PROPAGATING MODEL UNCERTAINTY
THROUGH FILTERING-BASED PROBABILISTIC
NUMERICAL ODE SOLVERS

Dingling Yao, Filip Tronarp, Nathanael Bosch

2. September 2025

EBERHARD KARLS

UNIVERSITAT
TUBINGEN

Imprs-is

some of the presented work is supported
by the European Research Council

rc

EBERHARD K/

What are PN methods and what capabilities do they provide? VR Lo

https://www.probabilistic-numerics.org/

Value of a Probabilistic Approach

As well as offering an enriched reinterpretation of classical methods, the PN approach has several concrete practical points of value. The
probabilistic interpretation of computation

+ allows to build customized methods for specific problems with bespoke priors

+ formalizes the design of adaptive methods using tools from decision theory

+ provides a way of setting parameters of numerical methods via the Bayesian formalism
+ expedites the solution of mutually related problems of similar type

+ naturally incorporates sources of stochasticity in the computation

+ can give structural uncertainty via a probability measure compared to an error estimate

and finally it offers a principled approach of including numerical error in the propagation of uncertainty through chains of computations.

https://www.probabilistic-numerics.org/
https://en.wikipedia.org/wiki/Probabilistic_numerics

EBERHARD K/

What are PN methods and what capabilities do they provide? VR Lo

https://www.probabilistic-numerics.org/

Value of a Probabilistic Approach

As well as offering an enriched reinterpretation of classical methods, the PN approach has several concrete practical points of value. The
probabilistic interpretation of computation

+ allows to build customized methods for specific problems with bespoke priors

+ formalizes the design of adaptive methods using tools from decision theory

+ provides a way of setting parameters of numerical methods via the Bayesian formalism
+ expedites the solution of mutually related problems of similar type

+ naturally incorporates sources of stochasticity in the computation

+ can give structural uncertainty via a probability measure compared to an error estimate

and finally it offers a principled approach of including numerical error in the propagation of uncertainty through chains of computations.

https://en.wikipedia.org/wiki/Probabilistic_numerics

« Because all probabilistic numerical methods use essentially the same data type - probability
measures - to quantify uncertainty over both inputs and outputs they can be chained together to
propagate uncertainty across large-scale, composite computations

https://www.probabilistic-numerics.org/
https://en.wikipedia.org/wiki/Probabilistic_numerics

EBERHARD KARLS

A common feature request for probabilistic ODE solvers CTOHING

% TheFibonacciEffect opened on Jul 13, 2024 - edited by TheFibonacciEffect Edits ~ e

Is it possible to use a Gaussian as an intial condition?

For example something like this?

using-LinearAlgebra, -Statistics, -Distributions L=
using -DiffEqDevTools, ParameterizedFunctions, -SciMLBase, -OrdinaryDiffEq, Sundials, Plots, -ODEInterfaceDiffE,
using ModelingToolkit

using - ProbNumDiffEq

function osscilator!(ddu, -du, -u, -p,t)
ddu- .=---p .7 u
end

osscilator

ue =-[1]

due = [1]

p =100

T=3

t=-0:0.1:T

prob = SecondOrderODEProblem(osscilator!, dud, -ue, -(8,T),p)

@time sol-= solve(prob, -EKB(;smooth=true), abstol=le-1, reltol=le-1)
plot(sol)

Where I would like to use
u@ = [Gaussian(1,1)] or something similar as an intial condition instead.

Currently it does not seem to be suported: ERROR: MethodError: no method matching zero(::Type{Any}) butitwould be
very useful. For example when the initial condition is a result of a measurement and is not known with infinite precision.

Create sub-issue ~ (@

Filtering-based probabilistic numerical ODE solvers

BERH;

Ordinary differential equations and probabilistic numerical solutions U

Ordinary differential equation (ODE):

y(t) = (0,1, y(0) =y,

with vector field f : RY x R — RY and initial value yq.

Ordinary differential equations and probabilistic numerical solutions "N

» Ordinary differential equation (ODE):

y(t) = (0,1, y(0) =y,

with vector field f : RY x R — RY and initial value yq.

> Probabilistic numerical ODE solution:

p (1) 1(0) = yo. {3(0) = F (), 011)

for a chosen time discretization {t,}_;.

5 5 oMo _no 5 Ehed]
Filtering-based probabilistic numerical ODE solvers UTOHINGERT

p (Y1) 1(0) = o, {7(tn) = F(v(to). 1)1)

with vector field f : R? x R — RY, initial value yp, and time discretization {t,})_,.

Filtering-based probabilistic numerical ODE solvers

p (Y1) 1(0) = o, {7(tn) = F(v(to). 1)1)

with vector field f : R? x R — RY, initial value yp, and time discretization {t,})_,.

Prior: y(t) ~ GP

Filtering-based probabilistic numerical ODE solvers UNER

p (Y1) 1(0) = o, {7(tn) = F(v(to). 1)1)

with vector field f : R? x R — RY, initial value yp, and time discretization {t,})_,.

Prior: y(t) ~ GP a Gauss—Markov process

EBERHARD KARLS

Filtering-based probabilistic numerical ODE solvers CTOBINGER

p (Y1) 1(0) = o, {7(tn) = F(v(to). 1)1)

with vector field f : R? x R — RY, initial value yp, and time discretization {t,})_,.

Prior: y(t) ~ GP a Gauss—Markov process with state-space representation x(t):

EBERHARD KARLS

Filtering-based probabilistic numerical ODE solvers CTOBINGER

p (Y1) 1(0) = o, {7(tn) = F(v(to). 1)1)

with vector field f : R? x R — RY, initial value yp, and time discretization {t,})_,.

> Prior: y(t) ~ GP a Gauss—Markov process with state-space representation x(t):
X(0) ~ N (19, g),

x(t+h) | x(1) ~ N(A(h)x(t),azo(h)),

y(t) = Eox(t), (1) = Eax(1),
where A, Q define the Gauss-Markov prior (e.g. an integrated Wiener process).

EBERHARD KARLS

Filtering-based probabilistic numerical ODE solvers CTOBINGER

p (Y1) 1(0) = o, {7(tn) = F(v(to). 1)1)

with vector field f : R? x R — RY, initial value yp, and time discretization {t,})_,.

> Prior: y(t) ~ GP a Gauss—Markov process with state-space representation x(t):
x(0) ~ N (pg . %5),
x(t + h) | x(t) ~ N(A(h)x(t),azom)),
y(t) = Eox(t), (1) = Eax(D),

where A, Q define the Gauss-Markov prior (e.g. an integrated Wiener process).
To satisfy the initial condition, set y; to match yp and set ¥ = 0.

EBERHARD KARLS

Filtering-based probabilistic numerical ODE solvers CTOBINGER

p (Y1) 1(0) = o, {7(tn) = F(v(to). 1)1)

with vector field f : R? x R — RY, initial value yp, and time discretization {t,})_,.

> Prior: y(t) ~ GP a Gauss—Markov process with state-space representation x(t):
X(0) ~ N (19, g),

x(t+h) | x(1) ~ N(A(h)x(t),azo(h)),

y(t) = Eox(t), (1) = Eax(1),
where A, Q define the Gauss-Markov prior (e.g. an integrated Wiener process).
To satisfy the initial condition, set y; to match yp and set ¥ = 0.

> Likelihood: (aka "observation model” or “information operator”)
2(t)) = Ewx(ty) — f(Eox(ty),th) =0

EBERHARD KARLS

Filtering-based probabilistic numerical ODE solvers CTOBINGER

p (Y1) 1(0) = o, {7(tn) = F(v(to). 1)1)

with vector field f : R? x R — RY, initial value yp, and time discretization {t,})_,.

> Prior: y(t) ~ GP a Gauss—Markov process with state-space representation x(t):
X(0) ~ N (19, g),

x(t+h) | x(1) ~ N(A(h)x(t),az()(h)),
y(t) = Eox(t), y(t) = Exx(1),

where A, Q define the Gauss-Markov prior (e.g. an integrated Wiener process).
To satisfy the initial condition, set y; to match yp and set ¥ = 0.

> Likelihood: (aka "observation model” or “information operator”)
2(t)) = Ewx(ty) — f(Eox(ty),th) =0
> Inference: Extended Kalman filter / smoother (or other Bayesian filtering / smoothing methods).

The extended Kalman filter

Given a state-space model:
x(0) ~ N (po, Xo),
x(t+h) [x(t) ~ N(Ax(1), Q),
2(ty) = Exx(ty) — f(Eox(tr),t,) =0
=:h(x(th))

EBERHARD KARLS

The extended Kalman filter R

Given a state-space model:

x(0) ~ N (10, Zo),
x(t+h) | x(t) ~ N(Ax(1),Q),
2(ty) = Exx(ty) — f(Eox(tr),t,) =0
—h(:(t)

The EKF computes:

p(x(ta) | 2(trn—1)) = N (1, Z7)
p(X(t) | 2(tin)) = N (uF,)

by iterating prediction and update steps.

The extended Kalman filter

Given a state-space model:

x(0) ~ N (10, Zo),
x(t+h) | x(t) ~ N(Ax(1), Q),

2(ty) = Exx(ty) — f(Eox(tr),t,) =0

=h(x(tr))
The EKF computes:
p(x(ta) | z(tin—1)) = N (1°, Z)
p(X(tn) | 2(trn)) ~ N (4,)

by iterating prediction and update steps.

Algorithm Kalman filter prediction

1 procedure KF_PREDICT (1, Z, A, Q)

2 /LP — A,u // Predict mean

s | IP—AZAT +Q
+ | return p” X"
s end procedure

// Predict covariance

Algorithm Extended Kalman filter update

1 procedure EKF_UPDATE (i, X, h)

2 7+ h(u) // evaluate the observation model
3 H <« Jh(M) // Jacobian of the observation model
4 S+ HXHT / Measurement covariance
5 K+ YHTS // Kalman gain
6 /LF — p+K(0 —2) /| update mean
7 ZF — Y — KSKT // update covariance
s | returnpf XF

o end procedure

EBERHARD KARLS

Probabilistic numerical ODE solvers in action Iy

Y(t)
\
/
/
/
/
/
/
/
/
-
~
-~
\
\
\
\
\
\
\\

Uncertainty propagation in ordinary differential equations

EBERHARD KARLS

ODEs with uncertain initial values and how to solve them I

Ordinary differential equation with uncertain initial condition:

yO =1(0,0, y(0) ~ N(uo, X0),

with vector field f : RY x R — RY and initial distribution N (19, Xo).

EBERHARD KARLS

ODEs with uncertain initial values and how to solve them I

> Ordinary differential equation with uncertain initial condition:

with vector field f : RY x R — RY and initial distribution N (19, Xo).
> An attempt at solving this with ODE filters: Remember the ODE filter definition
X(0) ~ N (g,),
X(t+h) [x(0) ~ N (ADX(D), o%(h)).
2(ty) = Ewx(ty) — f(Eox(ty), ty) = 0.

EBERHARD KARLS

ODEs with uncertain initial values and how to solve them I

> Ordinary differential equation with uncertain initial condition:

O =100, 90 ~N (@) X)),
with vector field f : RY x R — RY and initial distribution N (19, Xo).
> An attempt at solving this with ODE filters: Remember the ODE filter definition
x(0) ~ N ([} (%5).

x(t+ h) | x(t) ~ N(A(h)x(t), UZO(h)>,
2(ty) = Ex(ty) — f(Eox(ty), 1) = 0.

= ldea: Just set (p, , X,) to match the true initial distribution A/ (140, Xo)!

EBERHARD KARLS

Applying this “solution” to the github example CTOBINGER

ODE: A simple linear damped oscillator

yO) =y, y(0) ~ N(po, Xo).

Result:
4
Analytical mean
) Analytical p £+ 1.960
=
D
0

EBERHARD KARLS

Applying this “solution” to the github example TOBINGER

ODE: A simple linear damped oscillator

yO) =y, y(0) ~ N(po, Xo).

Result:
4 EKF mean
Analytical mean
) Analytical p £+ 1.960
S EKF p+ 1.960
D

EBERHARD KARLS

Applying this “solution” to the github example TOBINGER

ODE: A simple linear damped oscillator

yO) =y, y(0) ~ N(po, Xo).

Result:
4 EKF mean
Analytical mean
) Analytical p £+ 1.960
S EKF p+ 1.960
D

t
What's going on???

Let's simplify the problem

EBERHARD KARLS

Simplifying the problem to just a single step TOBINGER

Simplified problem: A generic state-space
model with only a single time step:

Unknown initial state: p(xo)
Transition model: p(x1 | Xo)
Observation model: p(z1 | x1)

EBERHARD KARLS

Simplifying the problem to just a single step TOBINGER

> Simplified problem: A generic state-space
model with only a single time step:

Unknown initial state: p(xo)
Transition model: p(x1 | Xo)
Observation model: p(z1 | x1)

> Goal: Learn from z; and marginalize out xg

pup(x1 | z1) = /P(X1 | 1,X%0)P(X0) dXo

EBERHARD KARLS

Simplifying the problem to just a single step TOBINGER

> Simplified problem: A generic state-space » What Bayesian filtering computes: Predict:
model with only a single time step: Marginalize out xg
Unknown inital sate: p(xo) Prea(19) = [P [0)p(0)
Transition model: p(x1 | Xo)
Observation model: p(z1 | x1)

> Goal: Learn from z; and marginalize out xg

pup(x1 | z1) = /P(X1 | 1,X%0)P(X0) dXo

EBERHARD KARLS

Simplifying the problem to just a single step TOBINGER

> Simplified problem: A generic state-space » What Bayesian filtering computes: Predict:
model with only a single time step: Marginalize out xg
Unknown inial tate: p(xo) Prea(19) = [P [0)p(0)
Transition model: p(x1 | Xo)
Observation model: ~ p(z1 | x1) Update: Learn from z; with Bayes' rule
> Goal: Learn from z; and marginalize out xg p(z1 | X1) Ppredict (X1)

e 1 21) =
Priter (X1 | 21) o(2)

pup(x1 | z1) = /P(X1 | 1,X%0)P(X0) dXo

EBERHARD KARLS

Simplifying the problem to just a single step TOBINGER

> Simplified problem: A generic state-space » What Bayesian filtering computes: Predict:
model with only a single time step: Marginalize out xg
Unknown inial tate: p(xo) Prea(19) = [P [0)p(0)
Transition model: p(x1 | Xo)
Observation model: ~ p(z1 | x1) Update: Learn from z; with Bayes' rule
> Goal: Learn from z; and marginalize out xg p(z1 | X1) Ppredict (X1)

e 1 21) =
Priter (X1 | 21) o(2)

pur(xi | 21) = /P(X1 | 21, X0)p(Xo) dXo
Together:

prve |2) = [P 'ngz‘jg“ 120) b) e

EBERHARD KARLS
UN]\’ERS]T'
UBINGEN

Simplifying the problem to just a single step

> Simplified problem: A generic state-space
model with only a single time step:

Unknown initial state: p(xo)
Transition model: p(x1 | Xo)
Observation model: p(z1 | x1)

> Goal: Learn from z; and marginalize out xg

pur(xi | 21) = /P(X1 | Z1,X0)P(Xo0) dXg
/PZ1 | X1) p(x1 | Xo)

Z1|X0

p(xo) dxo

> \What Bayesian filtering computes: Predict:

Marginalize out xg

Prea(19) = [P [0)p(0)
Update: Learn from z; with Bayes' rule

D(Z1 ‘ XW) pprediol(X1)
p(z1)

pﬂlter(XW | 21) -

Together:

prvet |2 = [plzr [x0) PO [X0) iy,

EBERHARD KARLS

Simplifying the problem to just a single step TOBINGER

> Simplified problem: A generic state-space » What Bayesian filtering computes: Predict:
model with only a single time step: Marginalize out xg
Unknown inial tate: p(xo) Prea(19) = [P [0)p(0)
Transition model: p(x1 | Xo)
Observation model: ~ p(z; | x1) Update: Learn from z; with Bayes' rule
> Goal: Learn from z; and marginalize out xg p(z1 | X1) Ppredict (X1)
pﬂlter(XW | 21) =
p(z1)
pup(x1 | z1) = /P(X1 | 21, %0)p(Xo) dXo
p(z | %) P01 | X0) Together:
Ty P Pz |) Pl | 0)
P | 2) = [PELPILL i) g
. p(z1)

Pup 7& Prilter

EBER

A visual demonstration URbINGEN

S
= | Initial
£ Predict
i Filter
[0
s 8 Observation
o
Z z 7 | 2
o
2
% | Initial
s Marginal predict
o . -
> Marginal filter
£ I Samples
S 8 Observation
2
]

i x 2| 2

EBER

A visual demonstration URbINGEN

S
= | Initial
£ Predict
i Filter
[0
s 8 Observation
o
Z z 7 | 2
o
2
% | Initial
s Marginal predict
o . -
> Marginal filter
£ I Samples
S 8 Observation
2
]

i x 2| 2

EBER

A visual demonstration URbINGEN

®

S
= | Initial
£ Predict
i Filter
[0
s 8 Observation
o

Ty gl Ty 2
o
2
% | Initial
s Marginal predict
o . -
> Marginal filter
£ I Samples
S 8 Observation
2
]

i x 2| 2

EBER

A visual demonstration URbINGEN

® ®

S
b= Initial
£ Predict
i Filter
[0}
s 8 Observation
o

Ty gl Ty 2
o
2
% Initial
s Marginal predict
o . -
> Marginal filter
£ I Samples
S 8 Observation
2
]

i x 2| 2

EBER

A visual demonstration URbINGEN

® ®

S
b= Initial
£ Predict
i Filter
[0}
s 8 Observation
o

Ty gl Ty 2
o
2
% Initial
s Marginal predict
o . -
> Marginal filter
£ I Samples
S 8 Observation
2
]

i x 2| 2

EBER

A visual demonstration URbINGEN

® ®

S
b= Initial
£ Predict
(2] .
w Filter
[0
s 8 Observation
o

Ty gl Ty 2
5
2|3
%] Initial

e
s Marginal predict
o . -
> Marginal filter
£ I Samples
S 8 Observation
5

i x 2| 2

EBER

A visual demonstration URbINGEN

® ®

S
= | Initial
£ Predict
(2] .
w Filter
[0
s 8 Observation
o

Ty gl Ty 2
5
2|3
% 1 | Initial

e
s Marginal predict
o . -
> Marginal filter
£ I Samples
S 8 Observation
5

i x 2| 2

EBER

A visual demonstration URbINGEN

® ®

S
b= Initial
£ Predict
(2] .
w Filter
[0
s 8 Observation
o

Ty gl Ty 2
5
2|3
%] Initial

e
s Marginal predict
o . -
> Marginal filter
£ I Samples
S 8 Observation
5

i x 2| 2

EBER

A visual demonstration URbINGEN

® ®

S
= | Initial
£ Predict
(2] .
w Filter
[0
s 8 Observation
o

Ty gl Ty 2
5
2|3
% 1 | Initial

e
s Marginal predict
o . -
> Marginal filter
£ I Samples
S 8 Observation
5

i x 2| 2

EBER

A visual demonstration URbINGEN

® ®

S
= | Initial
£ Predict
(2] .
w Filter
[0
s 8 Observation
o

Ty gl Ty 2
5
2|3
% 1 | Initial

e
s Marginal predict
o . -
> Marginal filter
£ I Samples
S 8 Observation
5

i x 2| 2

EBER

A visual demonstration URbINGEN

x X

c
2 -
5 | Initial
£ Predict
(2]
w Filter
[0}
I x x 8 Observation
]

Z T, Iy | 2
S
z| ¢ N
2 | Initial

L}
s Marginal predict
e Marginal filter
% : I Samples
S| e # Observation
2
> ay

Ly Ty Ty | 2

A visual demo

® ®

c
k<] -
= | Initial
£ Predict
i Filter
o % % .
5 8 Observation
»

Ty gl Ty | 2
5
T ¢ A
= 1 | Initial

L}
s Marginal predict
e Marginal filter
% : I Samples
51 e 8 Observation
2
> ay

Ly a1 7|2

=- Bayesian filters perform state estimation and not uncertainty propagation!

Back to ODEs

EBERHARD KARLS

Uncertain ODEs and how to actually solve them CTOBINGER

Problem: Ordinary differential equations with model uncertainty:

y(t) =fo(y(t),1), te[0,T],

EBERHARD KARLS

Uncertain ODEs and how to actually solve them CTOBINGER

> Problem: Ordinary differential equations with model uncertainty:

y(t) :fﬁ(y(t)’t)v te [OvT]»

> Goal: Compute the mean and covariance of y(t):
Elg(y(t / 9(ye(t

with g(y) = yand g(y) = (v — E[y])?

EBERHARD KARLS

Uncertain ODEs and how to actually solve them CTOBINGER

> Problem: Ordinary differential equations with model uncertainty:

y(t) :fﬁ(y(t)’t)v te [OvT]»

> Goal: Compute the mean and covariance of y(t):
Elg(y(t / 9(ye(t

with g(y) = yand g(y) = (v — E/])’
> Approach: Approximate unknown yy(t) with probabilistic numerical solution pen(y(t) | 6):

Elg(/6(D)], 0 / / g (O)pen(y(t) | O)p(6) dB dy (1)

EBERHARD KARLS

Uncertain ODEs and how to actually solve them CTOBINGER

> Problem: Ordinary differential equations with model uncertainty:

y(t) =foy(),1), t<[0,T],
Y(O) = Cy,
0 ~ p(6).

> Goal: Compute the mean and covariance of y(t):
E[g(ya(t / 9(ys(t

with g(y) =y and g(y) = (v — E[))*
> Approach: Approximate unknown yy(t) with probabilistic numerical solution pen(y(t) | 6):

Efg(ye(t /g </pPN)dy()

EBERHARD KARLS

Approximate uncertainty propagation via numerical quadrature CTOBINGER

Step 1: Approximate [pen(y(t) |)p(#) d6 with some quadrature scheme:

JETG d9~2w, pen(y(1) | 8),

with nodes 6; € R® and weights w; € R.

EBERHARD KARLS

Approximate uncertainty propagation via numerical quadrature CTOBINGER

> Step 1: Approximate [pen(y(t) | 8)p(8) dO with some quadrature scheme:

JETG d9~2w, pen(y(1) | 8),

with nodes 6; € R® and weights w; € R. We obtain a Gaussian mixture distribution:

N
/ p((0) | B)p(0) A0 ~ 3 wi - N (1), (1))
b i=1

EBERHARD KARLS

Approximate uncertainty propagation via numerical quadrature CTOBINGER

> Step 1: Approximate [pen(y(t) | 8)p(8) dO with some quadrature scheme:

JETG d9~2w, pen(y(1) | 8),

with nodes 6; € R® and weights w; € R. We obtain a Gaussian mixture distribution:
N
[0 10)p(6) 6 ~ > A, E.1)
h i=1

> Step 2: Compute the expectation and covariance of the Gaussian mixture:
N
EW (O] = D Winn()
=1

N
VIOl = Z wi [Zi(t) + (i) = (1)) (i) — B(0)T,

4]

Applying the this algorithm to the github example ubion b,

Applying the this algorithm to the github example ubion b,

Examples on more linear and nonlinear ODEs

N

Logistic equation FitzHugh-Nagumo Lotka-Volterra Van der Pol
3.0 4 2 7 20
= / — o ®1
2.5 4 S 04 BN PN
10 1 0
2.0 o] —
2 -5
1.5 1
27 20 A
1.0 - / 5 -
/| proposed S o4 / o o
0.5 / reference 10 R
> samples
0.0 4" —2 1 5
T T T T T T T
0 0 7 0 2 0 10
t t t t

[

Applying this to ODE filters vs. non-PN methods ubion b,

N
E[y(t)]p(y(t)) = Z Wipi(t)

N
[y(t)]p(y(t)) = Z WX / + Z Wi ,U// (M;(f) — ﬁ(t))T

[

Applying this to ODE filters vs. non-PN methods ubion b,

(Ol Z it
VIOl = Z wixi(t) + Z wi (p(t) = (1)) (i) = ()"
=1

PN non-PN

EBERHARD KARLS

Applying this to ODE filters vs. non-PN methods NG <

H—/
PN non-PN
Linear ODE Lotka-Volterra
8e-05

o 1et00 4 7e-05 -

2 non-PN

8 1e01 o PN 6e-05 1

o reference 5e-05 -

> 1e02

T T T T T 4e-05 T T T T T
1.0e-02 3.6e-02 1.3e-01 4.5e-01 1.6e+00 1.0e-02 2.0e-02 4.2e-02 8.5e-02 1.7e-01

Step size Step size

Conclusion

Concluding remarks:

Concluding remarks:
» ODE filters seem like they can do uncertainty propagation out-of-the-box, but they can’t!

Concluding remarks:
» ODE filters seem like they can do uncertainty propagation out-of-the-box, but they can’t!

» More generally, just because an algorithm operates on probability distributions does not imply it
computes the right quantity! (e.g. marginalization vs. inference)

Concluding remarks:
» ODE filters seem like they can do uncertainty propagation out-of-the-box, but they can’t!
» More generally, just because an algorithm operates on probability distributions does not imply it
computes the right quantity! (e.g. marginalization vs. inference)
» A simple ad-hoc solution: Marginalize approximately via sampling / numerical quadrature.

Concluding remarks:
» ODE filters seem like they can do uncertainty propagation out-of-the-box, but they can’t!
» More generally, just because an algorithm operates on probability distributions does not imply it
computes the right quantity! (e.g. marginalization vs. inference)
» A simple ad-hoc solution: Marginalize approximately via sampling / numerical quadrature.
» Open: How to propagate uncertainty in ODEs with PN for both time and space discretization?

Concluding remarks:
» ODE filters seem like they can do uncertainty propagation out-of-the-box, but they can't!
» More generally, just because an algorithm operates on probability distributions does not imply it
computes the right quantity! (e.g. marginalization vs. inference)
» A simple ad-hoc solution: Marginalize approximately via sampling / numerical quadrature.
» Open: How to propagate uncertainty in ODEs with PN for both time and space discretization?

Hennig, Osborne, Girolami. Probabilistic numerics and uncertainty in computations. 2015.

Many open questions remain for this exciting field. In the long run,
probabilistic formulations may allow the propagation of uncertainty through pipelines of

computation, and thus the active control of computational effort through hierarchical, modular

computations.

22

Concluding remarks:
» ODE filters seem like they can do uncertainty propagation out-of-the-box, but they can't!
» More generally, just because an algorithm operates on probability distributions does not imply it
computes the right quantity! (e.g. marginalization vs. inference)
» A simple ad-hoc solution: Marginalize approximately via sampling / numerical quadrature.
» Open: How to propagate uncertainty in ODEs with PN for both time and space discretization?

Hennig, Osborne, Girolami. Probabilistic numerics and uncertainty in computations. 2015.

Many open questions remain for this exciting field. In the long run,
probabilistic formulations may allow the propagation of uncertainty through pipelines of

computation, and thus the active control of computational effort through hierarchical, modular

computations.

Thanks!

22

