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The COVID-19 pandemic — A real-world dynamical system

https://worldometers.info/coronavirus/country/germany/
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SIRD — A simple model for infectious diseases

Susceptible (S) Infected (I)

Recovered (R)

Deceased (D)

βSI

γI

δI
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The SIRD model as an ordinary differential equation

˙S(t) = −β S(t) I(t)

˙I(t) = β S(t) I(t) − γ I(t) − δ I(t)

˙R(t) = γ I(t)

˙D(t) = δ I(t)
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Numerical simulation of the SIRD model
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How to simulate ordinary differential equations
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Ordinary Differential Equations and traditional simulators
Numerical ODE solvers try to estimate an unknown function by evaluating the vector field

ẏ(t) = f (y(t), t) , y(0) = y0.
with t ∈ [0, T], vector field f : Rd × R→ Rd, and initial value y0 ∈ Rd. Goal: “Find y”.

A simple numerical ODE solver: “Forward Euler”

ŷ(t+ h) = ŷ(t) + hf(ŷ(t), t).

The simulation ŷ is only an estimate of y.
The error depends on the solver and step size.

Traditional simulators do not quantify their
estimation error.
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Probabilistic numerical ODE solvers
or How to treat ODEs as the state estimation problem that they really are

p
(
y(t)

∣∣∣ y(0) = y0, {ẏ(tn) = f (y(tn), tn)}Nn=1

)
with vector field f : Rd × R→ Rd, initial value y0, and time discretization {tn}Nn=1.

Prior Likelihood & Data Inference
+ +
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Building blocks of probabilistic numerical ODE solvers

Prior

y(t) ∼ GP is a
Gauss–Markov process
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Algorithm Extended Kalman Filter
1 Initial distribution p(y(t0))
2 for i=1 :N do
3 Predict:
4 pf(y(ti−1)) 7→ pp(y(ti))
5 Linearize f at Epp [y(ti)]
6 Update:
7 pp(y(ti)), z(ti) 7→pf(y(ti))
8 end for
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z(t) = ẏ(t)−f(y(t), t)

z(ti)
!
= 0 ∀i=1 :N

t
0 100

ẏ(
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z(t) = ẏ(t)−f(y(t), t)

z(ti)
!
= 0 ∀i=1 :N

t
0 100

ẏ(
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ODE filtering as a flexible and efficient framwork for
simulation and inference
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Prior
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Gauss–Markov process

Likelihood & Data
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The ODE is often not the full story

ODE:
d
dt [S, I, R, D](t) = f ([S, I, R, D](t), t) , Initial value: [S, I, R, D](0) = [0.99, 0.01, 0, 0]

Conserved quantity: TotalPopulation(t) := S(t) + I(t) + R(t) + D(t) = 1

t
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Conserved quantities are not actually conserved in the simulation.
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Including additional information into the likelihood model

Ordinary Differential Equation

with conserved quantity

ẏ(t) = f(y(t), t)

g(y(t)) = g(y0)

Likelihood Model
z(t) = ẏ(t)− f(y(t), t)

z(ti)
!
= 0 ∀i=1 :N

encode as
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ODE simulation with conservation laws

SIRD initial value problem:
d
dt [S, I, R, D](t) = f ([S, I, R, D](t), t) , [S, I, R, D](0) = [0.99, 0.01, 0, 0]
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Conserved quantities stabilize long-term simulations
Simulation of the Henon–Heiles system which models a star moving around a galactic center.

Fine-grained simulation Coarse simulation Coarse simulation with
conservation of energy

ODE filters can easily include additional information by adjusting their likelihood model.
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Another step-by-step simulation of the SIRD model
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Inference is sequential and scalesO(N).

Can we do better?
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From time-parallel Bayesian filters to parallel-in-time ODE solvers
▶ [Särkkä and García-Fernández, 2021]:

Kalman smoothing for linear Gaussian models can be done in parallel time (O(log N)).

▶ [Yaghoobi et al., 2023]:

Iterated extended Kalman smoothing for nonlinear models in parallel time (O(k log N)).

Algorithm Time-parallel Iterated Extended Kalman Smoother
1 Initial trajectory p(y(t1:N))
2 while not converged do
3 (i) Linearize the model globally along the trajectory.
4 (ii) Run the time-parallel Kalman smoother on the linearized model.
5 end while

▶ [Bosch et al., 2024]:

Parallel-in-time probabilistic numerical ODE solvers inO(k log N) time.
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Simulating 1000 steps of the SIRD model parallel-in-time
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Benefits of parallel-in-time simulation
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b. GPU comparison (N=10240)

Inference in ODE filters can be performed parallel-in-time at logarithmic cost.
⇒ Significant speedups for large ODE simulations on GPUs.
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ẏ(t) = fθ(y(t), t)
Find p(θ | y(t1:N))

Fenrir: Physics-enhanced
regression (ICML’22)

Diffusion tempering (ICML’24)

SoftwareProbNumDiffEq.jl (JOSS’24)

22



Stiff ordinary differential equations

ẏ1(t) = 20y2(t)− 0.5 sin(y1(t))
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Stiff ODEs combine fast and slow dynamics⇒ challenging to simulate
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Improving stability by adjusting the prior
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q-times integrated Ornstein–Uhlenbeck process:

dy(q)(t) = L · y(q)(t) dt+ dW(t)
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Results on a stiff partial differential equation
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Figure: Reaction-diffusion model.

Linear dynamics can be incorporated into the prior to stabilize ODE filters.
⇒ Accurate simulation of stiff ODEs (and PDEs) at larger step sizes.

25



Results on a stiff partial differential equation

Space
0 1

T
im

e

0

2
a. ODE solution

0.0

0.5

1.0

Step size
10-2 10-1 100

F
in

al
 e

rr
or

10-5

100

105
b. Work-precision diagram

Runtime [s]
10-1 100 101

EK0 & IWP(2)
EK1 & IWP(2)
EKL & IWP(2)
EKL & IOUP(2)
EK1 & IOUP(2) (RB)

Figure: Reaction-diffusion model.

Linear dynamics can be incorporated into the prior to stabilize ODE filters.
⇒ Accurate simulation of stiff ODEs (and PDEs) at larger step sizes.

25



Prior
y(t) is a

Gauss–Markov process

Likelihood & Data
z(t) = ẏ(t)−f(y(t), t)

z(ti)
!
= 0 ∀i=1 :N

Inference
Bayesian filtering
and smoothing

3) Probabilistic
exponential integrators
NB, Hennig, Tronarp

(NeurIPS’23)

1) Pick-and-mix
information operators for
probabilistic ODE solvers

NB, Tronarp, Hennig
(AISTATS’22)

ODE filters in millions of
dimensions (ICML’22)

Calibrated & adaptive
solvers (AISTATS’21)

2) Parallel-in-Time
Probabilistic Numerical

ODE Solvers
NB, Corenflos, Yaghoobi,
Tronarp, Hennig, Särkkä

(JMLR’24)

+ +

Parameter Inference
ẏ(t) = fθ(y(t), t)
Find p(θ | y(t1:N))

Fenrir: Physics-enhanced
regression (ICML’22)

Diffusion tempering (ICML’24)

SoftwareProbNumDiffEq.jl (JOSS’24)
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A Flexible and Efficient Framework for
Probabilistic Numerical Simulation and Inference

Flexible
ODE filters consist of adjustable building blocks:
▶ Prior: Include linear dynamics for stability
▶ Likelihood: Customize to include nonlinear

information or to match the given problem
▶ Inference: Use any suitable Bayesian filter /

smoother
Efficient
▶ More accurate solutions for ODEs with

conserved quantities and stiff ODEs
▶ Parallel-in-time inference on GPUs

Accessible
▶ Open-source package: ProbNumDiffEq.jl Thank you all!
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