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What are PN methods and what capabilities do they provide? VR Lo

https://www.probabilistic-numerics.org/

Value of a Probabilistic Approach

As well as offering an enriched reinterpretation of classical methods, the PN approach has several concrete practical points of value. The
probabilistic interpretation of computation

+ allows to build customized methods for specific problems with bespoke priors

+ formalizes the design of adaptive methods using tools from decision theory

+ provides a way of setting parameters of numerical methods via the Bayesian formalism
+ expedites the solution of mutually related problems of similar type

+ naturally incorporates sources of stochasticity in the computation

+ can give structural uncertainty via a probability measure compared to an error estimate

and finally it offers a principled approach of including numerical error in the propagation of uncertainty through chains of computations.
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probabilistic interpretation of computation

+ allows to build customized methods for specific problems with bespoke priors

+ formalizes the design of adaptive methods using tools from decision theory

+ provides a way of setting parameters of numerical methods via the Bayesian formalism
+ expedites the solution of mutually related problems of similar type

+ naturally incorporates sources of stochasticity in the computation

+ can give structural uncertainty via a probability measure compared to an error estimate

and finally it offers a principled approach of including numerical error in the propagation of uncertainty through chains of computations.

https://en.wikipedia.org/wiki/Probabilistic_numerics

« Because all probabilistic numerical methods use essentially the same data type - probability
measures - to quantify uncertainty over both inputs and outputs they can be chained together to
propagate uncertainty across large-scale, composite computations
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A common feature request for probabilistic ODE solvers CTOHING

% TheFibonacciEffect opened on Jul 13, 2024 - edited by TheFibonacciEffect Edits ~ e

Is it possible to use a Gaussian as an intial condition?

For example something like this?

using-LinearAlgebra, -Statistics, -Distributions L=
using -DiffEqDevTools, ParameterizedFunctions, -SciMLBase, -OrdinaryDiffEq, Sundials, Plots, -ODEInterfaceDiffE,
using ModelingToolkit

using - ProbNumDiffEq

function osscilator!(ddu, -du, -u, -p,t)
ddu- .=---p .7 u
end

# osscilator

ue =-[1]

due = [1]

p =100

T=3

t=-0:0.1:T

prob = SecondOrderODEProblem(osscilator!, dud, -ue, -(8,T),p)

@time sol-= solve(prob, -EKB(;smooth=true), abstol=le-1, reltol=le-1)
plot(sol)

Where I would like to use
u@ = [Gaussian(1,1)] or something similar as an intial condition instead.

Currently it does not seem to be suported: ERROR: MethodError: no method matching zero(::Type{Any}) butitwould be
very useful. For example when the initial condition is a result of a measurement and is not known with infinite precision.

Create sub-issue  ~ (@
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y(t) = (0,1,  y(0) =y,

with vector field f : RY x R — RY and initial value yq.
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» Ordinary differential equation (ODE):

y(t) = (0,1,  y(0) =y,

with vector field f : RY x R — RY and initial value yq.

> Probabilistic numerical ODE solution:

p (1) 1(0) = yo. {3(0) = F (), 011 )

for a chosen time discretization {t,}\_;.
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with vector field f : R? x R — RY, initial value yp, and time discretization {t,})_,.
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Filtering-based probabilistic numerical ODE solvers CTOBINGER

p (Y1) 1(0) = o, {7(tn) = F(v(to). 1)1 )

with vector field f : R? x R — RY, initial value yp, and time discretization {t,})_,.

> Prior: y(t) ~ GP a Gauss—Markov process with state-space representation x(t):
X(0) ~ N (19, g ),

x(t+h) | x(1) ~ N(A(h)x(t),azo(h)),

y(t) = Eox(t), (1) = Eax(1),
where A, Q define the Gauss-Markov prior (e.g. an integrated Wiener process).
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Filtering-based probabilistic numerical ODE solvers CTOBINGER

p (Y1) 1(0) = o, {7(tn) = F(v(to). 1)1 )

with vector field f : R? x R — RY, initial value yp, and time discretization {t,})_,.

> Prior: y(t) ~ GP a Gauss—Markov process with state-space representation x(t):
x(0) ~ N (pg . %5 ),
x(t + h) | x(t) ~ N(A(h)x(t),azom)),
y(t) = Eox(t), (1) = Eax(D),

where A, Q define the Gauss-Markov prior (e.g. an integrated Wiener process).
To satisfy the initial condition, set y; to match yp and set ¥ = 0.
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Filtering-based probabilistic numerical ODE solvers CTOBINGER
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Filtering-based probabilistic numerical ODE solvers CTOBINGER

p (Y1) 1(0) = o, {7(tn) = F(v(to). 1)1 )

with vector field f : R? x R — RY, initial value yp, and time discretization {t,})_,.

> Prior: y(t) ~ GP a Gauss—Markov process with state-space representation x(t):
X(0) ~ N (19, g ),

x(t+h) | x(1) ~ N(A(h)x(t),az()(h)),
y(t) = Eox(t),  y(t) = Exx(1),

where A, Q define the Gauss-Markov prior (e.g. an integrated Wiener process).
To satisfy the initial condition, set y; to match yp and set ¥ = 0.

> Likelihood: (aka "observation model” or “information operator”)
2(t)) = Ewx(ty) — f(Eox(ty),th) =0
> Inference: Extended Kalman filter / smoother (or other Bayesian filtering / smoothing methods).



The extended Kalman filter

Given a state-space model:
x(0) ~ N (po, Xo),
x(t+h) [ x(t) ~ N(Ax(1), Q),
2(ty) = Exx(ty) — f(Eox(tr),t,) =0
=:h(x(th))
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The extended Kalman filter R

Given a state-space model:

x(0) ~ N (10, Zo),
x(t+h) | x(t) ~ N(Ax(1),Q),
2(ty) = Exx(ty) — f(Eox(tr),t,) =0
—h(:(t)

The EKF computes:

p(x(ta) | 2(trn—1)) = N (1, Z7)
p(X(t) | 2(tin)) = N (uF, )

by iterating prediction and update steps.



The extended Kalman filter

Given a state-space model:

x(0) ~ N (10, Zo),
x(t+h) | x(t) ~ N(Ax(1), Q),

2(ty) = Exx(ty) — f(Eox(tr),t,) =0

=h(x(tr))
The EKF computes:
p(x(ta) | z(tin—1)) = N (1°, Z)
p(X(tn) | 2(trn)) ~ N (4, )

by iterating prediction and update steps.

Algorithm Kalman filter prediction

1 procedure KF_PREDICT (1, Z, A, Q)

2 /LP — A,u // Predict mean

s | IP—AZAT +Q
+ | return p” X"
s end procedure

// Predict covariance

Algorithm Extended Kalman filter update

1 procedure EKF_UPDATE (i, X, h)

2 7+ h(u) // evaluate the observation model
3 H <« Jh(M) // Jacobian of the observation model
4 S+ HXHT / Measurement covariance
5 K+ YHTS // Kalman gain
6 /LF — p+K(0 —2) /| update mean
7 ZF — Y — KSKT // update covariance
s | returnpf XF

o end procedure
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Probabilistic numerical ODE solvers in action Iy
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Uncertainty propagation in ordinary differential equations
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ODEs with uncertain initial values and how to solve them I

Ordinary differential equation with uncertain initial condition:

yO =1(0,0,  y(0) ~ N(uo, X0),

with vector field f : RY x R — RY and initial distribution N (19, Xo).
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ODEs with uncertain initial values and how to solve them I

> Ordinary differential equation with uncertain initial condition:

with vector field f : RY x R — RY and initial distribution N (19, Xo).
> An attempt at solving this with ODE filters: Remember the ODE filter definition
X(0) ~ N (g, ),
X(t+h) [ x(0) ~ N (ADX(D), o%(h) ).
2(ty) = Ewx(ty) — f(Eox(ty), ty) = 0.
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ODEs with uncertain initial values and how to solve them I

> Ordinary differential equation with uncertain initial condition:

O =100, 90 ~N (@) X)),
with vector field f : RY x R — RY and initial distribution N (19, Xo).
> An attempt at solving this with ODE filters: Remember the ODE filter definition
x(0) ~ N ([} (%5 ).

x(t+ h) | x(t) ~ N(A(h)x(t), UZO(h)>,
2(ty) = Ex(ty) — f(Eox(ty), 1) = 0.

= ldea: Just set (p, , X, ) to match the true initial distribution A/ (140, Xo)!
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Applying this “solution” to the github example CTOBINGER

ODE: A simple linear damped oscillator

yO) =y, y(0) ~ N(po, Xo).

Result:
4
Analytical mean
) Analytical p £+ 1.960
=
D
0
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Applying this “solution” to the github example TOBINGER

ODE: A simple linear damped oscillator

yO) =y, y(0) ~ N(po, Xo).

Result:
4 EKF mean
Analytical mean
) Analytical p £+ 1.960
S EKF p+ 1.960
D
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Applying this “solution” to the github example TOBINGER

ODE: A simple linear damped oscillator

yO) =y, y(0) ~ N(po, Xo).

Result:
4 EKF mean
Analytical mean
) Analytical p £+ 1.960
S EKF p+ 1.960
D

t
What's going on???



Let's simplify the problem
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Simplifying the problem to just a single step TOBINGER

Simplified problem: A generic state-space
model with only a single time step:

Unknown initial state: p(xo)
Transition model: p(x1 | Xo)
Observation model: p(z1 | x1)
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Simplifying the problem to just a single step TOBINGER

> Simplified problem: A generic state-space
model with only a single time step:

Unknown initial state: p(xo)
Transition model: p(x1 | Xo)
Observation model: p(z1 | x1)

> Goal: Learn from z; and marginalize out xg

pup(x1 | z1) = /P(X1 | 1,X%0)P(X0) dXo
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model with only a single time step: Marginalize out xg
Unknown inital sate:  p(xo) Prea(19) = [ P [ 0)p(0)
Transition model: p(x1 | Xo)
Observation model: p(z1 | x1)

> Goal: Learn from z; and marginalize out xg

pup(x1 | z1) = /P(X1 | 1,X%0)P(X0) dXo



EBERHARD KARLS

Simplifying the problem to just a single step TOBINGER
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Simplifying the problem to just a single step TOBINGER

> Simplified problem: A generic state-space » What Bayesian filtering computes: Predict:
model with only a single time step: Marginalize out xg
Unknown inial tate: p(xo) Prea(19) = [ P [ 0)p(0)
Transition model: p(x1 | Xo)
Observation model: ~ p(z1 | x1) Update: Learn from z; with Bayes' rule
> Goal: Learn from z; and marginalize out xg p(z1 | X1) Ppredict (X1)

e 1 21) =
Priter (X1 | 21) o(2)

pur(xi | 21) = /P(X1 | 21, X0)p(Xo) dXo
Together:

prve |2) = [ P 'ngz‘jg“ 120) b ) e
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Simplifying the problem to just a single step

> Simplified problem: A generic state-space
model with only a single time step:

Unknown initial state: p(xo)
Transition model: p(x1 | Xo)
Observation model: p(z1 | x1)

> Goal: Learn from z; and marginalize out xg

pur(xi | 21) = /P(X1 | Z1,X0)P(Xo0) dXg
/PZ1 | X1) p(x1 | Xo)

Z1|X0

p(xo) dxo

> \What Bayesian filtering computes: Predict:

Marginalize out xg

Prea(19) = [ P [ 0)p(0)
Update: Learn from z; with Bayes' rule

D(Z1 ‘ XW) pprediol(X1)
p(z1)

pﬂlter(XW | 21) -

Together:

prvet |2 = [ plzr [x0) PO [X0) iy,
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Simplifying the problem to just a single step TOBINGER

> Simplified problem: A generic state-space » What Bayesian filtering computes: Predict:
model with only a single time step: Marginalize out xg
Unknown inial tate: p(xo) Prea(19) = [ P [ 0)p(0)
Transition model: p(x1 | Xo)
Observation model: ~ p(z; | x1) Update: Learn from z; with Bayes' rule
> Goal: Learn from z; and marginalize out xg p(z1 | X1) Ppredict (X1)
pﬂlter(XW | 21) =
p(z1)
pup(x1 | z1) = /P(X1 | 21, %0)p(Xo) dXo
p(z | %) P01 | X0) Together:
Ty P Pz | ) Pl | 0)
P | 2) = [ PELPILL i) g
. p(z1)

Pup 7& Prilter
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A visual demonstration URbINGEN
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A visual demonstration URbINGEN
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A visual demo
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=- Bayesian filters perform state estimation and not uncertainty propagation!



Back to ODEs
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Problem: Ordinary differential equations with model uncertainty:

y(t) =fo(y(t),1),  te[0,T],
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Uncertain ODEs and how to actually solve them CTOBINGER

> Problem: Ordinary differential equations with model uncertainty:

y(t) :fﬁ(y(t)’t)v te [OvT]»

> Goal: Compute the mean and covariance of y(t):
Elg(y(t / 9(ye(t

with g(y) = yand g(y) = (v — E/])’
> Approach: Approximate unknown yy(t) with probabilistic numerical solution pen(y(t) | 6):

Elg(/6(D)], 0 / / g (O)pen(y(t) | O)p(6) dB dy (1)
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Uncertain ODEs and how to actually solve them CTOBINGER

> Problem: Ordinary differential equations with model uncertainty:

y(t) =foy(),1),  t<[0,T],
Y(O) = Cy,
0 ~ p(6).

> Goal: Compute the mean and covariance of y(t):
E[g(ya(t / 9(ys(t

with g(y) =y and g(y) = (v — E[))*
> Approach: Approximate unknown yy(t) with probabilistic numerical solution pen(y(t) | 6):

Efg(ye(t /g </pPN )dy()
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Approximate uncertainty propagation via numerical quadrature CTOBINGER

Step 1: Approximate [ pen(y(t) | )p(#) d6 with some quadrature scheme:

JETG d9~2w, pen(y(1) | 8),

with nodes 6; € R® and weights w; € R.
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Approximate uncertainty propagation via numerical quadrature CTOBINGER

> Step 1: Approximate [ pen(y(t) | 8)p(8) dO with some quadrature scheme:

JETG d9~2w, pen(y(1) | 8),

with nodes 6; € R® and weights w; € R. We obtain a Gaussian mixture distribution:

N
/ p((0) | B)p(0) A0 ~ 3 wi - N (1), (1))
b i=1
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Approximate uncertainty propagation via numerical quadrature CTOBINGER

> Step 1: Approximate [ pen(y(t) | 8)p(8) dO with some quadrature scheme:

JETG d9~2w, pen(y(1) | 8),

with nodes 6; € R® and weights w; € R. We obtain a Gaussian mixture distribution:
N
[0 10)p(6) 6 ~ > A, E.1)
h i=1

> Step 2: Compute the expectation and covariance of the Gaussian mixture:
N
EW (O] = D Winn()
=1

N
VIOl = Z wi [Zi(t) + (i) = (1)) (i) — B(0)T,
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Examples on more linear and nonlinear ODEs

N

Logistic equation FitzHugh-Nagumo Lotka-Volterra Van der Pol
3.0 4 2 7 20
= / — o ®1
2.5 4 S 04 BN PN
10 1 0
2.0 o ] —
2 -5
1.5 1
27 20 A
1.0 - / 5 -
/| proposed S o4 / o o
0.5 / reference 10 R
> samples
0.0 4" —2 1 5
T T T T T T T
0 0 7 0 2 0 10
t t t t
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Applying this to ODE filters vs. non-PN methods ubion b,

N
E[y(t)]p(y(t)) = Z Wipi(t)

N
[y(t)]p(y(t)) = Z WX / + Z Wi ,U// (M;(f) — ﬁ(t))T
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Applying this to ODE filters vs. non-PN methods ubion b,

(Ol Z it
VIOl = Z wixi(t) + Z wi (p(t) = (1)) (i) = ()"
=1

PN non-PN
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Applying this to ODE filters vs. non-PN methods NG <

H—/
PN non-PN
Linear ODE Lotka-Volterra
8e-05

o 1et00 4 7e-05 -

2 non-PN

8 1e01 o PN 6e-05 1

o reference 5e-05 -

> 1e02

T T T T T 4e-05 T T T T T
1.0e-02 3.6e-02 1.3e-01 4.5e-01 1.6e+00 1.0e-02 2.0e-02 4.2e-02 8.5e-02 1.7e-01

Step size Step size
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probabilistic formulations may allow the propagation of uncertainty through pipelines of

computation, and thus the active control of computational effort through hierarchical, modular
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