A FLEXIBLE AND EFFICIENT FRAMEWORK FOR
PROBABILISTIC NUMERICAL SIMULATION AND
INFERENCE

Nathanael Bosch

26. February 2025

EBERHARD KARLS

UNIVERSITAT
TUBINGEN

Imprs-is

C some of the presented work is supported
by the European Research Council.

The COVID-19 pandemic — A real-world dynamical system

Active Cases
(Number of Infected People)

6M
o
5]
°
@
5
>

c 4M
o
3
@
2
>
g

§ 2M
S
]
g
°

0

N e v > >
v v U v v
® » ® » ®
=9= Currently Infected

https://worldometers.info/coronavirus/country/germany/

https://worldometers.info/coronavirus/country/germany/

&9
o

SIRD — A simple model for infectious diseases I

Recovered (R)

. BSI
Susceptible (S) Infected (1)

ol
Deceased (D)

&9
o

The SIRD model as an ordinary differential equation I

EBERHARD KARLS

Numerical simulation of the SIRD model I

100%

0% -

time

Numerical simulation of the SIRD model

100%

0% -

time

EBERHARD KARLS

UNI\’ERSIT'

UBINGEN

How do we simulate
dynamical systems?

Numerical simulation of the SIRD model

Ur\‘ff‘\‘/E‘fe%lTAT P

BINGEN ;

100%

0% -

time

How do we simulate
dynamical systems?

How accurate is the
simulation?

Can we trust it?

How to simulate ordinary differential equations

Ordinary Differential Equations and traditional simulators Ui}

TUBINGEN
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

j/(t):f(y(t)at)v y(O):yO

with t € [0, T], vector field f : RY x R — RY and initial value yo € RY. Goal: “Find y".

100%

0%

0 50 100

Ordinary Differential Equations and traditional simulators

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

y(t) - f(y(t)a t)? Y(O) = Jo.

with t € [0, T], vector field f : RY x R — RY and initial value yo € RY. Goal: “Find y".

A simple numerical ODE solver: "Forward Euler” 100%

Jt+h) =3(t) + hf(F(0),).

0%

100

Ordinary Differential Equations and traditional simulators

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

y(t) - f(y(t)a t)? Y(O) = Jo.

with t € [0, T], vector field f : RY x R — RY and initial value yo € RY. Goal: “Find y".

A simple numerical ODE solver: "Forward Euler” 100%

Jt+h) =3(t) + hf(F(0),).

0%

100

Ordinary Differential Equations and traditional simulators

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

y(t) - f(y(t)a t)? Y(O) = Jo.

with t € [0, T], vector field f : RY x R — RY and initial value yo € RY. Goal: “Find y".

A simple numerical ODE solver: “Forward Euler”

Jt+h) =3(t) + hf(F(0),).

100% =gy —

0% il

Ordinary Differential Equations and traditional simulators

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

y(t) - f(y(t)a t)? y(O) = Jo.

with t € [0, T], vector field f : RY x R — RY and initial value yo € RY. Goal: “Find y".

A simple numerical ODE solver: “Forward Euler” 100%

Jt+h) =3(t) + hf(F(0),).

A
0% -

100

Ordinary Differential Equations and traditional simulators

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

y(t) - f(y(t)a t)? y(O) = Jo.

with t € [0, T], vector field f : RY x R — RY and initial value yo € RY. Goal: “Find y".

A simple numerical ODE solver: “Forward Euler” 100%

Jt+h) =3(t) + hf(F(0),).

0%

100

Ordinary Differential Equations and traditional simulators

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

y(t) - f(y(t)a t)? y(O) = Jo.

with t € [0, T], vector field f : RY x R — RY and initial value yo € RY. Goal: “Find y".

A simple numerical ODE solver: “Forward Euler” 100%

Jt+h) =3(t) + hf(F(0),).

0% —

100

Ordinary Differential Equations and traditional simulators

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

y(t) - f(y(t)a t)? y(O) = Jo.

with t € [0, T], vector field f : RY x R — RY and initial value yo € RY. Goal: “Find y".

A simple numerical ODE solver: “Forward Euler”

Jt+h) =3(t) + hf(F(0),).

100%

0% _‘Z!L

100
t

Ordinary Differential Equations and traditional simulators

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

y(t) - f(y(t)a t)? y(O) = Jo.

with t € [0, T], vector field f : RY x R — RY, and initial value yo € RY. Goal: “Find y

A simple numerical ODE solver: “Forward Euler” 100%

Jt+h) =3(t) + hf(F(0),).

0%

100

Ordinary Differential Equations and traditional simulators

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

y(t) - f(y(t)a t)? y(O) = Jo.

with t € [0, T], vector field f : RY x R — RY and initial value yo € RY. Goal: “Find y".

A simple numerical ODE solver: “Forward Euler” 100%

Jt+h) =3(t) + hf(F(0),).

0%

100

Ordinary Differential Equations and traditional simulators

UNIV
TUBINGEN

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

j/(t):f(y(t)at)v y(O):yO

with t € [0, T], vector field f : RY x R — RY and initial value yo € RY. Goal: “Find y".

A simple numerical ODE solver: “Forward Euler”

Jt+h) =3(t) + hf(F(0),).

100%

y(t)

0%

100
t

Ordinary Differential Equations and traditional simulators

UNIV
TUBINGEN

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

j/(t):f(y(t)at)v y(O):yO

with t € [0, T], vector field f : RY x R — RY and initial value yo € RY. Goal: “Find y".

A simple numerical ODE solver: “Forward Euler”

Jt+h) =3(t) + hf(F(0),).

100%

y(t)

0%

100
t

Ordinary Differential Equations and traditional simulators

UNIV
TUBINGEN

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

j/(t):f(y(t)at)v y(O):yO

with t € [0, T], vector field f : RY x R — RY and initial value yo € RY. Goal: “Find y".

A simple numerical ODE solver: “Forward Euler”

Jt+h) =3(t) + hf(F(0),).

100%

y(t)

0%

100
t

Ordinary Differential Equations and traditional simulators

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

y(t) = F(y(1),1),

with t € [0, T], vector field f : RY x R — RY and initial value yo € RY. Goal: “Find y".

A simple numerical ODE solver: “Forward Euler”

Jt+h) =3(t) + hf(F(0),).

100%

y(0) = yo.

0%

RMSE: 10.95%

100

Ordinary Differential Equations and traditional simulators

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

y(t) = F(y(1),1),

A simple numerical ODE solver: “Forward Euler”

Jt+h) =3(t) + hf(F(0),).

y(t)

100%

y(0) = yo.

with t € [0, T], vector field f : RY x R — RY and initial value yo € RY. Goal: “Find y".

0%

RMSE: 5.25%

100

Ordinary Differential Equations and traditional simulators

UNIV
TUBINGEN

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

j/(t):f(y(t)at)v y(O):yO

with t € [0, T], vector field f : RY x R — RY and initial value yo € RY. Goal: “Find y".

A simple numerical ODE solver: “Forward Euler”

Jt+h) =3(t) + hf(F(0),).

100%

RMSE: 1.01%

y(t)

0%

100
t

Ordinary Differential Equations and traditional simulators

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

y(t) = F(y(1),1),

A simple numerical ODE solver: “Forward Euler”

Jt+h) =3(t) + hf(F(0),).

y(t)

100%

y(0) = yo.

with t € [0, T], vector field f : RY x R — RY and initial value yo € RY. Goal: “Find y".

0%

RMSE: 0.10%

100

Ordinary Differential Equations and traditional simulators

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

y(t) = F(y(1),1),

with t € [0, T], vector field f : RY x R — RY and initial value yo € RY. Goal: “Find y".

A simple numerical ODE solver: “Forward Euler”

Jt+h) =3(t) + hf(F(0),).

The simulation ¥ is only an estimate of y.
The error depends on the solver and step size.

100%

y(0) = yo.

0%

RMSE: 0.10%

100

Ordinary Differential Equations and traditional simulators

Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

y(t) = F(y(1),1),

with t € [0, T], vector field f : RY x R — RY and initial value yo € RY. Goal: “Find y".

A simple numerical ODE solver: “Forward Euler

Jt+h) =3(t) + hf(F(0),).

The simulation ¥ is only an estimate of y.
The error depends on the solver and step size.

Traditional simulators do not quantify their
estimation error.

100%

y(0) = yo.

0%

RMSE: 0.10%

100

Probabilistic numerical ODE solvers

or How to treat ODEs as the state estimation problem that they really are

p(1(1) | 1(0) = yo, {3(t) = F(1(t),)}

with vector field f : RY x R — RY, initial value yp, and time discretization {t,}V_,.

Probabilistic numerical ODE solvers

or How to treat ODEs as the state estimation problem that they really are

p(1(1) | 1(0) = yo, {3(t) = F(1(t),)}

with vector field f : RY x R — RY, initial value yp, and time discretization {t,}V_,.

Prior

Probabilistic numerical ODE solvers

or How to treat ODEs as the state estimation problem that they really are

p(1(1) | 1(0) = yo, {3(t) = F(1(t),)}

with vector field f : RY x R — RY, initial value yp, and time discretization {t,}V_,.

+

Probabilistic numerical ODE solvers

or How to treat ODEs as the state estimation problem that they really are

p(1(1) | 1(0) = yo, {3(t) = F(1(t),)}

with vector field f : RY x R — RY, initial value yp, and time discretization {t,}V_,.

Prior Likelihood & Data Inference

+ +

@

Building blocks of probabilistic numerical ODE solvers I

Prior

Building blocks of probabilistic numerical ODE solvers

Prior

y(t) ~GPisa
Gauss—Markov process

5000

-5000

100

EBERHARD KARLS
UNIVERSITA
TUBINGEN

Building blocks of probabilistic numerical ODE solvers

EBERHARD KARLS
UNIVERSITA
TUBINGEN

Likelihood & Data
z(t) = y(O)—1f(y(1),1)
Z2(t) =0 Vi=T:N

5000 50 T
/))"
7
= |l
- s W
CO—&/ "—0—<"J---ooo
> N\ ' vl |
I\
N\
1 W
I
-5000 -50
0 100 0 100

Building blocks of probabilistic numerical ODE solvers

Inference

Bayesian filtering
and smoothing

5000 50 7
i Algorithm Extended Kalman Filter
/ b 1 Initial distribution p(y(to))
, z2 |l » fori=1:Ndo
= ol 2 o W Ay] oAl s | Predict:
= N] 0T I
= % o | prly(tiz)) = po(y(8)
> \i Linearize fat Ey, [y(t)]
A s | Update:
5000 0 L1 po(y (1), 2(t) = pr(y(t))
0 100 0 100 ¢ end for

UNIVERSITAT &

Building blocks of probabilistic numerical ODE solvers TONNGEN &

Inference

Bayesian filtering
and smoothing

100% - - 7 0.003
] I Algorithm Extended Kalman Filter

/1/) f 1 Initial distribution p(y(to))
J = Al 2 fori=1:Ndo

Predict:

pr(y(ti=1)) — pp(y(t:))
Linearize f at Ep, [y(t;)]

Update:
Pp(y (1), 2(t)) = pr(y(t))

s end for

3
4
5
6

0% et — -0.003

Building blocks of probabilistic numerical ODE solvers

100%

0% -

100

0.003

ko

hn 0

=
-0.003

[

‘\%’o\o . o‘\‘ o

o

100

Inference

Bayesian filtering
and smoothing

Algorithm Extended Kalman Filter
1 Initial distribution p(y(to))
; fori=1:Ndo
Predict:
pr(y(ti-1)) = pp(y(ti))
Linearize f at Ep, [y(t;)]
Update:
Po(¥(ti), 2(t) = pr(¥(t)
s end for

3

4

6

EBERHARD KARLS

UNI\’ERSIT'

Building blocks of probabilistic numerical ODE solvers OBINGEN

Inference

Bayesian filtering
and smoothing

Algorithm Extended Kalman Filter
// 1 Initial distribution p(y(to))

/ = fori=1:Ndo

Predict:

pr(y(ti=1)) — pp(y(t:))
Linearize f at Ep, [y(t;)]

Update:
pp(y(1)), 2(ti) = pr(y(ti))

end for

100% 7 0.003 /

2

3

/ f | 4
H R ‘ 5
\ :

7

8

0% - = ‘ -0.003
0 100 0 100

Building blocks of probabilistic numerical ODE solvers

100%

0% -

100

0.003

>
T 0
=

-0.003

‘oo o ol

100

Inference

Bayesian filtering
and smoothing

Algorithm Extended Kalman Filter
Initial distribution p(y(to))
fori=1:Ndo
Predict:

pr(y(ti=1)) — pp(y(t:))
Linearize f at Ep, [y(t;)]
Update:

Po(y(t), 2(t) = ps(y (1))
end for

1
2
3
4
5
6
7
8

U!\[!I[\’ERSITAT @

Building blocks of probabilistic numerical ODE solvers NOr &

Inference

Bayesian filtering
and smoothing

100% 0.003

j’ Algorithm Extended Kalman Filter
1 Initial distribution p(y(to))

; fori=1:Ndo

Predict:

pr(y(ti=1)) — pp(y(t:))
Linearize f at Ep, [y(t;)]

Update:
pp(y(1)), 2(ti) = pr(y(ti))

end for

3

4

5

6

- 7
0% - -0.003

8

EBERHARD KARLS

UNI\’ERSIT'

Building blocks of probabilistic numerical ODE solvers OBINGEN

Inference

Bayesian filtering
and smoothing

100% 0.003
Algorithm Extended Kalman Filter

| 1 Initial distribution p(y(to))

| fori=1:Ndo

Predict:

pr(y(ti=1)) — pp(y(t:))
Linearize f at Ep, [y(t;)]
Update:

po(y(t)), (1) = pr(y(t))

end for

2
3
4
5
6
7
8

0% — -0.003

Ur\‘ff‘\‘/E‘fe%lTAT @

Building blocks of probabilistic numerical ODE solvers NOr &

Inference

Bayesian filtering
and smoothing

100% 0.003

Algorithm Extended Kalman Filter
1 Initial distribution p(y(to))
= , fori=1:Ndo
NAL 3% Predict:
pr(y(ti=1)) — pp(y(t:))
Linearize f at Ep, [y(t;)]
Update:

0% 0,003 A 7L (1), 2(t) = pe(y(t)
0 100 0 100 ¢ end for

2
3
4
5

6

Building blocks of probabilistic numerical ODE solvers

100%

0% -

100

0.003

Inference

Bayesian filtering
and smoothing

Algorithm Extended Kalman Filter
Initial distribution p(y(to))
fori=1:Ndo
Predict:

pr(y(ti=1)) — pp(y(t:))
Linearize f at Ep, [y(t;)]
Update:

Pp(Y(ti)), 2(t) = pr(y(t))
end for

1
2
3
4
5
6
7
8

EBERHARD KARLS

UNI\’ERSIT'

Building blocks of probabilistic numerical ODE solvers OBINGEN

Inference

Bayesian filtering
and smoothing

100% 0.003
Algorithm Extended Kalman Filter

1 Initial distribution p(y(to))
= » fori=1:Ndo
N 2 Predict:
pr(y(ti=1)) = pp(¥(t))
Linearize f at Ep, [y(t;)]
Update:
Po(¥(ti), 2(t) = pr(¥(t)

end for

2
3
4
5
6
7
8

0% -0.003

Building blocks of probabilistic numerical ODE solvers

100%

0% -

100

0.003

-0.003

Inference

Bayesian filtering
and smoothing

Algorithm Extended Kalman Filter
Initial distribution p(y(to))
fori=1:Ndo

Predict:

pr(y(ti=1)) — pp(y(t:))
Linearize f at Ep, [y(t;)]

Update:
Pp(Y(ti)), 2(t) = pr(y(t))

1
2
3
4
5
6
7
8

100 end for

ODE filtering as a flexible and efficient framwork for
simulation and inference

Prior

y(t)is a
Gauss—Markov process

3) Probabilistic
exponential integrators
NB, Hennig, Tronarp
(NeurlPS'23)

Likelihood & Data
z(t) = y(t)—f(y(1), 1)
2(t) =0 Vi=1:N

1) Pick-and-mix
information operators for
probabilistic ODE solvers

NB, Tronarp, Hennig
(AISTATS'22)

+

Inference

Bayesian filtering
and smoothing

2) Parallel-in-Time
Probabilistic Numerical
ODE Solvers
NB, Corenflos, Yaghoobi,
Tronarp, Hennig, Sarkka
(JMLR'24)

Likelihood & Data
z(t) = y(t)—f(y(1), 1)
Z(t) =0 Vi=1:N

1) Pick-and-mix
information operators for
probabilistic ODE solvers

NB, Tronarp, Hennig
(AISTATS'22)

The ODE is often not the full story

ODE:

100%

d

dt

[S,1,R, D](t) = F([S.1,R, D](t), 1),

== S

== R
== D

0%

50

100

[S,1,R, D](0) = [0.99,0.01,0,0]

The ODE is often not the full story NN

TUBINGEN

ODE: %[S,/,R,D](t) = f([S,],R,D](t),1), Initial value: [S,/,R, D](0) = [0.99,0.01,0,0]
Conserved quantity: TotalPopulation(t) := S(t) + I(t) + R(t) + D(t) = 1

100%

= S

== R
== D

0%

The ODE is often not the full story

ODE: %[S,/,R,D](t) = f([S,],R,D](t),1), Initial value: [S,/,R,D](0) = [0.99,0.01,0, 0]
Conserved quantity: TotalPopulation(t) := S(t) + I(t) + R(t) + D(t) = 1

100% 102%
N =
- S ks
g §_1oo% 1 = y
=R o N
- D S < -
o
'—
0% - 98% ‘
0 50 100 0 50 100

t t

Conserved quantities are not actually conserved in the simulation.

Including additional information into the likelihood model VNS

Ordinary Differential Equation Likelihood Model
encode as zZ(t) = y(t) — f(y(1), 1)
Z2(t) =0 Vi=T1:N

EBERHARD KARLS

Including additional information into the likelihood model TOBINGER

Ordinary Differential Equation T T
with ct?nserved quantity encode as 20 = 4O T, 0 7
y(t) = fy(t), 1) -

gy(t) = g(yo) Z(t) =0 Vi=1:N

Including additional information into the likelihood model VNS

Ordinary Differential Equation Likelihood Model
with conserved quantity encode as A(t) = { y(t) — f(y(1), 1) }
(1) = f(y(t), 1) - 9(y(t)) — g(¥o)

g(y(t)) = 9(x) Z2(t) =0 Vi=1:N

ODE simulation with conservation laws

SIRD initial value problem: g[6‘,/,)L?,D](t) =f([S,/,R,D](1),1), [S,/,R,D](0) =[0.99,0.01,0,0]

dt
Conserved quantity: P(t) := S(t) + I(t) + R(t) + D(t) =1
100% 102%
== | ‘E R
€>, - R :8}100"/0-' “0\0\0;0.000,0.0090000000
S
0% - 98% :
0 50 100 0 50 100
t t

Before incorporating the conservation law.

EBERHARD

ODE simulation with conservation laws VbR

SIRD initial value problem: g[6‘,/,)L?,D](t) =f([S,/,R,D](1),1), [S,/,R,D](0) =[0.99,0.01,0,0]

dt
Conserved quantity: P(t) := S(t) + I(t) + R(t) + D(t) =1
100% 102%
== | E
=) B :8}100% coce. . . .o
S
0% 98% T
0 50 100 0 50 100
t t

After incorporating the conservation law.

Conserved quantities stabilize long-term simulations

Simulation of the Henon—Heiles system which models a star moving around a galactic center.

Fine-grained simulation Coarse simulation Coarse simulation with
conservation of energy

Conserved quantities stabilize long-term simulations

Simulation of the Henon—Heiles system which models a star moving around a galactic center.

Fine-grained simulation Coarse simulation Coarse simulation with
conservation of energy

ODE filters can easily include additional information by adjusting their likelihood model/.

Inference

Bayesian filtering
and smoothing

2) Parallel-in-Time
Probabilistic Numerical
ODE Solvers
NB, Corenflos, Yaghoobi,
Tronarp, Hennig, Sarkka
(JMLR"24)

100%

0%

EBERHARD KA

Another step-by-step simulation of the SIRD model L

Step 0

oS *\ L INL A

- | RN ey

* R \”\,—”/

* D Pt __

geiios I

50 100
t

)

i

Another step-by-step simulation of the SIRD model

100%

0% -

Step 1

UNIVERSITAT
TUBINGEN

- S
- |
@ R
@ D

)

i

Another step-by-step simulation of the SIRD model

100%

0% -

UNIVERSITAT
TUBINGEN

- S
- |
@ R
@ D

Step 2
N
S
N
S
S
~ -
Ss -
3 -
o
~\~ —”
o
s
o .
P
o -
- -
A -
4
4
p
y
~
A
>
;
50

)

i

Another step-by-step simulation of the SIRD model

100%

0% -

UNI\’ERSITA

TUBINGEN
Step 3
-s| N LA
< | . /-
@ R \\‘/_.
@ D WA ;
------------------ - /
; A
% 100
t

Another step-by-step simulation of the SIRD model

100%

0% -

UNI\’ERS]TA
TUBINGEN

Step 4

+ S \\ ------------

o I

* R ~\~\ —’ -

% D e
‘ S~
- 100
t

Another step-by-step simulation of the SIRD model

100%

0% -

UNI\’ERSITA

TUBINGEN
Step 5
+ S \\\ ____________
‘I s\\\ —_—————
@ R S <
+D T
‘ - e
- 100
t

Another step-by-step simulation of the SIRD model

EBERHARD KARLS

100%

0% -

UNIVERSITA

TUBINGEN
Step 6

@ S Y L A

- | NN ST

@ R VS

@ D X PG R W
50 100
t

Another step-by-step simulation of the SIRD model

EBERHARD KARLS

100%

0% -

Step 7

UNIVERSITA

TUBINGEN

- S
- |
% R
% D

Another step-by-step simulation of the SIRD model

EBERHARD KARLS

100%

0% -

UNIVERSITA

TUBINGEN
Step 8
N ST
- | ——‘————
@ R S
% D g \\N
R ' . TN -
. " 100
t

Another step-by-step simulation of the SIRD model UNIVERSITX

100%

0% -

TUBINGEN

Step 9

Ny e

- | ——‘————

@ R -

% D =

_ ° | \ TP

- 100
t

Another step-by-step simulation of the SIRD model

EBERHARD KARLS

100%

0% -

UNIVERSITA
TUBINGEN

Step 10

-s| N e

- | = -

- R

@ D

S~ Saans ; e

50 100
t

Another step-by-step simulation of the SIRD model

100%

0% -

Another step-by-step simulation of the SIRD model

EBERHARD KARLS

100%

0% -

UNIVERSITA

TUBINGEN
Step 12
-s| N mmm==mczz
- |
< R
@ D
TS Sa=Si ; — -
50 100

Another step-by-step simulation of the SIRD model

EBERHARD KARLS

100%

0% -

UNIVERSITA

TUBINGEN
Step 13

-s| NN _mm====c-"

- |

- R

@ D

e e O O — T M e— .

50 100

Another step-by-step simulation of the SIRD model

EBERHARD KARLS

100%

0% -

UNIVERSITA

TUBINGEN
Step 14
-s| e mms=zzzoC
- |
- R
@ D
. - @ y o o a
50 100

Another step-by-step simulation of the SIRD model

EBERHARD KARLS

100%

0% -

UNIVERSITA

TUBINGEN
Step 15
* S i
< |
- R
D
. - @ y o o e
50 100

Another step-by-step simulation of the SIRD model

EBERHARD KARLS

100%

0% -

UNIVERSITA

TUBINGEN
Step 16
< S
< |
- R
D
. - @ y o o ad
50 100

Another step-by-step simulation of the SIRD model

EBERHARD KARLS

100%

0% -

UNIVERSITA

TUBINGEN
Step 17
* S
- |
< R
@ D
. - @ y o o ad
50 100

Another step-by-step simulation of the SIRD model

EBERHARD KARLS

100%

0% -

UNIVERSITA

TUBINGEN
Step 18
< S
< |
- R
D
. - @ y ‘o o e
50 100

Another step-by-step simulation of the SIRD model

EBERHARD KARLS

100%

0% -

UNIVERSITA

TUBINGEN
Step 19
< S
< |
- R
D
. - @ y o o e
50 100

Another step-by-step simulation of the SIRD model

EBERHARD KARLS

100%

0% -

UNIVERSITA

TUBINGEN
Step 20
< S
< |
- R
D
. - @ y o o ad
50 100

Another step-by-step simulation of the SIRD model

EBERHARD KARLS

100%

0% -

UNIVERSITA

Inference is sequential and scales O(N).

TUBINGEN
Step 20
® S
- |
< R
@ D
. 'S : o @ L 4
50 100

Another step-by-step simulation of the SIRD model UNIVERSITA

100%

0% -

TUBINGEN

Step 20

* S
< |
< R
< D

100

Inference is sequential and scales O(N). Can we do better?

EBERHARD KARLS

From time-parallel Bayesian filters to parallel-in-time ODE solvers — "NRGE

[Sarkka and Garcia-Fernandez, 2021]:

Kalman smoothing for linear Gaussian models can be done in parallel time (O(log N)).

From time-parallel Bayesian filters to parallel-in-time ODE solvers U

[Sarkka and Garcia-Fernandez, 2021]:
Kalman smoothing for linear Gaussian models can be done in parallel time (O(log N)).
[Yaghoobi et al., 2023]:

lterated extended Kalman smoothing for nonlinear models in parallel time (O(k log N)).

From time-parallel Bayesian filters to parallel-in-time ODE solvers U

[Sarkka and Garcia-Fernandez, 2021]:
Kalman smoothing for linear Gaussian models can be done in parallel time (O(log N)).
[Yaghoobi et al., 2023]:

lterated extended Kalman smoothing for nonlinear models in parallel time (O(k log N)).

Algorithm
Initial trajectory p(y(tin))

From time-parallel Bayesian filters to parallel-in-time ODE solvers UNiieisr &

[Sarkka and Garcia-Fernandez, 2021]:
Kalman smoothing for linear Gaussian models can be done in parallel time (O(log N)).
[Yaghoobi et al., 2023]:

lterated extended Kalman smoothing for nonlinear models in parallel time (O(k log N)).

Algorithm

(i) Linearize the model globally along the trajectory.

From time-parallel Bayesian filters to parallel-in-time ODE solvers UNiieisr &

[Sarkka and Garcia-Fernandez, 2021]:
Kalman smoothing for linear Gaussian models can be done in parallel time (O(log N)).
[Yaghoobi et al., 2023]:

lterated extended Kalman smoothing for nonlinear models in parallel time (O(k log N)).

Algorithm

(i) Run the time-parallel Kalman smoother on the linearized model.

EBERHARD KARLS

From time-parallel Bayesian filters to parallel-in-time ODE solvers "G

[Sarkka and Garcia-Fernandez, 2021]:
Kalman smoothing for linear Gaussian models can be done in parallel time (O(log N)).
[Yaghoobi et al., 2023]:

lterated extended Kalman smoothing for nonlinear models in parallel time (O(k log N)).

Algorithm Time-parallel Iterated Extended Kalman Smoother
1 Initial trajectory p(y(ty.n))
» while not converged do
s (i) Linearize the model globally along the trajectory.
4 (i) Run the time-parallel Kalman smoother on the linearized model.
s_end while

From time-parallel Bayesian filters to parallel-in-time ODE solvers UM &

[Sarkka and Garcia-Fernandez, 2021]:
Kalman smoothing for linear Gaussian models can be done in parallel time (O(log N)).
[Yaghoobi et al., 2023]:

lterated extended Kalman smoothing for nonlinear models in parallel time (O(k log N)).

Algorithm Time-parallel Iterated Extended Kalman Smoother
1 Initial trajectory p(y(ty.n))
» while not converged do
s (i) Linearize the model globally along the trajectory.
4 (i) Run the time-parallel Kalman smoother on the linearized model.
s_end while

[Bosch et al., 2024]:

Parallel-in-time probabilistic numerical ODE solvers in O(k log N) time.

%)

Simulating 1000 steps of the SIRD model parallel-in-time

100%

0%

UNI\’ERSITAT
TUBINGEN
Iteration 0
.
..
N
N
——— S et
~. -

e | . .-

\\ ’f’
—— R \\\ ”,

‘\4\~

- D ”f ~~~~-

/'

’¢' ----------------
L= --_-_._'_‘_-. ____________________
i el
%0 100
t

i

Simulating 1000 steps of the SIRD model parallel-in-time uIVERS T 6

TUBINGEN
lteration 1
100% mmm———
L
—_ L
\; —-——
-
0%
0

EBERHARD KARLS
UNIVERSITA
TUBINGEN

Simulating 1000 steps of the SIRD model parallel-in-time

lteration 2
100% -

0% -

UNIVERSITA
TUBINGEN

Simulating 1000 steps of the SIRD model parallel-in-time

lteration 3
100% -

0% -

UNIVERSITA
TUBINGEN

Simulating 1000 steps of the SIRD model parallel-in-time

lteration 4
100% -

0% -

Simulating 1000 steps of the SIRD model parallel-in-time

lteration 5
100% -

0% -

VERSITA

TUBINGEN

Simulating 1000 steps of the SIRD model parallel-in-time

100% T

0% -

/ERSITA
TUBINGEN
lteration 6
= S
m—
== R
== D
50

100

Simulating 1000 steps of the SIRD model parallel-in-time

100% T

0% -

/ERSITA
TUBINGEN
lteration 7
= S
m—
== R
== D
50

100

Simulating 1000 steps of the SIRD model parallel-in-time

100% T

0% -

/ERSITA
TUBINGEN
lteration 8
= S
m—
== R
== D
50

100

Benefits of parallel-in-time simulation

Runtime [s]

10-3

a. ODE solver runtime benchmark

b. GPU comparison (N=10240)

Doprib

KvaernoS

EKS

ParalEKS

x N

o log(N)
CUDA cores

(RTX 4090)

1V T Vg
e |

IS

10"

10% 10% 10*
Number of gridpoints

10* 100
Number of CUDA cores

UNIVERSITAT

TUBINGEN

Benefits of parallel-in-time simulation

a. ODE solver runtime benchmark

b. GPU comparison (N=10240)

~#A— Dopris
—V— Kvaernos
—@— EKS
—- ParalEKS
x N
o log(N)

CUDA cores
(RTX 4090)

Runtime [s]

—RTX 3090

10" 10%

10% 10* 10°
Number of gridpoints

10* 100
Number of CUDA cores

Inference in ODE filters can be performed parallel-in-time at logarithmic cost.

= Significant speedups for large ODE simulations on GPUs.

Prior

y(t)is a
Gauss—Markov process

3) Probabilistic
exponential integrators
NB, Hennig, Tronarp
(NeurlPS'23)

22

EBERHARD KARLS

Stiff ordinary differential equations Rt ived

y1(t) = 20y5(t) — 0.5sin(1 (1)) y1(0)
ya(t) = —20y(t) y2(0

~—
I
- O

Accurate solution

| —

ya(t)

ya(t)

23

EBERHARD KARLS

Stiff ordinary differential equations Rt ived

y1(t) = 20y5(t) — 0.5sin(1 (1)) y1(0)
ya(t) = —20y(t) y2(0

~—
I
- O

Accurate solution

| —

ya(t)

ya(t)

Stiff ODEs combine fast and slow dynamics = challenging to simulate

23

Stiff ordinary differential equations

EBERHARD KARLS

UNI\’ERSIT'
UBINGEN
(1) = 20y,(t) — 0.5sin(y1(t)) y(0) =0
j@(t) = —20}/2(0 yQ(O) =1
Accurate solution ODE filter (explicit) ODE filter (implicit)
1 4
E
0
1
g
o B
0

Stiff ODEs combine fast and slow dynamics = challenging to simulate

23

EBERHARD KARLS

Improving stability by adjusting the prior CTOBINGER

g-times integrated Wiener process:
dy@(t) = dw(t)

24

EBERHARD KARLS

Improving stability by adjusting the prior TOBINGER

g-times integrated Wiener process: g-times integrated Ornstein—-Uhlenbeck process:

dy@(t) = dw(t) Ay (t) = [L - y@(tylat + awr)

ya(0)
1
h
1

ya(t)

24

EBERHARD KARLS

Improving stability by adjusting the prior CTOBINGER

o) = bl b

—
(e}
(&3]
u,
>
—
=
—~
~—
~
[E—

g-times integrated Wiener process: g-times integrated Ornstein—-Uhlenbeck process:
dy@(t) = dw(t) Ay D (1) = (L yD(0)lar + aw(r)
10
51 =
:‘E 0 -ﬂé" AT el

24

EBERHARD KARLS

Improving stability by adjusting the prior CTOBINGER

o] = bl i

—
(e}
()]
u,
>
—
=
—~
~—
~
[E—

0
L-y(t) Ny (1), 1)
g-times integrated Wiener process: g-times integrated Ornstein—-Uhlenbeck process:
dy@(t) = dw(t) Ay D (1) = (L y@D(0)lar + aw(r)

24

EBERHARD KARLS

Improving stability by adjusting the prior TOBINGER

[y}(t)} _ [0 20 } . I:}/q(l‘):| N [—O.Ssin(}ﬁ(t))}
Ya(1) 0 =20] |y2(t) 0
L-y(t) Ny (1), 1)
g-times integrated Wiener process: g-times integrated Ornstein—-Uhlenbeck process:
dy@(t) = aw(t) dyO(1) = Ly (0)|ar + aw(t)
10 10
P 5 /
\E 0 ﬁ‘_ ___________ 8‘_ 0 .&.;E/- -------------
-5 A = -5
k 8
5 5 = -
g o= S —————
-5 = -5 4
-10 10
0 3 0 3

24

EBERHARD KARLS

Improving stability by adjusting the prior CTOBINGER

P o S A e

L-y(t) N(y(t), 1)
g-times integrated Wiener process: g-times integrated Ornstein—-Uhlenbeck process:
dy@(t) = dw(t) Ay D (1) = (L y@D(0)lar + aw(r)

-500 1
= -1000 -
-1500

1500 A
= 1000

24

Improving stability by adjusting the prior

EBERHARD KARLS

LIN{]}\’ERSITA

TUBINGEN
{yﬁ(t)] {0 20] | [w(r)] . {—O.Ssinw))} it [y1(0)} _ m
Ya(t) 0 —=20] [ya(1) 0 ¥2(0) 1
L-y(t) N(y(t), 1)
g-times integrated Wiener process: g-times integrated Ornstein—-Uhlenbeck process:
dy@(t) = dw(r) Ay D (1) =L y@(t)lar + aw(t)
A

¥a(t)

24

Results on a stiff partial differential equation

Time

a. ODE solution

Final error

b. Work-precision diagram

10°
o o] [oe®
109 ® ®
o - % %.Q
1081 © @ A
i & s ;-I-
+
102 107 10° 10" 10° 10!
Step size Runtime [s]

Figure: Reaction-diffusion model.

d 8 0 0 ¢

EK0 & TWP(2)
EK1 & TWP(2)

EKL & IWP(2)

EKL & IOUP(2)

EK1 & IOUP(2) (RB)

25

Results on a stiff partial differential equation

a. ODE solution 0 b. Work-precision diagram

5

10 e o|Tee® o EKO & IWP(2)

. ‘g 100 | = e EKI & IWP(2)
'E 1; ° - + ".;\‘* o EKL & IWP(2)
.510-5. ° g i o # EKL & IOUP(2)

- "8 | + EK1&I0UPQ) RB)
102 10" 100 107 10° 10'
Step size Runtime [s]

Figure: Reaction-diffusion model.

Linear dynamics can be incorporated into the prior to stabilize ODE filters.
= Accurate simulation of stiff ODEs (and PDESs) at larger step sizes.

25

Likelihood & Data Inference

Prior
y(t)is a () =y (D)) - Bayesian filtering
Gauss—Markov process Z(t) =0 Vi=T:N and smoothing
3) Probabilistic 1) Pick-and-mix 2) Parallel-in-Time
exponential integrators information operators for Probabilistic Numerical
NB, Hennig, Tronarp probabilistic ODE solvers ODE Solvers
(NeurIPS'23) NB, Tronarp, Hennig NB, Corenflos, Yaghoobi,
(AISTATS22) Tronarp, Hennig, Sarkka
(JMLR"24)
Calibrated & adaptive
solvers (AISTATS'21)
Fenrir: Physics-enhanced ODE filters in millions of
Parameter Inference | regression (ICML'22) dimensions (ICML22)

y(t) = fo(y(t),t) Diffusion tempering (ICML'24)

(61 y(tw)) ProbNumDiffEq.jl (JOSS24) ~ Software

A FLEXIBLE AND EFFICIENT FRAMEWORK FOR
PROBABILISTIC NUMERICAL SIMULATION AND INFERENCE

27

A FLEXIBLE AND EFFICIENT FRAMEWORK FOR
PROBABILISTIC NUMERICAL SIMULATION AND INFERENCE

Flexible
ODE filters consist of adjustable building blocks:

» Prior: Include linear dynamics for stability

» Likelihood: Customize to include nonlinear
information or to match the given problem

» Inference: Use any suitable Bayesian filter /
smoother

A FLEXIBLE AND EFFICIENT FRAMEWORK FOR
PROBABILISTIC NUMERICAL SIMULATION AND INFERENCE

Flexible
ODE filters consist of adjustable building blocks:

» Prior: Include linear dynamics for stability

» Likelihood: Customize to include nonlinear
information or to match the given problem

» Inference: Use any suitable Bayesian filter /
smoother

Efficient

» More accurate solutions for ODEs with
conserved quantities and stiff ODEs

» Parallel-in-time inference on GPUs

A FLEXIBLE AND EFFICIENT FRAMEWORK FOR
PROBABILISTIC NUMERICAL SIMULATION AND INFERENCE

Flexible
ODE filters consist of adjustable building blocks:

» Prior: Include linear dynamics for stability

» Likelihood: Customize to include nonlinear
information or to match the given problem

» Inference: Use any suitable Bayesian filter /
smoother

Efficient

» More accurate solutions for ODEs with
conserved quantities and stiff ODEs

» Parallel-in-time inference on GPUs
Accessible
» Open-source package: ProbNumDiffEq.jl

A FLEXIBLE AND EFFICIENT FRAMEWORK FOR
PROBABILISTIC NUMERICAL SIMULATION AND INFERENCE

Flexible
ODE filters consist of adjustable building blocks:

» Prior: Include linear dynamics for stability

» Likelihood: Customize to include nonlinear
information or to match the given problem

» Inference: Use any suitable Bayesian filter /
smoother

Efficient

» More accurate solutions for ODES with
conserved quantities and stiff ODEs

» Parallel-in-time inference on GPUs
Accessible
» Open-source package: ProbNumDiffEq.j| €3

L Ll

Thank you“all!

27

