
A Flexible and Efficient Framework for
Probabilistic Numerical Simulation and

Inference

Nathanael Bosch

26. February 2025

some of the presented work is supported
by the European Research Council.

1

The COVID-19 pandemic — A real-world dynamical system

https://worldometers.info/coronavirus/country/germany/
2

https://worldometers.info/coronavirus/country/germany/

SIRD — A simple model for infectious diseases

Susceptible (S) Infected (I)

Recovered (R)

Deceased (D)

βSI

γI

δI

3

The SIRD model as an ordinary differential equation

˙S(t) = −β S(t) I(t)

˙I(t) = β S(t) I(t) − γ I(t) − δ I(t)

˙R(t) = γ I(t)

˙D(t) = δ I(t)

4

Numerical simulation of the SIRD model

time
0 50 100

0%

100%

S

I

R

D

How do we simulate
dynamical systems?

How accurate is the
simulation?

Can we trust it?

5

Numerical simulation of the SIRD model

time
0 50 100

0%

100%

S

I

R

D

How do we simulate
dynamical systems?

How accurate is the
simulation?

Can we trust it?

5

Numerical simulation of the SIRD model

time
0 50 100

0%

100%

S

I

R

D

How do we simulate
dynamical systems?

How accurate is the
simulation?

Can we trust it?

5

How to simulate ordinary differential equations

6

Ordinary Differential Equations and traditional simulators
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t) , y(0) = y0.
with t ∈ [0, T], vector field f : Rd × R→ Rd, and initial value y0 ∈ Rd. Goal: “Find y”.

A simple numerical ODE solver: “Forward Euler”

ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t).

The simulation ŷ is only an estimate of y.
The error depends on the solver and step size.

Traditional simulators do not quantify their
estimation error.

t
0 50 100

y(
t)

0%

100%

S

I

R

D

7

Ordinary Differential Equations and traditional simulators
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t) , y(0) = y0.
with t ∈ [0, T], vector field f : Rd × R→ Rd, and initial value y0 ∈ Rd. Goal: “Find y”.

A simple numerical ODE solver: “Forward Euler”

ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t).

The simulation ŷ is only an estimate of y.
The error depends on the solver and step size.

Traditional simulators do not quantify their
estimation error.

t
0 50 100

y(
t)

0%

100%

7

Ordinary Differential Equations and traditional simulators
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t) , y(0) = y0.
with t ∈ [0, T], vector field f : Rd × R→ Rd, and initial value y0 ∈ Rd. Goal: “Find y”.

A simple numerical ODE solver: “Forward Euler”

ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t).

The simulation ŷ is only an estimate of y.
The error depends on the solver and step size.

Traditional simulators do not quantify their
estimation error.

t
0 50 100

y(
t)

0%

100%

7

Ordinary Differential Equations and traditional simulators
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t) , y(0) = y0.
with t ∈ [0, T], vector field f : Rd × R→ Rd, and initial value y0 ∈ Rd. Goal: “Find y”.

A simple numerical ODE solver: “Forward Euler”

ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t).

The simulation ŷ is only an estimate of y.
The error depends on the solver and step size.

Traditional simulators do not quantify their
estimation error.

t
0 50 100

y(
t)

0%

100%

7

Ordinary Differential Equations and traditional simulators
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t) , y(0) = y0.
with t ∈ [0, T], vector field f : Rd × R→ Rd, and initial value y0 ∈ Rd. Goal: “Find y”.

A simple numerical ODE solver: “Forward Euler”

ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t).

The simulation ŷ is only an estimate of y.
The error depends on the solver and step size.

Traditional simulators do not quantify their
estimation error.

t
0 50 100

y(
t)

0%

100%

7

Ordinary Differential Equations and traditional simulators
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t) , y(0) = y0.
with t ∈ [0, T], vector field f : Rd × R→ Rd, and initial value y0 ∈ Rd. Goal: “Find y”.

A simple numerical ODE solver: “Forward Euler”

ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t).

The simulation ŷ is only an estimate of y.
The error depends on the solver and step size.

Traditional simulators do not quantify their
estimation error.

t
0 50 100

y(
t)

0%

100%

7

Ordinary Differential Equations and traditional simulators
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t) , y(0) = y0.
with t ∈ [0, T], vector field f : Rd × R→ Rd, and initial value y0 ∈ Rd. Goal: “Find y”.

A simple numerical ODE solver: “Forward Euler”

ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t).

The simulation ŷ is only an estimate of y.
The error depends on the solver and step size.

Traditional simulators do not quantify their
estimation error.

t
0 50 100

y(
t)

0%

100%

7

Ordinary Differential Equations and traditional simulators
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t) , y(0) = y0.
with t ∈ [0, T], vector field f : Rd × R→ Rd, and initial value y0 ∈ Rd. Goal: “Find y”.

A simple numerical ODE solver: “Forward Euler”

ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t).

The simulation ŷ is only an estimate of y.
The error depends on the solver and step size.

Traditional simulators do not quantify their
estimation error.

t
0 50 100

y(
t)

0%

100%

7

Ordinary Differential Equations and traditional simulators
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t) , y(0) = y0.
with t ∈ [0, T], vector field f : Rd × R→ Rd, and initial value y0 ∈ Rd. Goal: “Find y”.

A simple numerical ODE solver: “Forward Euler”

ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t).

The simulation ŷ is only an estimate of y.
The error depends on the solver and step size.

Traditional simulators do not quantify their
estimation error.

t
0 50 100

y(
t)

0%

100%

7

Ordinary Differential Equations and traditional simulators
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t) , y(0) = y0.
with t ∈ [0, T], vector field f : Rd × R→ Rd, and initial value y0 ∈ Rd. Goal: “Find y”.

A simple numerical ODE solver: “Forward Euler”

ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t).

The simulation ŷ is only an estimate of y.
The error depends on the solver and step size.

Traditional simulators do not quantify their
estimation error.

t
0 50 100

y(
t)

0%

100%

7

Ordinary Differential Equations and traditional simulators
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t) , y(0) = y0.
with t ∈ [0, T], vector field f : Rd × R→ Rd, and initial value y0 ∈ Rd. Goal: “Find y”.

A simple numerical ODE solver: “Forward Euler”

ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t).

The simulation ŷ is only an estimate of y.
The error depends on the solver and step size.

Traditional simulators do not quantify their
estimation error.

t
0 50 100

y(
t)

0%

100%

7

Ordinary Differential Equations and traditional simulators
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t) , y(0) = y0.
with t ∈ [0, T], vector field f : Rd × R→ Rd, and initial value y0 ∈ Rd. Goal: “Find y”.

A simple numerical ODE solver: “Forward Euler”

ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t).

The simulation ŷ is only an estimate of y.
The error depends on the solver and step size.

Traditional simulators do not quantify their
estimation error.

t
0 50 100

y(
t)

0%

100%

7

Ordinary Differential Equations and traditional simulators
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t) , y(0) = y0.
with t ∈ [0, T], vector field f : Rd × R→ Rd, and initial value y0 ∈ Rd. Goal: “Find y”.

A simple numerical ODE solver: “Forward Euler”

ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t).

The simulation ŷ is only an estimate of y.
The error depends on the solver and step size.

Traditional simulators do not quantify their
estimation error.

t
0 50 100

y(
t)

0%

100%

7

Ordinary Differential Equations and traditional simulators
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t) , y(0) = y0.
with t ∈ [0, T], vector field f : Rd × R→ Rd, and initial value y0 ∈ Rd. Goal: “Find y”.

A simple numerical ODE solver: “Forward Euler”

ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t).

The simulation ŷ is only an estimate of y.
The error depends on the solver and step size.

Traditional simulators do not quantify their
estimation error.

t
0 50 100

y(
t)

0%

100%
RMSE: 10.95%

7

Ordinary Differential Equations and traditional simulators
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t) , y(0) = y0.
with t ∈ [0, T], vector field f : Rd × R→ Rd, and initial value y0 ∈ Rd. Goal: “Find y”.

A simple numerical ODE solver: “Forward Euler”

ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t).

The simulation ŷ is only an estimate of y.
The error depends on the solver and step size.

Traditional simulators do not quantify their
estimation error.

t
0 50 100

y(
t)

0%

100%
RMSE: 5.25%

7

Ordinary Differential Equations and traditional simulators
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t) , y(0) = y0.
with t ∈ [0, T], vector field f : Rd × R→ Rd, and initial value y0 ∈ Rd. Goal: “Find y”.

A simple numerical ODE solver: “Forward Euler”

ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t).

The simulation ŷ is only an estimate of y.
The error depends on the solver and step size.

Traditional simulators do not quantify their
estimation error.

t
0 50 100

y(
t)

0%

100%
RMSE: 1.01%

7

Ordinary Differential Equations and traditional simulators
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t) , y(0) = y0.
with t ∈ [0, T], vector field f : Rd × R→ Rd, and initial value y0 ∈ Rd. Goal: “Find y”.

A simple numerical ODE solver: “Forward Euler”

ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t).

The simulation ŷ is only an estimate of y.
The error depends on the solver and step size.

Traditional simulators do not quantify their
estimation error.

t
0 50 100

y(
t)

0%

100%
RMSE: 0.10%

7

Ordinary Differential Equations and traditional simulators
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t) , y(0) = y0.
with t ∈ [0, T], vector field f : Rd × R→ Rd, and initial value y0 ∈ Rd. Goal: “Find y”.

A simple numerical ODE solver: “Forward Euler”

ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t).

The simulation ŷ is only an estimate of y.
The error depends on the solver and step size.

Traditional simulators do not quantify their
estimation error.

t
0 50 100

y(
t)

0%

100%
RMSE: 0.10%

7

Ordinary Differential Equations and traditional simulators
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t) , y(0) = y0.
with t ∈ [0, T], vector field f : Rd × R→ Rd, and initial value y0 ∈ Rd. Goal: “Find y”.

A simple numerical ODE solver: “Forward Euler”

ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t).

The simulation ŷ is only an estimate of y.
The error depends on the solver and step size.

Traditional simulators do not quantify their
estimation error.

t
0 50 100

y(
t)

0%

100%
RMSE: 0.10%

7

Probabilistic numerical ODE solvers
or How to treat ODEs as the state estimation problem that they really are

p
(
y(t)

∣∣∣ y(0) = y0, {ẏ(tn) = f (y(tn), tn)}Nn=1

)
with vector field f : Rd × R→ Rd, initial value y0, and time discretization {tn}Nn=1.

Prior Likelihood & Data Inference
+ +

8

Probabilistic numerical ODE solvers
or How to treat ODEs as the state estimation problem that they really are

p
(
y(t)

∣∣∣ y(0) = y0, {ẏ(tn) = f (y(tn), tn)}Nn=1

)
with vector field f : Rd × R→ Rd, initial value y0, and time discretization {tn}Nn=1.

Prior

Likelihood & Data Inference
+ +

8

Probabilistic numerical ODE solvers
or How to treat ODEs as the state estimation problem that they really are

p
(
y(t)

∣∣∣ y(0) = y0, {ẏ(tn) = f (y(tn), tn)}Nn=1

)
with vector field f : Rd × R→ Rd, initial value y0, and time discretization {tn}Nn=1.

Prior Likelihood & Data

Inference

+

+

8

Probabilistic numerical ODE solvers
or How to treat ODEs as the state estimation problem that they really are

p
(
y(t)

∣∣∣ y(0) = y0, {ẏ(tn) = f (y(tn), tn)}Nn=1

)
with vector field f : Rd × R→ Rd, initial value y0, and time discretization {tn}Nn=1.

Prior Likelihood & Data Inference
+ +

8

Building blocks of probabilistic numerical ODE solvers

Prior

y(t) ∼ GP is a
Gauss–Markov process

t
0 100

y(
t)

−5000

0

5000

Likelihood & Data

z(t) = ẏ(t)−f(y(t), t)

z(ti)
!
= 0 ∀i=1 :N

Inference

Bayesian filtering
and smoothing

Algorithm Extended Kalman Filter
1 Initial distribution p(y(t0))
2 for i=1 :N do
3 Predict:
4 pf(y(ti−1)) 7→ pp(y(ti))
5 Linearize f at Epp [y(ti)]
6 Update:
7 pp(y(ti)), z(ti) 7→pf(y(ti))
8 end for

9

Building blocks of probabilistic numerical ODE solvers

Prior
y(t) ∼ GP is a

Gauss–Markov process

t
0 100

y(
t)

−5000

0

5000

Likelihood & Data

z(t) = ẏ(t)−f(y(t), t)

z(ti)
!
= 0 ∀i=1 :N

Inference

Bayesian filtering
and smoothing

Algorithm Extended Kalman Filter
1 Initial distribution p(y(t0))
2 for i=1 :N do
3 Predict:
4 pf(y(ti−1)) 7→ pp(y(ti))
5 Linearize f at Epp [y(ti)]
6 Update:
7 pp(y(ti)), z(ti) 7→pf(y(ti))
8 end for

9

Building blocks of probabilistic numerical ODE solvers

Prior
y(t) ∼ GP is a

Gauss–Markov process

t
0 100

y(
t)

−5000

0

5000

Likelihood & Data
z(t) = ẏ(t)−f(y(t), t)

z(ti)
!
= 0 ∀i=1 :N

t
0 100

ẏ(
t)

 -
 f(

y(
t)

)
0

-50

50

Inference

Bayesian filtering
and smoothing

Algorithm Extended Kalman Filter
1 Initial distribution p(y(t0))
2 for i=1 :N do
3 Predict:
4 pf(y(ti−1)) 7→ pp(y(ti))
5 Linearize f at Epp [y(ti)]
6 Update:
7 pp(y(ti)), z(ti) 7→pf(y(ti))
8 end for

9

Building blocks of probabilistic numerical ODE solvers

Prior
y(t) ∼ GP is a

Gauss–Markov process

t
0 100

y(
t)

−5000

0

5000

Likelihood & Data
z(t) = ẏ(t)−f(y(t), t)

z(ti)
!
= 0 ∀i=1 :N

t
0 100

ẏ(
t)

 -
 f(

y(
t)

)
0

-50

50

Inference
Bayesian filtering
and smoothing

Algorithm Extended Kalman Filter
1 Initial distribution p(y(t0))
2 for i=1 :N do
3 Predict:
4 pf(y(ti−1)) 7→ pp(y(ti))
5 Linearize f at Epp [y(ti)]
6 Update:
7 pp(y(ti)), z(ti) 7→pf(y(ti))
8 end for

9

Building blocks of probabilistic numerical ODE solvers

Prior
y(t) ∼ GP is a

Gauss–Markov process

t
0 100

y(
t)

0%

100%

Likelihood & Data
z(t) = ẏ(t)−f(y(t), t)

z(ti)
!
= 0 ∀i=1 :N

t
0 100

ẏ(
t)

 -
 f(

y(
t)

)
0

-0.003

0.003

Inference
Bayesian filtering
and smoothing

Algorithm Extended Kalman Filter
1 Initial distribution p(y(t0))
2 for i=1 :N do
3 Predict:
4 pf(y(ti−1)) 7→ pp(y(ti))
5 Linearize f at Epp [y(ti)]
6 Update:
7 pp(y(ti)), z(ti) 7→pf(y(ti))
8 end for

9

Building blocks of probabilistic numerical ODE solvers

Prior
y(t) ∼ GP is a

Gauss–Markov process

t
0 100

y(
t)

0%

100%

Likelihood & Data
z(t) = ẏ(t)−f(y(t), t)

z(ti)
!
= 0 ∀i=1 :N

t
0 100

ẏ(
t)

 -
 f(

y(
t)

)
0

-0.003

0.003

Inference
Bayesian filtering
and smoothing

Algorithm Extended Kalman Filter
1 Initial distribution p(y(t0))
2 for i=1 :N do
3 Predict:
4 pf(y(ti−1)) 7→ pp(y(ti))
5 Linearize f at Epp [y(ti)]
6 Update:
7 pp(y(ti)), z(ti) 7→pf(y(ti))
8 end for

9

Building blocks of probabilistic numerical ODE solvers

Prior
y(t) ∼ GP is a

Gauss–Markov process

t
0 100

y(
t)

0%

100%

Likelihood & Data
z(t) = ẏ(t)−f(y(t), t)

z(ti)
!
= 0 ∀i=1 :N

t
0 100

ẏ(
t)

 -
 f(

y(
t)

)
0

-0.003

0.003

Inference
Bayesian filtering
and smoothing

Algorithm Extended Kalman Filter
1 Initial distribution p(y(t0))
2 for i=1 :N do
3 Predict:
4 pf(y(ti−1)) 7→ pp(y(ti))
5 Linearize f at Epp [y(ti)]
6 Update:
7 pp(y(ti)), z(ti) 7→pf(y(ti))
8 end for

9

Building blocks of probabilistic numerical ODE solvers

Prior
y(t) ∼ GP is a

Gauss–Markov process

t
0 100

y(
t)

0%

100%

Likelihood & Data
z(t) = ẏ(t)−f(y(t), t)

z(ti)
!
= 0 ∀i=1 :N

t
0 100

ẏ(
t)

 -
 f(

y(
t)

)
0

-0.003

0.003

Inference
Bayesian filtering
and smoothing

Algorithm Extended Kalman Filter
1 Initial distribution p(y(t0))
2 for i=1 :N do
3 Predict:
4 pf(y(ti−1)) 7→ pp(y(ti))
5 Linearize f at Epp [y(ti)]
6 Update:
7 pp(y(ti)), z(ti) 7→pf(y(ti))
8 end for

9

Building blocks of probabilistic numerical ODE solvers

Prior
y(t) ∼ GP is a

Gauss–Markov process

t
0 100

y(
t)

0%

100%

Likelihood & Data
z(t) = ẏ(t)−f(y(t), t)

z(ti)
!
= 0 ∀i=1 :N

t
0 100

ẏ(
t)

 -
 f(

y(
t)

)
0

-0.003

0.003

Inference
Bayesian filtering
and smoothing

Algorithm Extended Kalman Filter
1 Initial distribution p(y(t0))
2 for i=1 :N do
3 Predict:
4 pf(y(ti−1)) 7→ pp(y(ti))
5 Linearize f at Epp [y(ti)]
6 Update:
7 pp(y(ti)), z(ti) 7→pf(y(ti))
8 end for

9

Building blocks of probabilistic numerical ODE solvers

Prior
y(t) ∼ GP is a

Gauss–Markov process

t
0 100

y(
t)

0%

100%

Likelihood & Data
z(t) = ẏ(t)−f(y(t), t)

z(ti)
!
= 0 ∀i=1 :N

t
0 100

ẏ(
t)

 -
 f(

y(
t)

)
0

-0.003

0.003

Inference
Bayesian filtering
and smoothing

Algorithm Extended Kalman Filter
1 Initial distribution p(y(t0))
2 for i=1 :N do
3 Predict:
4 pf(y(ti−1)) 7→ pp(y(ti))
5 Linearize f at Epp [y(ti)]
6 Update:
7 pp(y(ti)), z(ti) 7→pf(y(ti))
8 end for

9

Building blocks of probabilistic numerical ODE solvers

Prior
y(t) ∼ GP is a

Gauss–Markov process

t
0 100

y(
t)

0%

100%

Likelihood & Data
z(t) = ẏ(t)−f(y(t), t)

z(ti)
!
= 0 ∀i=1 :N

t
0 100

ẏ(
t)

 -
 f(

y(
t)

)
0

-0.003

0.003

Inference
Bayesian filtering
and smoothing

Algorithm Extended Kalman Filter
1 Initial distribution p(y(t0))
2 for i=1 :N do
3 Predict:
4 pf(y(ti−1)) 7→ pp(y(ti))
5 Linearize f at Epp [y(ti)]
6 Update:
7 pp(y(ti)), z(ti) 7→pf(y(ti))
8 end for

9

Building blocks of probabilistic numerical ODE solvers

Prior
y(t) ∼ GP is a

Gauss–Markov process

t
0 100

y(
t)

0%

100%

Likelihood & Data
z(t) = ẏ(t)−f(y(t), t)

z(ti)
!
= 0 ∀i=1 :N

t
0 100

ẏ(
t)

 -
 f(

y(
t)

)
0

-0.003

0.003

Inference
Bayesian filtering
and smoothing

Algorithm Extended Kalman Filter
1 Initial distribution p(y(t0))
2 for i=1 :N do
3 Predict:
4 pf(y(ti−1)) 7→ pp(y(ti))
5 Linearize f at Epp [y(ti)]
6 Update:
7 pp(y(ti)), z(ti) 7→pf(y(ti))
8 end for

9

Building blocks of probabilistic numerical ODE solvers

Prior
y(t) ∼ GP is a

Gauss–Markov process

t
0 100

y(
t)

0%

100%

Likelihood & Data
z(t) = ẏ(t)−f(y(t), t)

z(ti)
!
= 0 ∀i=1 :N

t
0 100

ẏ(
t)

 -
 f(

y(
t)

)
0

-0.003

0.003

Inference
Bayesian filtering
and smoothing

Algorithm Extended Kalman Filter
1 Initial distribution p(y(t0))
2 for i=1 :N do
3 Predict:
4 pf(y(ti−1)) 7→ pp(y(ti))
5 Linearize f at Epp [y(ti)]
6 Update:
7 pp(y(ti)), z(ti) 7→pf(y(ti))
8 end for

9

Building blocks of probabilistic numerical ODE solvers

Prior
y(t) ∼ GP is a

Gauss–Markov process

t
0 100

y(
t)

0%

100%

Likelihood & Data
z(t) = ẏ(t)−f(y(t), t)

z(ti)
!
= 0 ∀i=1 :N

t
0 100

ẏ(
t)

 -
 f(

y(
t)

)
0

-0.003

0.003

Inference
Bayesian filtering
and smoothing

Algorithm Extended Kalman Filter
1 Initial distribution p(y(t0))
2 for i=1 :N do
3 Predict:
4 pf(y(ti−1)) 7→ pp(y(ti))
5 Linearize f at Epp [y(ti)]
6 Update:
7 pp(y(ti)), z(ti) 7→pf(y(ti))
8 end for

9

ODE filtering as a flexible and efficient framwork for
simulation and inference

10

Prior
y(t) is a

Gauss–Markov process

Likelihood & Data
z(t) = ẏ(t)−f(y(t), t)

z(ti)
!
= 0 ∀i=1 :N

Inference
Bayesian filtering
and smoothing

3) Probabilistic
exponential integrators
NB, Hennig, Tronarp

(NeurIPS’23)

1) Pick-and-mix
information operators for
probabilistic ODE solvers

NB, Tronarp, Hennig
(AISTATS’22)

ODE filters in millions of
dimensions (ICML’22)

Calibrated & adaptive
solvers (AISTATS’21)

2) Parallel-in-Time
Probabilistic Numerical

ODE Solvers
NB, Corenflos, Yaghoobi,
Tronarp, Hennig, Särkkä

(JMLR’24)

+ +

Parameter Inference
ẏ(t) = fθ(y(t), t)
Find p(θ | y(t1:N))

Fenrir: Physics-enhanced
regression (ICML’22)

Diffusion tempering (ICML’24)

SoftwareProbNumDiffEq.jl (JOSS’24)

11

Prior
y(t) is a

Gauss–Markov process

Likelihood & Data
z(t) = ẏ(t)−f(y(t), t)

z(ti)
!
= 0 ∀i=1 :N

Inference
Bayesian filtering
and smoothing

3) Probabilistic
exponential integrators
NB, Hennig, Tronarp

(NeurIPS’23)

1) Pick-and-mix
information operators for
probabilistic ODE solvers

NB, Tronarp, Hennig
(AISTATS’22)

ODE filters in millions of
dimensions (ICML’22)

Calibrated & adaptive
solvers (AISTATS’21)

2) Parallel-in-Time
Probabilistic Numerical

ODE Solvers
NB, Corenflos, Yaghoobi,
Tronarp, Hennig, Särkkä

(JMLR’24)

+ +

Parameter Inference
ẏ(t) = fθ(y(t), t)
Find p(θ | y(t1:N))

Fenrir: Physics-enhanced
regression (ICML’22)

Diffusion tempering (ICML’24)

SoftwareProbNumDiffEq.jl (JOSS’24)

12

The ODE is often not the full story

ODE:
d
dt [S, I, R, D](t) = f ([S, I, R, D](t), t) , Initial value: [S, I, R, D](0) = [0.99, 0.01, 0, 0]

Conserved quantity: TotalPopulation(t) := S(t) + I(t) + R(t) + D(t) = 1

t
0 50 100

y(
t)

0%

100%

S

I

R

D

Conserved quantities are not actually conserved in the simulation.

13

The ODE is often not the full story

ODE:
d
dt [S, I, R, D](t) = f ([S, I, R, D](t), t) , Initial value: [S, I, R, D](0) = [0.99, 0.01, 0, 0]

Conserved quantity: TotalPopulation(t) := S(t) + I(t) + R(t) + D(t) = 1

t
0 50 100

y(
t)

0%

100%

S

I

R

D

Conserved quantities are not actually conserved in the simulation.

13

The ODE is often not the full story

ODE:
d
dt [S, I, R, D](t) = f ([S, I, R, D](t), t) , Initial value: [S, I, R, D](0) = [0.99, 0.01, 0, 0]

Conserved quantity: TotalPopulation(t) := S(t) + I(t) + R(t) + D(t) = 1

t
0 50 100

y(
t)

0%

100%

S

I

R

D

t
0 50 100

T
ot

al
 P

op
ul

at
io

n(
t)

100%

98%

102%

Conserved quantities are not actually conserved in the simulation.

13

Including additional information into the likelihood model

Ordinary Differential Equation

with conserved quantity

ẏ(t) = f(y(t), t)

g(y(t)) = g(y0)

Likelihood Model
z(t) = ẏ(t)− f(y(t), t)

z(ti)
!
= 0 ∀i=1 :N

encode as

14

Including additional information into the likelihood model

Ordinary Differential Equation
with conserved quantity

ẏ(t) = f(y(t), t)
g(y(t)) = g(y0)

Likelihood Model
z(t) = ẏ(t)− f(y(t), t) ?

z(ti)
!
= 0 ∀i=1 :N

encode as

14

Including additional information into the likelihood model

Ordinary Differential Equation
with conserved quantity

ẏ(t) = f(y(t), t)
g(y(t)) = g(y0)

Likelihood Model

z(t) =
[

ẏ(t)− f(y(t), t)
g(y(t))− g(y0)

]
z(ti)

!
= 0 ∀i=1 :N

encode as

14

ODE simulation with conservation laws

SIRD initial value problem:
d
dt [S, I, R, D](t) = f ([S, I, R, D](t), t) , [S, I, R, D](0) = [0.99, 0.01, 0, 0]

Conserved quantity: P(t) := S(t) + I(t) + R(t) + D(t) = 1

t
0 50 100

y(
t)

0%

100%

S

I

R

D

t
0 50 100

T
ot

al
 P

op
ul

at
io

n(
t)

100%

98%

102%

Before incorporating the conservation law.

15

ODE simulation with conservation laws

SIRD initial value problem:
d
dt [S, I, R, D](t) = f ([S, I, R, D](t), t) , [S, I, R, D](0) = [0.99, 0.01, 0, 0]

Conserved quantity: P(t) := S(t) + I(t) + R(t) + D(t) = 1

t
0 50 100

y(
t)

0%

100%

S

I

R

D

t
0 50 100

T
ot

al
 P

op
ul

at
io

n(
t)

100%

98%

102%

After incorporating the conservation law.

15

Conserved quantities stabilize long-term simulations
Simulation of the Henon–Heiles system which models a star moving around a galactic center.

Fine-grained simulation Coarse simulation Coarse simulation with
conservation of energy

ODE filters can easily include additional information by adjusting their likelihood model.

16

Conserved quantities stabilize long-term simulations
Simulation of the Henon–Heiles system which models a star moving around a galactic center.

Fine-grained simulation Coarse simulation Coarse simulation with
conservation of energy

ODE filters can easily include additional information by adjusting their likelihood model.

16

Prior
y(t) is a

Gauss–Markov process

Likelihood & Data
z(t) = ẏ(t)−f(y(t), t)

z(ti)
!
= 0 ∀i=1 :N

Inference
Bayesian filtering
and smoothing

3) Probabilistic
exponential integrators
NB, Hennig, Tronarp

(NeurIPS’23)

1) Pick-and-mix
information operators for
probabilistic ODE solvers

NB, Tronarp, Hennig
(AISTATS’22)

ODE filters in millions of
dimensions (ICML’22)

Calibrated & adaptive
solvers (AISTATS’21)

2) Parallel-in-Time
Probabilistic Numerical

ODE Solvers
NB, Corenflos, Yaghoobi,
Tronarp, Hennig, Särkkä

(JMLR’24)

+ +

Parameter Inference
ẏ(t) = fθ(y(t), t)
Find p(θ | y(t1:N))

Fenrir: Physics-enhanced
regression (ICML’22)

Diffusion tempering (ICML’24)

SoftwareProbNumDiffEq.jl (JOSS’24)

17

Another step-by-step simulation of the SIRD model

t
0 50 100

y(
t)

0%

100%
Step 0

S

I

R

D

Inference is sequential and scalesO(N).

Can we do better?

18

Another step-by-step simulation of the SIRD model

t
0 50 100

y(
t)

0%

100%
Step 1

S

I

R

D

Inference is sequential and scalesO(N).

Can we do better?

18

Another step-by-step simulation of the SIRD model

t
0 50 100

y(
t)

0%

100%
Step 2

S

I

R

D

Inference is sequential and scalesO(N).

Can we do better?

18

Another step-by-step simulation of the SIRD model

t
0 50 100

y(
t)

0%

100%
Step 3

S

I

R

D

Inference is sequential and scalesO(N).

Can we do better?

18

Another step-by-step simulation of the SIRD model

t
0 50 100

y(
t)

0%

100%
Step 4

S

I

R

D

Inference is sequential and scalesO(N).

Can we do better?

18

Another step-by-step simulation of the SIRD model

t
0 50 100

y(
t)

0%

100%
Step 5

S

I

R

D

Inference is sequential and scalesO(N).

Can we do better?

18

Another step-by-step simulation of the SIRD model

t
0 50 100

y(
t)

0%

100%
Step 6

S

I

R

D

Inference is sequential and scalesO(N).

Can we do better?

18

Another step-by-step simulation of the SIRD model

t
0 50 100

y(
t)

0%

100%
Step 7

S

I

R

D

Inference is sequential and scalesO(N).

Can we do better?

18

Another step-by-step simulation of the SIRD model

t
0 50 100

y(
t)

0%

100%
Step 8

S

I

R

D

Inference is sequential and scalesO(N).

Can we do better?

18

Another step-by-step simulation of the SIRD model

t
0 50 100

y(
t)

0%

100%
Step 9

S

I

R

D

Inference is sequential and scalesO(N).

Can we do better?

18

Another step-by-step simulation of the SIRD model

t
0 50 100

y(
t)

0%

100%
Step 10

S

I

R

D

Inference is sequential and scalesO(N).

Can we do better?

18

Another step-by-step simulation of the SIRD model

t
0 50 100

y(
t)

0%

100%
Step 11

S

I

R

D

Inference is sequential and scalesO(N).

Can we do better?

18

Another step-by-step simulation of the SIRD model

t
0 50 100

y(
t)

0%

100%
Step 12

S

I

R

D

Inference is sequential and scalesO(N).

Can we do better?

18

Another step-by-step simulation of the SIRD model

t
0 50 100

y(
t)

0%

100%
Step 13

S

I

R

D

Inference is sequential and scalesO(N).

Can we do better?

18

Another step-by-step simulation of the SIRD model

t
0 50 100

y(
t)

0%

100%
Step 14

S

I

R

D

Inference is sequential and scalesO(N).

Can we do better?

18

Another step-by-step simulation of the SIRD model

t
0 50 100

y(
t)

0%

100%
Step 15

S

I

R

D

Inference is sequential and scalesO(N).

Can we do better?

18

Another step-by-step simulation of the SIRD model

t
0 50 100

y(
t)

0%

100%
Step 16

S

I

R

D

Inference is sequential and scalesO(N).

Can we do better?

18

Another step-by-step simulation of the SIRD model

t
0 50 100

y(
t)

0%

100%
Step 17

S

I

R

D

Inference is sequential and scalesO(N).

Can we do better?

18

Another step-by-step simulation of the SIRD model

t
0 50 100

y(
t)

0%

100%
Step 18

S

I

R

D

Inference is sequential and scalesO(N).

Can we do better?

18

Another step-by-step simulation of the SIRD model

t
0 50 100

y(
t)

0%

100%
Step 19

S

I

R

D

Inference is sequential and scalesO(N).

Can we do better?

18

Another step-by-step simulation of the SIRD model

t
0 50 100

y(
t)

0%

100%
Step 20

S

I

R

D

Inference is sequential and scalesO(N).

Can we do better?

18

Another step-by-step simulation of the SIRD model

t
0 50 100

y(
t)

0%

100%
Step 20

S

I

R

D

Inference is sequential and scalesO(N).

Can we do better?

18

Another step-by-step simulation of the SIRD model

t
0 50 100

y(
t)

0%

100%
Step 20

S

I

R

D

Inference is sequential and scalesO(N). Can we do better?

18

From time-parallel Bayesian filters to parallel-in-time ODE solvers
▶ [Särkkä and García-Fernández, 2021]:

Kalman smoothing for linear Gaussian models can be done in parallel time (O(log N)).

▶ [Yaghoobi et al., 2023]:

Iterated extended Kalman smoothing for nonlinear models in parallel time (O(k log N)).

Algorithm Time-parallel Iterated Extended Kalman Smoother
1 Initial trajectory p(y(t1:N))
2 while not converged do
3 (i) Linearize the model globally along the trajectory.
4 (ii) Run the time-parallel Kalman smoother on the linearized model.
5 end while

▶ [Bosch et al., 2024]:

Parallel-in-time probabilistic numerical ODE solvers inO(k log N) time.

19

From time-parallel Bayesian filters to parallel-in-time ODE solvers
▶ [Särkkä and García-Fernández, 2021]:

Kalman smoothing for linear Gaussian models can be done in parallel time (O(log N)).

▶ [Yaghoobi et al., 2023]:

Iterated extended Kalman smoothing for nonlinear models in parallel time (O(k log N)).

Algorithm Time-parallel Iterated Extended Kalman Smoother
1 Initial trajectory p(y(t1:N))
2 while not converged do
3 (i) Linearize the model globally along the trajectory.
4 (ii) Run the time-parallel Kalman smoother on the linearized model.
5 end while

▶ [Bosch et al., 2024]:

Parallel-in-time probabilistic numerical ODE solvers inO(k log N) time.

19

From time-parallel Bayesian filters to parallel-in-time ODE solvers
▶ [Särkkä and García-Fernández, 2021]:

Kalman smoothing for linear Gaussian models can be done in parallel time (O(log N)).

▶ [Yaghoobi et al., 2023]:

Iterated extended Kalman smoothing for nonlinear models in parallel time (O(k log N)).

Algorithm Time-parallel Iterated Extended Kalman Smoother
1 Initial trajectory p(y(t1:N))
2 while not converged do
3 (i) Linearize the model globally along the trajectory.
4 (ii) Run the time-parallel Kalman smoother on the linearized model.
5 end while

▶ [Bosch et al., 2024]:

Parallel-in-time probabilistic numerical ODE solvers inO(k log N) time.

19

From time-parallel Bayesian filters to parallel-in-time ODE solvers
▶ [Särkkä and García-Fernández, 2021]:

Kalman smoothing for linear Gaussian models can be done in parallel time (O(log N)).

▶ [Yaghoobi et al., 2023]:

Iterated extended Kalman smoothing for nonlinear models in parallel time (O(k log N)).

Algorithm Time-parallel Iterated Extended Kalman Smoother
1 Initial trajectory p(y(t1:N))
2 while not converged do
3 (i) Linearize the model globally along the trajectory.
4 (ii) Run the time-parallel Kalman smoother on the linearized model.
5 end while

▶ [Bosch et al., 2024]:

Parallel-in-time probabilistic numerical ODE solvers inO(k log N) time.

19

From time-parallel Bayesian filters to parallel-in-time ODE solvers
▶ [Särkkä and García-Fernández, 2021]:

Kalman smoothing for linear Gaussian models can be done in parallel time (O(log N)).

▶ [Yaghoobi et al., 2023]:

Iterated extended Kalman smoothing for nonlinear models in parallel time (O(k log N)).

Algorithm Time-parallel Iterated Extended Kalman Smoother
1 Initial trajectory p(y(t1:N))
2 while not converged do
3 (i) Linearize the model globally along the trajectory.
4 (ii) Run the time-parallel Kalman smoother on the linearized model.
5 end while

▶ [Bosch et al., 2024]:

Parallel-in-time probabilistic numerical ODE solvers inO(k log N) time.

19

From time-parallel Bayesian filters to parallel-in-time ODE solvers
▶ [Särkkä and García-Fernández, 2021]:

Kalman smoothing for linear Gaussian models can be done in parallel time (O(log N)).

▶ [Yaghoobi et al., 2023]:

Iterated extended Kalman smoothing for nonlinear models in parallel time (O(k log N)).

Algorithm Time-parallel Iterated Extended Kalman Smoother
1 Initial trajectory p(y(t1:N))
2 while not converged do
3 (i) Linearize the model globally along the trajectory.
4 (ii) Run the time-parallel Kalman smoother on the linearized model.
5 end while

▶ [Bosch et al., 2024]:

Parallel-in-time probabilistic numerical ODE solvers inO(k log N) time.

19

From time-parallel Bayesian filters to parallel-in-time ODE solvers
▶ [Särkkä and García-Fernández, 2021]:

Kalman smoothing for linear Gaussian models can be done in parallel time (O(log N)).

▶ [Yaghoobi et al., 2023]:

Iterated extended Kalman smoothing for nonlinear models in parallel time (O(k log N)).

Algorithm Time-parallel Iterated Extended Kalman Smoother
1 Initial trajectory p(y(t1:N))
2 while not converged do
3 (i) Linearize the model globally along the trajectory.
4 (ii) Run the time-parallel Kalman smoother on the linearized model.
5 end while

▶ [Bosch et al., 2024]:

Parallel-in-time probabilistic numerical ODE solvers inO(k log N) time.

19

Simulating 1000 steps of the SIRD model parallel-in-time

t
0 50 100

y(
t)

0%

100%
Iteration 0

S

I

R

D

20

Simulating 1000 steps of the SIRD model parallel-in-time

t
0 50 100

y(
t)

0%

100%
Iteration 1

S

I

R

D

20

Simulating 1000 steps of the SIRD model parallel-in-time

t
0 50 100

y(
t)

0%

100%
Iteration 2

S

I

R

D

20

Simulating 1000 steps of the SIRD model parallel-in-time

t
0 50 100

y(
t)

0%

100%
Iteration 3

S

I

R

D

20

Simulating 1000 steps of the SIRD model parallel-in-time

t
0 50 100

y(
t)

0%

100%
Iteration 4

S

I

R

D

20

Simulating 1000 steps of the SIRD model parallel-in-time

t
0 50 100

y(
t)

0%

100%
Iteration 5

S

I

R

D

20

Simulating 1000 steps of the SIRD model parallel-in-time

t
0 50 100

y(
t)

0%

100%
Iteration 6

S

I

R

D

20

Simulating 1000 steps of the SIRD model parallel-in-time

t
0 50 100

y(
t)

0%

100%
Iteration 7

S

I

R

D

20

Simulating 1000 steps of the SIRD model parallel-in-time

t
0 50 100

y(
t)

0%

100%
Iteration 8

S

I

R

D

20

Benefits of parallel-in-time simulation

101 102 103 104 105

Number of gridpoints

10−3

10−2

10−1

100

101

R
u

n
ti

m
e

[s
]

a. ODE solver runtime benchmark

Dopri5

Kvaerno5

EKS

ParaIEKS

∝ N

∝ log(N)

CUDA cores
(RTX 4090)

103 104

Number of CUDA cores

GTX 1060

TITAN RTX

RTX 2080 Ti

GTX 1080 Ti

A100

RTX 3090

RTX 4090

b. GPU comparison (N=10240)

Inference in ODE filters can be performed parallel-in-time at logarithmic cost.
⇒ Significant speedups for large ODE simulations on GPUs.

21

Benefits of parallel-in-time simulation

101 102 103 104 105

Number of gridpoints

10−3

10−2

10−1

100

101

R
u

n
ti

m
e

[s
]

a. ODE solver runtime benchmark

Dopri5

Kvaerno5

EKS

ParaIEKS

∝ N

∝ log(N)

CUDA cores
(RTX 4090)

103 104

Number of CUDA cores

GTX 1060

TITAN RTX

RTX 2080 Ti

GTX 1080 Ti

A100

RTX 3090

RTX 4090

b. GPU comparison (N=10240)

Inference in ODE filters can be performed parallel-in-time at logarithmic cost.
⇒ Significant speedups for large ODE simulations on GPUs.

21

Prior
y(t) is a

Gauss–Markov process

Likelihood & Data
z(t) = ẏ(t)−f(y(t), t)

z(ti)
!
= 0 ∀i=1 :N

Inference
Bayesian filtering
and smoothing

3) Probabilistic
exponential integrators
NB, Hennig, Tronarp

(NeurIPS’23)

1) Pick-and-mix
information operators for
probabilistic ODE solvers

NB, Tronarp, Hennig
(AISTATS’22)

ODE filters in millions of
dimensions (ICML’22)

Calibrated & adaptive
solvers (AISTATS’21)

2) Parallel-in-Time
Probabilistic Numerical

ODE Solvers
NB, Corenflos, Yaghoobi,
Tronarp, Hennig, Särkkä

(JMLR’24)

+ +

Parameter Inference
ẏ(t) = fθ(y(t), t)
Find p(θ | y(t1:N))

Fenrir: Physics-enhanced
regression (ICML’22)

Diffusion tempering (ICML’24)

SoftwareProbNumDiffEq.jl (JOSS’24)

22

Stiff ordinary differential equations

ẏ1(t) = 20y2(t)− 0.5 sin(y1(t))
ẏ2(t) = −20y2(t)

y1(0) = 0
y2(0) = 1

y₁
(t

)

0

1

Accurate solution

t
0 3

y₂
(t

)

0

1

y₁
(t

)

0

1

ODE filter (explicit)

t
0 3

y₂
(t

)

0

1

y₁
(t

)

0

1

ODE filter (implicit)

t
0 3

y₂
(t

)

0

1

Stiff ODEs combine fast and slow dynamics⇒ challenging to simulate

23

Stiff ordinary differential equations

ẏ1(t) = 20y2(t)− 0.5 sin(y1(t))
ẏ2(t) = −20y2(t)

y1(0) = 0
y2(0) = 1

y₁
(t

)

0

1

Accurate solution

t
0 3

y₂
(t

)

0

1

y₁
(t

)

0

1

ODE filter (explicit)

t
0 3

y₂
(t

)

0

1

y₁
(t

)

0

1

ODE filter (implicit)

t
0 3

y₂
(t

)

0

1

Stiff ODEs combine fast and slow dynamics⇒ challenging to simulate

23

Stiff ordinary differential equations

ẏ1(t) = 20y2(t)− 0.5 sin(y1(t))
ẏ2(t) = −20y2(t)

y1(0) = 0
y2(0) = 1

y₁
(t

)

0

1

Accurate solution

t
0 3

y₂
(t

)

0

1

y₁
(t

)

0

1

ODE filter (explicit)

t
0 3

y₂
(t

)
0

1

y₁
(t

)

0

1

ODE filter (implicit)

t
0 3

y₂
(t

)

0

1

Stiff ODEs combine fast and slow dynamics⇒ challenging to simulate

23

Improving stability by adjusting the prior

[
ẏ1(t)
ẏ2(t)

]
=

[
0 20
0 −20

]
·
[
y1(t)
y2(t)

]

︸ ︷︷ ︸
L · y(t)

+

[
−0.5 sin(y1(t))

0

]

︸ ︷︷ ︸
N(y(t), t)

q-times integrated Wiener process:

dy(q)(t) = dW(t)

y₁
(t)

−10

−5

0

5

10

t
0 3

y₂
(t)

−10

−5

0

5

10

q-times integrated Ornstein–Uhlenbeck process:

dy(q)(t) = L · y(q)(t) dt+ dW(t)

24

Improving stability by adjusting the prior

[
ẏ1(t)
ẏ2(t)

]
=

[
0 20
0 −20

]
·
[
y1(t)
y2(t)

]

︸ ︷︷ ︸
L · y(t)

+

[
−0.5 sin(y1(t))

0

]

︸ ︷︷ ︸
N(y(t), t)

q-times integrated Wiener process:

dy(q)(t) = dW(t)

y₁
(t)

−10

−5

0

5

10

t
0 3

y₂
(t)

−10

−5

0

5

10

q-times integrated Ornstein–Uhlenbeck process:

dy(q)(t) = L · y(q)(t) dt+ dW(t)

24

Improving stability by adjusting the prior[
ẏ1(t)
ẏ2(t)

]
=

[
0 20
0 −20

]
·
[
y1(t)
y2(t)

]

︸ ︷︷ ︸
L · y(t)

+

[
−0.5 sin(y1(t))

0

]

︸ ︷︷ ︸
N(y(t), t)

q-times integrated Wiener process:

dy(q)(t) = dW(t)

y₁
(t)

−10

−5

0

5

10

t
0 3

y₂
(t)

−10

−5

0

5

10

q-times integrated Ornstein–Uhlenbeck process:

dy(q)(t) = L · y(q)(t) dt+ dW(t)

24

Improving stability by adjusting the prior[
ẏ1(t)
ẏ2(t)

]
=

[
0 20
0 −20

]
·
[
y1(t)
y2(t)

]
︸ ︷︷ ︸

L · y(t)

+

[
−0.5 sin(y1(t))

0

]
︸ ︷︷ ︸

N(y(t), t)

q-times integrated Wiener process:

dy(q)(t) = dW(t)

y₁
(t)

−10

−5

0

5

10

t
0 3

y₂
(t)

−10

−5

0

5

10

q-times integrated Ornstein–Uhlenbeck process:

dy(q)(t) = L · y(q)(t) dt+ dW(t)

24

Improving stability by adjusting the prior[
ẏ1(t)
ẏ2(t)

]
=

[
0 20
0 −20

]
·
[
y1(t)
y2(t)

]
︸ ︷︷ ︸

L · y(t)

+

[
−0.5 sin(y1(t))

0

]
︸ ︷︷ ︸

N(y(t), t)

q-times integrated Wiener process:

dy(q)(t) = dW(t)

y₁
(t)

−10

−5

0

5

10

t
0 3

y₂
(t)

−10

−5

0

5

10

q-times integrated Ornstein–Uhlenbeck process:

dy(q)(t) = L · y(q)(t) dt+ dW(t)

y₁
(t)

−10

−5

0

5

10

t
0 3

y₂
(t)

−10

−5

0

5

10

24

Improving stability by adjusting the prior[
ẏ1(t)
ẏ2(t)

]
=

[
0 20
0 −20

]
·
[
y1(t)
y2(t)

]
︸ ︷︷ ︸

L · y(t)

+

[
−0.5 sin(y1(t))

0

]
︸ ︷︷ ︸

N(y(t), t)

with
[
y1(0)
y2(0)

]
=

[
0
1

]

q-times integrated Wiener process:

dy(q)(t) = dW(t)

y₁
(t)

−1500

−1000

−500

0

t
0 3

y₂
(t)

0

500

1000

1500

q-times integrated Ornstein–Uhlenbeck process:

dy(q)(t) = L · y(q)(t) dt+ dW(t)

y₁
(t)

−40
−30
−20
−10

0

t
0 3

y₂
(t)

0.0

0.5

1.0

24

Improving stability by adjusting the prior[
ẏ1(t)
ẏ2(t)

]
=

[
0 20
0 −20

]
·
[
y1(t)
y2(t)

]
︸ ︷︷ ︸

L · y(t)

+

[
−0.5 sin(y1(t))

0

]
︸ ︷︷ ︸

N(y(t), t)

with
[
y1(0)
y2(0)

]
=

[
0
1

]

q-times integrated Wiener process:

dy(q)(t) = dW(t)

y₁
(t)

0

1

t
0 3

y₂
(t)

0

1

q-times integrated Ornstein–Uhlenbeck process:

dy(q)(t) = L · y(q)(t) dt+ dW(t)

y₁
(t)

0

1

t
0 3

y₂
(t)

0

1

24

Results on a stiff partial differential equation

Space
0 1

T
im

e

0

2
a. ODE solution

0.0

0.5

1.0

Step size
10-2 10-1 100

F
in

al
 e

rr
or

10-5

100

105
b. Work-precision diagram

Runtime [s]
10-1 100 101

EK0 & IWP(2)
EK1 & IWP(2)
EKL & IWP(2)
EKL & IOUP(2)
EK1 & IOUP(2) (RB)

Figure: Reaction-diffusion model.

Linear dynamics can be incorporated into the prior to stabilize ODE filters.
⇒ Accurate simulation of stiff ODEs (and PDEs) at larger step sizes.

25

Results on a stiff partial differential equation

Space
0 1

T
im

e

0

2
a. ODE solution

0.0

0.5

1.0

Step size
10-2 10-1 100

F
in

al
 e

rr
or

10-5

100

105
b. Work-precision diagram

Runtime [s]
10-1 100 101

EK0 & IWP(2)
EK1 & IWP(2)
EKL & IWP(2)
EKL & IOUP(2)
EK1 & IOUP(2) (RB)

Figure: Reaction-diffusion model.

Linear dynamics can be incorporated into the prior to stabilize ODE filters.
⇒ Accurate simulation of stiff ODEs (and PDEs) at larger step sizes.

25

Prior
y(t) is a

Gauss–Markov process

Likelihood & Data
z(t) = ẏ(t)−f(y(t), t)

z(ti)
!
= 0 ∀i=1 :N

Inference
Bayesian filtering
and smoothing

3) Probabilistic
exponential integrators
NB, Hennig, Tronarp

(NeurIPS’23)

1) Pick-and-mix
information operators for
probabilistic ODE solvers

NB, Tronarp, Hennig
(AISTATS’22)

ODE filters in millions of
dimensions (ICML’22)

Calibrated & adaptive
solvers (AISTATS’21)

2) Parallel-in-Time
Probabilistic Numerical

ODE Solvers
NB, Corenflos, Yaghoobi,
Tronarp, Hennig, Särkkä

(JMLR’24)

+ +

Parameter Inference
ẏ(t) = fθ(y(t), t)
Find p(θ | y(t1:N))

Fenrir: Physics-enhanced
regression (ICML’22)

Diffusion tempering (ICML’24)

SoftwareProbNumDiffEq.jl (JOSS’24)

26

A Flexible and Efficient Framework for
Probabilistic Numerical Simulation and Inference

Flexible
ODE filters consist of adjustable building blocks:
▶ Prior: Include linear dynamics for stability
▶ Likelihood: Customize to include nonlinear

information or to match the given problem
▶ Inference: Use any suitable Bayesian filter /

smoother
Efficient
▶ More accurate solutions for ODEs with

conserved quantities and stiff ODEs
▶ Parallel-in-time inference on GPUs

Accessible
▶ Open-source package: ProbNumDiffEq.jl Thank you all!

27

A Flexible and Efficient Framework for
Probabilistic Numerical Simulation and Inference

Flexible
ODE filters consist of adjustable building blocks:
▶ Prior: Include linear dynamics for stability
▶ Likelihood: Customize to include nonlinear

information or to match the given problem
▶ Inference: Use any suitable Bayesian filter /

smoother

Efficient
▶ More accurate solutions for ODEs with

conserved quantities and stiff ODEs
▶ Parallel-in-time inference on GPUs

Accessible
▶ Open-source package: ProbNumDiffEq.jl Thank you all!

27

A Flexible and Efficient Framework for
Probabilistic Numerical Simulation and Inference

Flexible
ODE filters consist of adjustable building blocks:
▶ Prior: Include linear dynamics for stability
▶ Likelihood: Customize to include nonlinear

information or to match the given problem
▶ Inference: Use any suitable Bayesian filter /

smoother
Efficient
▶ More accurate solutions for ODEs with

conserved quantities and stiff ODEs
▶ Parallel-in-time inference on GPUs

Accessible
▶ Open-source package: ProbNumDiffEq.jl Thank you all!

27

A Flexible and Efficient Framework for
Probabilistic Numerical Simulation and Inference

Flexible
ODE filters consist of adjustable building blocks:
▶ Prior: Include linear dynamics for stability
▶ Likelihood: Customize to include nonlinear

information or to match the given problem
▶ Inference: Use any suitable Bayesian filter /

smoother
Efficient
▶ More accurate solutions for ODEs with

conserved quantities and stiff ODEs
▶ Parallel-in-time inference on GPUs

Accessible
▶ Open-source package: ProbNumDiffEq.jl

Thank you all!

27

A Flexible and Efficient Framework for
Probabilistic Numerical Simulation and Inference

Flexible
ODE filters consist of adjustable building blocks:
▶ Prior: Include linear dynamics for stability
▶ Likelihood: Customize to include nonlinear

information or to match the given problem
▶ Inference: Use any suitable Bayesian filter /

smoother
Efficient
▶ More accurate solutions for ODEs with

conserved quantities and stiff ODEs
▶ Parallel-in-time inference on GPUs

Accessible
▶ Open-source package: ProbNumDiffEq.jl Thank you all!

27

