, and initial value $y_0 \in \mathbb{R}^d$. Goal: "Find y".

$$\hat{y}(t+h) = \hat{y}(t) + hf(\hat{y}(t), t).$$

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

$$\dot{y}(t) = f(y(t), t), \qquad y(0) = y_0.$$

with $t \in [0, T]$, vector field $f : \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$, and initial value $y_0 \in \mathbb{R}^d$. Goal: "Find y".

$$\hat{y}(t+h) = \hat{y}(t) + hf(\hat{y}(t), t).$$

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

$$\dot{y}(t) = f(y(t), t), \qquad y(0) = y_0.$$

with $t \in [0, T]$, vector field $f : \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$, and initial value $y_0 \in \mathbb{R}^d$. Goal: "Find y".

$$\hat{y}(t+h) = \hat{y}(t) + hf(\hat{y}(t), t).$$

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

$$\dot{y}(t) = f(y(t), t), \qquad y(0) = y_0.$$

with $t \in [0, T]$, vector field $f : \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$, and initial value $y_0 \in \mathbb{R}^d$. Goal: "Find y".

$$\hat{y}(t+h) = \hat{y}(t) + hf(\hat{y}(t), t).$$

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

$$\dot{y}(t) = f(y(t), t), \qquad y(0) = y_0.$$

with $t \in [0, T]$, vector field $f : \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$, and initial value $y_0 \in \mathbb{R}^d$. Goal: "Find y".

$$\hat{y}(t+h) = \hat{y}(t) + hf(\hat{y}(t), t).$$

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

$$\dot{y}(t) = f(y(t), t), \qquad y(0) = y_0.$$

with $t \in [0, T]$, vector field $f : \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$, and initial value $y_0 \in \mathbb{R}^d$. Goal: "Find y".

$$\hat{y}(t+h) = \hat{y}(t) + hf(\hat{y}(t), t).$$

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

$$\dot{y}(t) = f(y(t), t), \qquad y(0) = y_0.$$

with $t \in [0, T]$, vector field $f : \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$, and initial value $y_0 \in \mathbb{R}^d$. Goal: "Find y".

$$\hat{y}(t+h) = \hat{y}(t) + hf(\hat{y}(t), t).$$

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

$$\dot{y}(t) = f(y(t), t), \qquad y(0) = y_0.$$

with $t \in [0, T]$, vector field $f : \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$, and initial value $y_0 \in \mathbb{R}^d$. Goal: "Find y".

$$\hat{y}(t+h) = \hat{y}(t) + hf(\hat{y}(t), t).$$

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

$$\dot{y}(t) = f(y(t), t), \qquad y(0) = y_0.$$

with $t \in [0, T]$, vector field $f : \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$, and initial value $y_0 \in \mathbb{R}^d$. Goal: "Find y".

$$\hat{y}(t+h) = \hat{y}(t) + hf(\hat{y}(t), t).$$

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

$$\dot{y}(t) = f(y(t), t), \qquad y(0) = y_0.$$

with $t \in [0, T]$, vector field $f : \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$, and initial value $y_0 \in \mathbb{R}^d$. Goal: "Find y".

$$\hat{y}(t+h) = \hat{y}(t) + hf(\hat{y}(t), t).$$

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

$$\dot{y}(t) = f(y(t), t), \qquad y(0) = y_0.$$

with $t \in [0, T]$, vector field $f : \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$, and initial value $y_0 \in \mathbb{R}^d$. Goal: "Find y".

$$\hat{y}(t+h) = \hat{y}(t) + hf(\hat{y}(t), t).$$

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

$$\dot{y}(t) = f(y(t), t), \qquad y(0) = y_0.$$

with $t \in [0, T]$, vector field $f : \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$, and initial value $y_0 \in \mathbb{R}^d$. Goal: "Find y".

$$\hat{y}(t+h) = \hat{y}(t) + hf(\hat{y}(t), t).$$

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

$$\dot{y}(t) = f(y(t), t), \qquad y(0) = y_0.$$

with $t \in [0, T]$, vector field $f : \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$, and initial value $y_0 \in \mathbb{R}^d$. Goal: "Find y".

$$\hat{y}(t+h) = \hat{y}(t) + hf(\hat{y}(t), t).$$

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

$$\dot{y}(t) = f(y(t), t), \qquad y(0) = y_0.$$

with $t \in [0, T]$, vector field $f : \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$, and initial value $y_0 \in \mathbb{R}^d$. Goal: "Find y".

A simple numerical ODE solver: "Forward Euler"

$$\hat{y}(t+h) = \hat{y}(t) + hf(\hat{y}(t), t).$$

The simulation \hat{y} is only an *estimate* of y. The error depends on the solver and step size.

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

$$\dot{y}(t) = f(y(t), t), \qquad y(0) = y_0.$$

with $t \in [0, T]$, vector field $f : \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$, and initial value $y_0 \in \mathbb{R}^d$. Goal: "Find y".

A simple numerical ODE solver: "Forward Euler"

$$\hat{y}(t+h) = \hat{y}(t) + hf(\hat{y}(t), t).$$

The simulation \hat{y} is only an *estimate* of y. The error depends on the solver and step size.

Traditional simulators do not quantify their estimation error.

Probabilistic numerical ODE solvers

or How to treat ODEs as the state estimation problem that they really are

$$p(y(t) | y(0) = y_0, {\dot{y}(t_n) = f(y(t_n), t_n)}_{n=1}^{N})$$

with vector field $f: \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$, initial value y_0 , and time discretization $\{t_n\}_{n=1}^N$.

7

Probabilistic numerical ODE solvers

or How to treat ODEs as the state estimation problem that they really are

$$p(y(t) | y(0) = y_0, {\dot{y}(t_n) = f(y(t_n), t_n)}_{n=1}^{N})$$

with vector field $f: \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$, initial value y_0 , and time discretization $\{t_n\}_{n=1}^N$.

Prior

Probabilistic numerical ODE solvers

or How to treat ODEs as the state estimation problem that they really are

$$p(y(t) | y(0) = y_0, {\dot{y}(t_n) = f(y(t_n), t_n)}_{n=1}^{N})$$

with vector field $f: \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$, initial value y_0 , and time discretization $\{t_n\}_{n=1}^N$.

Prior + Likelihood & Data

8

or How to treat ODEs as the state estimation problem that they really are

$$p(y(t) | y(0) = y_0, {\dot{y}(t_n) = f(y(t_n), t_n)}_{n=1}^{N})$$

with vector field $f: \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$, initial value y_0 , and time discretization $\{t_n\}_{n=1}^N$.

Prior + Likelihood & Data Inference

8

Building blocks of probabilistic numerical ODE solvers

Prior

Likelihood & Data

Inference

Building blocks of probabilistic numerical ODE solvers

Prior

 $y(t) \sim \mathcal{GP}$ is a Gauss-Markov process

Likelihood & Data

Inference

Prior

 $y(t) \sim \mathcal{GP}$ is a Gauss-Markov process

Likelihood & Data

$$z(t) = \dot{y}(t) - f(y(t), t)$$

$$z(t_i) \stackrel{!}{=} 0 \quad \forall i = 1:N$$

Inference

Prior

 $y(t) \sim \mathcal{GP}$ is a Gauss-Markov process

Likelihood & Data

$$z(t) = \dot{y}(t) - f(y(t), t)$$

$$z(t_i) \stackrel{!}{=} 0 \quad \forall i = 1: N$$

Inference

Bayesian filtering and smoothing

Algorithm Extended Kalman Filter

- 1 Initial distribution $p(y(t_0))$
- $_{2}$ for i = 1:N do
- Predict:
- $p_f(y(t_{i-1})) \mapsto p_p(y(t_i))$
- Linearize f at $\mathbb{E}_{p_p}[y(t_i)]$
- 6 Update:
- $p_p(y(t_i)), z(t_i) \mapsto p_f(y(t_i))$
- 8 end for

Prior

 $y(t) \sim \mathcal{GP}$ is a Gauss-Markov process

Likelihood & Data

$$z(t) = \dot{y}(t) - f(y(t), t)$$

$$z(t_i) \stackrel{!}{=} 0 \quad \forall i = 1: N$$

Inference

Bayesian filtering and smoothing

Algorithm Extended Kalman Filter

- Initial distribution $p(y(t_0))$
- $_{2}$ for i = 1:N do
- Predict:
- $p_f(y(t_{i-1})) \mapsto p_p(y(t_i))$
- Linearize f at $\mathbb{E}_{p_p}[y(t_i)]$
- 6 Update:
- $p_p(y(t_i)), z(t_i) \mapsto p_f(y(t_i))$
- 8 end for

 $y(t) \sim \mathcal{GP}$ is a Gauss-Markov process

Likelihood & Data

$$z(t) = \dot{y}(t) - f(y(t), t)$$
$$z(t_i) \stackrel{!}{=} 0 \quad \forall i = 1: N$$

Inference

Bayesian filtering and smoothing

- Initial distribution $p(y(t_0))$
- $_{2}$ for i = 1:N do
- Predict:
- $p_f(y(t_{i-1})) \mapsto p_p(y(t_i))$
- Linearize f at $\mathbb{E}_{p_p}[y(t_i)]$
- 6 Update:
- $p_p(y(t_i)), z(t_i) \mapsto p_f(y(t_i))$
- 8 end for

 $y(t) \sim \mathcal{GP}$ is a Gauss-Markov process

Likelihood & Data

$$z(t) = \dot{y}(t) - f(y(t), t)$$

$$z(t_i) \stackrel{!}{=} 0 \quad \forall i = 1: N$$

Inference

Bayesian filtering and smoothing

- 1 Initial distribution $p(y(t_0))$
- $_{2}$ for i = 1:N do
 - Predict:
- $p_f(y(t_{i-1})) \mapsto p_p(y(t_i))$
- Linearize f at $\mathbb{E}_{p_p}[y(t_i)]$
- 6 Update:
- $p_p(y(t_i)), z(t_i) \mapsto p_f(y(t_i))$
- 8 end for

 $y(t) \sim \mathcal{GP}$ is a Gauss-Markov process

Likelihood & Data

$$z(t) = \dot{y}(t) - f(y(t), t)$$

$$z(t_i) \stackrel{!}{=} 0 \quad \forall i = 1: N$$

Inference

Bayesian filtering and smoothing

- Initial distribution $p(y(t_0))$
- $_{2}$ for i = 1:N do
 - Predict:
- $p_f(y(t_{i-1})) \mapsto p_p(y(t_i))$
- Linearize f at $\mathbb{E}_{\rho_p}[y(t_i)]$
- 6 Update:
- $p_p(y(t_i)), z(t_i) \mapsto p_f(y(t_i))$
- 8 end for

 $y(t) \sim \mathcal{GP}$ is a Gauss-Markov process

Likelihood & Data

$$z(t) = \dot{y}(t) - f(y(t), t)$$

$$z(t_i) \stackrel{!}{=} 0 \quad \forall i = 1: N$$

Inference

Bayesian filtering and smoothing

- Initial distribution $p(y(t_0))$
- $_{2}$ for i = 1:N do
 - Predict:
- $p_f(y(t_{i-1})) \mapsto p_p(y(t_i))$
- Linearize f at $\mathbb{E}_{p_p}[y(t_i)]$
- 6 Update:
- $p_p(y(t_i)), Z(t_i) \mapsto p_f(y(t_i))$
- 8 end for

 $y(t) \sim \mathcal{GP}$ is a Gauss-Markov process

Likelihood & Data

$$z(t) = \dot{y}(t) - f(y(t), t)$$
$$z(t_i) \stackrel{!}{=} 0 \quad \forall i = 1: N$$

Inference

Bayesian filtering and smoothing

- Initial distribution $p(y(t_0))$
- $_{2}$ for i = 1:N do
 - Predict:
- $p_f(y(t_{i-1})) \mapsto p_p(y(t_i))$
- Linearize f at $\mathbb{E}_{p_p}[y(t_i)]$
- 6 Update:
- $p_p(y(t_i)), Z(t_i) \mapsto p_f(y(t_i))$
- 8 end for

 $y(t) \sim \mathcal{GP}$ is a Gauss-Markov process

Likelihood & Data

$$z(t) = \dot{y}(t) - f(y(t), t)$$
$$z(t_i) \stackrel{!}{=} 0 \quad \forall i = 1: N$$

Inference

Bayesian filtering and smoothing

- Initial distribution $p(y(t_0))$
- $_{2}$ for i = 1:N do
- Predict:
- $p_f(y(t_{i-1})) \mapsto p_p(y(t_i))$
- Linearize f at $\mathbb{E}_{p_p}[y(t_i)]$
- 6 Update:
- $p_p(y(t_i)), z(t_i) \mapsto p_f(y(t_i))$
- 8 end for

 $y(t) \sim \mathcal{GP}$ is a Gauss-Markov process

Likelihood & Data

$$z(t) = \dot{y}(t) - f(y(t), t)$$

$$z(t_i) \stackrel{!}{=} 0 \quad \forall i = 1: N$$

Inference

Bayesian filtering and smoothing

- Initial distribution $p(y(t_0))$
- $_{2}$ for i = 1:N do
- Predict:
- $p_f(y(t_{i-1})) \mapsto p_p(y(t_i))$
- Linearize f at $\mathbb{E}_{p_p}[y(t_i)]$
- 6 Update:
- $p_p(y(t_i)), z(t_i) \mapsto p_f(y(t_i))$
- 8 end for

 $y(t) \sim \mathcal{GP}$ is a Gauss-Markov process

Likelihood & Data

$$z(t) = \dot{y}(t) - f(y(t), t)$$

$$z(t_i) \stackrel{!}{=} 0 \quad \forall i = 1: N$$

Inference

Bayesian filtering and smoothing

- Initial distribution $p(y(t_0))$
- $_{2}$ for i = 1:N do
- Predict:
- $p_f(y(t_{i-1})) \mapsto p_p(y(t_i))$
- Linearize f at $\mathbb{E}_{p_p}[y(t_i)]$
- 6 Update:
- $p_p(y(t_i)), z(t_i) \mapsto p_f(y(t_i))$
- 8 end for

 $y(t) \sim \mathcal{GP}$ is a Gauss-Markov process

Likelihood & Data

$$z(t) = \dot{y}(t) - f(y(t), t)$$

$$z(t_i) \stackrel{!}{=} 0 \quad \forall i = 1: N$$

Inference

Bayesian filtering and smoothing

- Initial distribution $p(y(t_0))$
- $_{2}$ for i = 1:N do
- Predict:
- $p_f(y(t_{i-1})) \mapsto p_p(y(t_i))$
- Linearize f at $\mathbb{E}_{p_p}[y(t_i)]$
- 6 Update:
- $p_p(y(t_i)), z(t_i) \mapsto p_f(y(t_i))$
- 8 end for

ODE filtering as a *flexible* and *efficient* framwork for simulation *and inference*

y(t) is a
Gauss-Markov process

3) Probabilistic exponential integrators

NB, Hennig, Tronarp (NeurlPS'23)

Likelihood & Data

$$z(t) = \dot{y}(t) - f(y(t), t)$$

$$z(t_i) \stackrel{!}{=} 0 \quad \forall i = 1: N$$

information operators for probabilistic ODE solvers NB, Tronarp, Hennig (AISTATS'22)

1) Pick-and-mix

Inference

Bayesian filtering and smoothing

2) Parallel-in-Time Probabilistic Numerical ODE Solvers

NB, Corenflos, Yaghoobi, Tronarp, Hennig, Särkkä (JMLR'24)

Calibrated & adaptive solvers (AISTATS'21)

ODE filters in millions o dimensions (ICML'22)

Parameter Inference

$$\dot{y}(t) = f_{\theta}(y(t), t)$$

Find $p(\theta \mid y(t_{1:N}))$

Fenrir: Physics-enhanced regression (ICML'22)

Diffusion tempering (ICML'24)

ProbNumDiffEq.jl (JOSS'24

Software

Priory(t) is a -Markov process

3) **Probabilistic exponential integrators** NB, Hennig, Tronarp

Likelihood & Data

$$z(t) = \dot{y}(t) - f(y(t), t)$$

 $z(t_i) \stackrel{!}{=} 0 \quad \forall i = 1:N$ 1) Pick-and-mix information operators for

probabilistic ODE solvers NB, Tronarp, Hennig (AISTATS'22)

Inference

Bayesian filtering and smoothing

2) Parallel-in-Time Probabilistic Numerical ODE Solvers

NB, Corenflos, Yaghoobi Tronarp, Hennig, Särkkä (JMLR'24)

Calibrated & adaptive solvers (AISTATS'21)

ODE filters in millions of dimensions (ICML'22)

Parameter Inference

 $\dot{y}(t) = f_{\theta}(y(t), t)$ Find $p(\theta \mid y(t, y))$

Fenrir: Physics-enhanced regression (ICML'22)

Diffusion tempering (ICML'24

ProbNumDiffEq.jl (JOSS'24

Software

The ODE is often not the full story

ODE:
$$\frac{d}{dt}[S, I, R, D](t) = f([S, I, R, D](t), t)$$
, Initial value: $[S, I, R, D](0) = [0.99, 0.01, 0, 0]$

Initial value:
$$[S, I, R, D](0) = [0.99, 0.01, 0, 0]$$

The ODE is often not the full story

ODE: $\frac{d}{dt}[S, I, R, D](t) = f([S, I, R, D](t), t)$, Initial value: [S, I, R, D](0) = [0.99, 0.01, 0, 0]

Conserved quantity: TotalPopulation(t) := S(t) + I(t) + R(t) + D(t) = 1

The ODE is often not the full story

ODE:
$$\frac{d}{dt}[S, I, R, D](t) = f([S, I, R, D](t), t)$$
, Initial value: $[S, I, R, D](0) = [0.99, 0.01, 0, 0]$
Conserved quantity: TotalPopulation $(t) := S(t) + I(t) + R(t) + D(t) = 1$

Conserved quantities are not actually conserved in the simulation.

$$\dot{y}(t) = f(y(t), t)$$

Likelihood Model

$$z(t) = \dot{y}(t) - f(y(t), t)$$

$$z(t_i) \stackrel{!}{=} 0 \quad \forall i = 1:N$$

Ordinary Differential Equation with conserved quantity

$$\dot{y}(t) = f(y(t), t)$$

 $g(y(t)) = g(y_0)$

Likelihood Model

$$z(t) = \dot{y}(t) - f(y(t), t) ?$$

$$z(t_i) \stackrel{!}{=} 0 \quad \forall i = 1:N$$

Ordinary Differential Equation with conserved quantity

$$\dot{y}(t) = f(y(t), t)$$

 $g(y(t)) = g(y_0)$

Likelihood Model

$$z(t) = \begin{bmatrix} \dot{y}(t) - f(y(t), t) \\ \mathbf{g}(\mathbf{y}(t)) - \mathbf{g}(\mathbf{y}_0) \end{bmatrix}$$
$$z(t_i) \stackrel{!}{=} 0 \quad \forall i = 1: N$$

ODE simulation with conservation laws

SIRD initial value problem: $\frac{d}{dt}[S, I, R, D](t) = f([S, I, R, D](t), t), [S, I, R, D](0) = [0.99, 0.01, 0, 0]$ Conserved quantity: P(t) := S(t) + I(t) + R(t) + D(t) = 1

Before incorporating the conservation law.

ODE simulation with conservation laws

SIRD initial value problem:
$$\frac{d}{dt}[S, I, R, D](t) = f([S, I, R, D](t), t), [S, I, R, D](0) = [0.99, 0.01, 0, 0]$$

Conserved quantity: $P(t) := S(t) + I(t) + R(t) + D(t) = 1$

After incorporating the conservation law.

Conserved quantities stabilize long-term simulations

Simulation of the Henon-Heiles system which models a star moving around a galactic center

Fine-grained simulation

Coarse simulation

Coarse simulation with conservation of energy

Conserved quantities stabilize long-term simulations

Simulation of the Henon-Heiles system which models a star moving around a galactic center

Fine-grained simulation

Coarse simulation

Coarse simulation with conservation of energy

ODE filters can easily include additional information by adjusting their likelihood model.

Priory(t) is a Markov process

3) Probabilistic exponential integrators

NB Hennig Tronarp

B, Hennig, Trona (NeurlPS'23)

Likelihood & Data

$$z(t) = \dot{y}(t) - f(y(t), t)$$

Pick-and-mix
information operators for
probabilistic ODE solvers
 NB, Tronarp, Hennig
 (AISTATS'22)

Inference

Bayesian filtering and smoothing

2) Parallel-in-Time Probabilistic Numerical ODE Solvers

NB, Corenflos, Yaghoobi, Tronarp, Hennig, Särkkä (JMLR'24)

Calibrated & adaptive solvers (AISTATS'21)

ODE filters in millions of dimensions (ICML'22)

Parameter Inference

 $\dot{y}(t) = f_{\theta}(y(t), t)$ Find $p(\theta \mid y(t_{1:N}))$ Fenrir: Physics-enhanced regression (ICML'22)

Diffusion tempering (ICML'24)

ProbNumDiffEq.jl (JOSS'24

Software

► [Särkkä and García-Fernández, 2021]:

Kalman smoothing for **linear** Gaussian models can be done in parallel time $(\mathcal{O}(\log N))$.

- [Särkkä and García-Fernández, 2021]:
 - Kalman smoothing for **linear** Gaussian models can be done in parallel time ($\mathcal{O}(\log N)$).
- [Yaghoobi et al., 2023]:

Iterated extended Kalman smoothing for **nonlinear** models in parallel time ($\mathcal{O}(k \log N)$).

► [Särkkä and García-Fernández, 2021]:

Kalman smoothing for **linear** Gaussian models can be done in parallel time $(\mathcal{O}(\log N))$.

► [Yaghoobi et al., 2023]:

Iterated extended Kalman smoothing for **nonlinear** models in parallel time ($\mathcal{O}(k \log N)$).

- Initial trajectory $p(y(t_{1:N}))$
- while not converged do
- (i) Linearize the model globally along the trajectory.
- (ii) Run the time-parallel Kalman smoother on the linearized model.
- 5 end while

► [Särkkä and García-Fernández, 2021]:

Kalman smoothing for **linear** Gaussian models can be done in parallel time $(\mathcal{O}(\log N))$.

► [Yaghoobi et al., 2023]:

Iterated extended Kalman smoothing for **nonlinear** models in parallel time ($\mathcal{O}(k \log N)$).

- 1 Initial trajectory $p(y(t_{1:N}))$
- while not converged do
- (i) Linearize the model globally along the trajectory.
- (ii) Run the time-parallel Kalman smoother on the linearized model.
- 5 end while

► [Särkkä and García-Fernández, 2021]:

Kalman smoothing for **linear** Gaussian models can be done in parallel time $(\mathcal{O}(\log N))$.

► [Yaghoobi et al., 2023]:

Iterated extended Kalman smoothing for **nonlinear** models in parallel time ($\mathcal{O}(k \log N)$).

- 1 Initial trajectory $p(y(t_{1:N}))$
- while not converged do
- (i) Linearize the model globally along the trajectory.
- (ii) Run the time-parallel Kalman smoother on the linearized model.
- 5 end while

► [Särkkä and García-Fernández, 2021]:

Kalman smoothing for **linear** Gaussian models can be done in parallel time $(\mathcal{O}(\log N))$.

► [Yaghoobi et al., 2023]:

Iterated extended Kalman smoothing for **nonlinear** models in parallel time ($\mathcal{O}(k \log N)$).

- 1 Initial trajectory $p(y(t_{1:N}))$
- while not converged do
- (i) Linearize the model globally along the trajectory.
- (ii) Run the time-parallel Kalman smoother on the linearized model.
- 5 end while

► [Särkkä and García-Fernández, 2021]:

Kalman smoothing for **linear** Gaussian models can be done in parallel time $(\mathcal{O}(\log N))$.

► [Yaghoobi et al., 2023]:

Iterated extended Kalman smoothing for **nonlinear** models in parallel time ($\mathcal{O}(k \log N)$).

Algorithm Time-parallel Iterated Extended Kalman Smoother

- 1 Initial trajectory $p(y(t_{1:N}))$
- while not converged do
 - (i) Linearize the model globally along the trajectory.
- (ii) Run the time-parallel Kalman smoother on the linearized model.
- 5 end while
- ► [Bosch et al., 2024]:

Parallel-in-time probabilistic numerical ODE solvers in $\mathcal{O}(k \log N)$ time.

Benefits of parallel-in-time simulation

Benefits of parallel-in-time simulation

Inference in ODE filters can be performed parallel-in-time at logarithmic cost.

⇒ Significant speedups for large ODE simulations on GPUs.

Prior

y(t) is a
Gauss-Markov process

3) Probabilistic exponential integrators

NB, Hennig, Tronarp (NeurlPS'23)

Likelihood & Data

$$z(t) = \dot{y}(t) - f(y(t), t)$$

1) Pick-and-mix information operators for probabilistic ODE solvers NB, Tronary (ANDTATEMEN)

Inference

Bayesian filtering and smoothing

2) Parallel-in-Time Probabilistic Numerical ODE Solvers

NB, Corenflos, Yaghoobi, Tronarp, Hennig, Särkkä (JMLR'24)

Calibrated & adaptive solvers (AISTATS'21)

ODE filters in millions of dimensions (ICML'22)

Parameter Inference

 $\dot{y}(t) = f_{\theta}(y(t), t)$ Find $p(\theta \mid y(t, y))$

Fenrir: Physics-enhanced regression (ICML'22)

Diffusion tempering (ICML'24)

ProbNumDiffEq.jl (JOSS'24

Software

Stiff ordinary differential equations

$$\dot{y}_1(t) = 20y_2(t) - 0.5\sin(y_1(t))$$

$$\dot{y}_2(t) = -20y_2(t)$$

$$y_1(0) = 0$$

 $y_2(0) = 1$

Stiff ordinary differential equations

$$\dot{y}_1(t) = 20y_2(t) - 0.5\sin(y_1(t))$$

$$\dot{y}_2(t) = -20y_2(t)$$

$$y_1(0) = 0$$

 $y_2(0) = 1$

 $\textit{Stiff} \ \textsc{ODEs}$ combine fast and slow dynamics \Rightarrow challenging to simulate

Stiff ordinary differential equations

$$\dot{y}_1(t) = 20y_2(t) - 0.5\sin(y_1(t))$$
$$\dot{y}_2(t) = -20y_2(t)$$

$$y_1(0) = 0$$

 $y_2(0) = 1$

Stiff ODEs combine fast and slow dynamics ⇒ challenging to simulate

$$\mathrm{d}y^{(q)}(t) = \mathrm{d}W(t)$$

 $\mathrm{d} y^{(q)}(t) = \mathrm{d} W(t)$

$$dy^{(q)}(t) = L \cdot y^{(q)}(t) dt + dW(t)$$

$$\begin{bmatrix} \dot{y_1}(t) \\ \dot{y_2}(t) \end{bmatrix} = \begin{bmatrix} 0 & 20 \\ 0 & -20 \end{bmatrix} \cdot \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} + \begin{bmatrix} -0.5\sin(y_1(t)) \\ 0 \end{bmatrix}$$

$$\mathrm{d}y^{(q)}(t) = \mathrm{d}W(t)$$

$$dy^{(q)}(t) = L \cdot y^{(q)}(t) dt + dW(t)$$

Improving stability by adjusting the prior

$$\begin{bmatrix} \dot{y}_1(t) \\ \dot{y}_2(t) \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & 20 \\ 0 & -20 \end{bmatrix} \cdot \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix}}_{\left[L \cdot y(t)\right]} + \underbrace{\begin{bmatrix} -0.5 \sin(y_1(t)) \\ 0 \end{bmatrix}}_{N(y(t), t)}$$

q-times integrated Wiener process:

$$\mathrm{d}y^{(q)}(t) = \mathrm{d}W(t)$$

$$dy^{(q)}(t) = L \cdot y^{(q)}(t) dt + dW(t)$$

$$dy^{(q)}(t) = dW(t)$$

$$(1)$$

$$(2)$$

$$(3)$$

$$(4)$$

$$(5)$$

$$(7)$$

$$(7)$$

$$(8)$$

$$(7)$$

$$(8)$$

$$(7)$$

$$(8)$$

$$(7)$$

$$(8)$$

$$(7)$$

$$(8)$$

$$(9)$$

$$(9)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10)$$

$$(10$$

Improving stability by adjusting the prior

$$\begin{bmatrix} \dot{y}_1(t) \\ \dot{y}_2(t) \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & 20 \\ 0 & -20 \end{bmatrix} \cdot \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix}}_{\text{$L \cdot y(t)$}} + \underbrace{\begin{bmatrix} -0.5 \sin(y_1(t)) \\ 0 \end{bmatrix}}_{\text{$N(y(t), t)$}} \quad \text{with} \quad \begin{bmatrix} y_1(0) \\ y_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

q-times integrated Wiener process:

Improving stability by adjusting the prior

$$\begin{bmatrix} \dot{y}_1(t) \\ \dot{y}_2(t) \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & 20 \\ 0 & -20 \end{bmatrix} \cdot \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix}}_{\text{$L \cdot y(t)$}} + \underbrace{\begin{bmatrix} -0.5 \sin(y_1(t)) \\ 0 \end{bmatrix}}_{\text{$N(y(t), t)$}} \quad \text{with} \quad \begin{bmatrix} y_1(0) \\ y_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

q-times integrated Wiener process:

$$\mathrm{d}y^{(q)}(t) = \mathrm{d}W(t)$$

Figure: Reaction-diffusion model.

Figure: Reaction-diffusion model.

Linear dynamics can be incorporated into the *prior* to stabilize ODE filters.

 \Rightarrow Accurate simulation of stiff ODEs (and PDEs) at larger step sizes.

Prior

y(t) is a
Gauss-Markov process

3) Probabilistic exponential integrators

NB, Hennig, Tronarp (NeurlPS'23)

Likelihood & Data

$$z(t) = \dot{y}(t) - f(y(t), t)$$
$$z(t_i) \stackrel{!}{=} 0 \quad \forall i = 1: N$$

Pick-and-mix
information operators for
probabilistic ODE solvers
 NB, Tronarp, Hennig

(AISTATS'22)

Inference

Bayesian filtering and smoothing

2) Parallel-in-Time Probabilistic Numerical ODE Solvers

NB, Corenflos, Yaghoobi, Tronarp, Hennig, Särkkä (JMLR'24)

Calibrated & adaptive solvers (AISTATS'21)

ODE filters in millions of dimensions (ICML'22)

Parameter Inference

 $\dot{y}(t) = f_{\theta}(y(t), t)$ Find $p(\theta \mid y(t_{1:N}))$ Fenrir: Physics-enhanced regression (ICML'22)

Diffusion tempering (ICML'24)

ProbNumDiffEq.jl (JOSS'24)

Software

Flexible

ODE filters consist of adjustable building blocks:

- ▶ **Prior:** Include linear dynamics for stability
- ► **Likelihood:** Customize to include nonlinear information or to match the given problem
- ► Inference: Use any suitable Bayesian filter / smoother

Flexible

ODE filters consist of adjustable building blocks:

- ▶ **Prior:** Include linear dynamics for stability
- ► **Likelihood:** Customize to include nonlinear information or to match the given problem
- Inference: Use any suitable Bayesian filter / smoother

Efficient

- More accurate solutions for ODEs with conserved quantities and stiff ODEs
- ► Parallel-in-time inference on GPUs

Flexible

ODE filters consist of adjustable building blocks:

- ► **Prior:** Include linear dynamics for stability
- ► Likelihood: Customize to include nonlinear information or to match the given problem
- ► Inference: Use any suitable Bayesian filter / smoother

Efficient

- ► More accurate solutions for ODEs with conserved quantities and stiff ODEs
- ► Parallel-in-time inference on GPUs

Accessible

Open-source package: ProbNumDiffEg.jl 🤱

Flexible

ODE filters consist of adjustable building blocks:

- ► **Prior:** Include linear dynamics for stability
- ► **Likelihood:** Customize to include nonlinear information or to match the given problem
- ► Inference: Use any suitable Bayesian filter / smoother

Efficient

- ► More accurate solutions for ODEs with conserved quantities and stiff ODEs
- ► Parallel-in-time inference on GPUs

Accessible

Open-source package: ProbNumDiffEg.jl 🤱

