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The COVID-19 pandemic — A real-world dynamical system
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SIRD — A simple model for infectious diseases I
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The SIRD model as an ordinary differential equation I
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Numerical simulation of the SIRD model I
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How do we simulate
dynamical systems?



Numerical simulation of the SIRD model
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How do we simulate
dynamical systems?

How accurate is the
simulation?

Can we trust it?



How to simulate ordinary differential equations



Ordinary Differential Equations and traditional simulators Ui}
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Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

j/(t):f(y(t)at)v y(O):yO

with t € [0, T], vector field f : RY x R — RY and initial value yo € RY. Goal: “Find y".
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Ordinary Differential Equations and traditional simulators
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Ordinary Differential Equations and traditional simulators

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field
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A simple numerical ODE solver: “Forward Euler

Jt+h) =3(t) + hf(F(0), ).

The simulation ¥ is only an estimate of y.
The error depends on the solver and step size.

Traditional simulators do not quantify their
estimation error.
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Probabilistic numerical ODE solvers

or How to treat ODEs as the state estimation problem that they really are

p(1(1) | 1(0) = yo, {3(t) = F(1(t), )}

with vector field f : RY x R — RY, initial value yp, and time discretization {t,}V_,.
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Likelihood & Data
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Building blocks of probabilistic numerical ODE solvers

Inference

Bayesian filtering
and smoothing
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ODE filtering as a flexible and efficient framwork for
simulation and inference
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y(t)is a
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The ODE is often not the full story
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Conserved quantities are not actually conserved in the simulation.



Including additional information into the likelihood model VNS

Ordinary Differential Equation Likelihood Model
encode as zZ(t) = y(t) — f(y(1), 1)
Z2(t) =0 Vi=T1:N
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Including additional information into the likelihood model VNS

Ordinary Differential Equation Likelihood Model
with conserved quantity encode as A(t) = { y(t) — f(y(1), 1) }
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ODE simulation with conservation laws
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Before incorporating the conservation law.
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Conserved quantities stabilize long-term simulations

Simulation of the Henon—Heiles system which models a star moving around a galactic center.

Fine-grained simulation Coarse simulation Coarse simulation with
conservation of energy



Conserved quantities stabilize long-term simulations

Simulation of the Henon—Heiles system which models a star moving around a galactic center.

Fine-grained simulation Coarse simulation Coarse simulation with
conservation of energy

ODE filters can easily include additional information by adjusting their likelihood model/.
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Another step-by-step simulation of the SIRD model
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Another step-by-step simulation of the SIRD model UNIVERSITX
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Another step-by-step simulation of the SIRD model
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Another step-by-step simulation of the SIRD model
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Another step-by-step simulation of the SIRD model
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Another step-by-step simulation of the SIRD model
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Another step-by-step simulation of the SIRD model UNIVERSITA
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Kalman smoothing for linear Gaussian models can be done in parallel time (O(log N)).
[Yaghoobi et al., 2023]:

lterated extended Kalman smoothing for nonlinear models in parallel time (O(k log N)).

Algorithm
Initial trajectory p(y(tin))
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(i) Linearize the model globally along the trajectory.
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[Sarkka and Garcia-Fernandez, 2021]:
Kalman smoothing for linear Gaussian models can be done in parallel time (O(log N)).
[Yaghoobi et al., 2023]:

lterated extended Kalman smoothing for nonlinear models in parallel time (O(k log N)).

Algorithm

(i) Run the time-parallel Kalman smoother on the linearized model.
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[Sarkka and Garcia-Fernandez, 2021]:
Kalman smoothing for linear Gaussian models can be done in parallel time (O(log N)).
[Yaghoobi et al., 2023]:

lterated extended Kalman smoothing for nonlinear models in parallel time (O(k log N)).

Algorithm Time-parallel Iterated Extended Kalman Smoother
1 Initial trajectory p(y(ty.n))
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s (i) Linearize the model globally along the trajectory.
4 (i) Run the time-parallel Kalman smoother on the linearized model.
s_end while




From time-parallel Bayesian filters to parallel-in-time ODE solvers UM &

[Sarkka and Garcia-Fernandez, 2021]:
Kalman smoothing for linear Gaussian models can be done in parallel time (O(log N)).
[Yaghoobi et al., 2023]:

lterated extended Kalman smoothing for nonlinear models in parallel time (O(k log N)).

Algorithm Time-parallel Iterated Extended Kalman Smoother
1 Initial trajectory p(y(ty.n))
» while not converged do
s (i) Linearize the model globally along the trajectory.
4 (i) Run the time-parallel Kalman smoother on the linearized model.
s_end while

[Bosch et al., 2024]:

Parallel-in-time probabilistic numerical ODE solvers in O(k log N) time.
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Benefits of parallel-in-time simulation

Runtime [s]

10-3

a. ODE solver runtime benchmark

b. GPU comparison (N=10240)
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Benefits of parallel-in-time simulation

a. ODE solver runtime benchmark

b. GPU comparison (N=10240)

~#A— Dopris
—V— Kvaernos
—@— EKS
—- ParalEKS
x N
o log(N)

# CUDA cores
(RTX 4090)

Runtime [s]

—RTX 3090

10" 10%
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Number of gridpoints

10* 100
Number of CUDA cores

Inference in ODE filters can be performed parallel-in-time at logarithmic cost.

= Significant speedups for large ODE simulations on GPUs.
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y(t)is a
Gauss—Markov process

3) Probabilistic
exponential integrators
NB, Hennig, Tronarp
(NeurlPS'23)
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Stiff ordinary differential equations

EBERHARD KARLS

UNI\’ERSIT'
UBINGEN
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Accurate solution ODE filter (explicit) ODE filter (implicit)
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Stiff ODEs combine fast and slow dynamics = challenging to simulate
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g-times integrated Wiener process:
dy@(t) = dw(t)

24



EBERHARD KARLS

Improving stability by adjusting the prior TOBINGER

g-times integrated Wiener process: g-times integrated Ornstein—-Uhlenbeck process:

dy@(t) = dw(t) Ay (t) = [L - y@(tylat + awr)
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Improving stability by adjusting the prior CTOBINGER
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Improving stability by adjusting the prior CTOBINGER
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Improving stability by adjusting the prior TOBINGER

[y}(t)} _ [0 20 } . I:}/q(l‘):| N [—O.Ssin(}ﬁ(t))}
Ya(1) 0 =20] |y2(t) 0
L-y(t) Ny (1), 1)
g-times integrated Wiener process: g-times integrated Ornstein—-Uhlenbeck process:
dy@(t) = aw(t) dyO(1) = Ly (0)|ar + aw(t)
10 10
P 5 /
\E 0 ﬁ‘_ ___________ 8‘_ 0 .&.;E/- -------------
-5 A = -5
k 8
5 5 = -
g o= S —————
-5 = -5 4
-10 10
0 3 0 3

24



EBERHARD KARLS

Improving stability by adjusting the prior CTOBINGER
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Improving stability by adjusting the prior
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Results on a stiff partial differential equation

Time

a. ODE solution

Final error

b. Work-precision diagram
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Figure: Reaction-diffusion model.
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Results on a stiff partial differential equation

a. ODE solution 0 b. Work-precision diagram
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Figure: Reaction-diffusion model.

Linear dynamics can be incorporated into the prior to stabilize ODE filters.
= Accurate simulation of stiff ODEs (and PDESs) at larger step sizes.
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Likelihood & Data Inference

Prior
y(t)is a () =y (D)) - Bayesian filtering
Gauss—Markov process Z(t) =0 Vi=T:N and smoothing
3) Probabilistic 1) Pick-and-mix 2) Parallel-in-Time
exponential integrators information operators for Probabilistic Numerical
NB, Hennig, Tronarp probabilistic ODE solvers ODE Solvers
(NeurIPS'23) NB, Tronarp, Hennig NB, Corenflos, Yaghoobi,
(AISTATS22) Tronarp, Hennig, Sarkka
(JMLR"24)
Calibrated & adaptive
solvers (AISTATS'21)
Fenrir: Physics-enhanced ODE filters in millions of
Parameter Inference | regression (ICML'22) dimensions (ICML22)

y(t) = fo(y(t),t)  Diffusion tempering (ICML'24)

(61 y(tw)) ProbNumDiffEq.jl (JOSS24) ~ Software
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» Prior: Include linear dynamics for stability

» Likelihood: Customize to include nonlinear
information or to match the given problem
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conserved quantities and stiff ODEs
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Accessible
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Thank you“all!
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