
Propagating Model Uncertainty
through Filtering-based Probabilistic

Numerical ODE Solvers

Dingling Yao, Filip Tronarp, Nathanael Bosch

2. September 2025

some of the presented work is supported
by the European Research Council.

1



What are PN methods and what capabilities do they provide?
https://www.probabilistic-numerics.org/

https://en.wikipedia.org/wiki/Probabilistic_numerics

2

https://www.probabilistic-numerics.org/
https://en.wikipedia.org/wiki/Probabilistic_numerics


What are PN methods and what capabilities do they provide?
https://www.probabilistic-numerics.org/

https://en.wikipedia.org/wiki/Probabilistic_numerics

2

https://www.probabilistic-numerics.org/
https://en.wikipedia.org/wiki/Probabilistic_numerics


A common feature request for probabilistic ODE solvers

3



Filtering-based probabilistic numerical ODE solvers

4



Ordinary differential equations and probabilistic numerical solutions

▶ Ordinary differential equation (ODE):

ẏ(t) = f (y(t), t), y(0) = y0,
with vector field f : Rd × R→ Rd and initial value y0.

▶ Probabilistic numerical ODE solution:

p
(
y(t) | y(0) = y0, {ẏ(tn) = f (y(tn), tn)}Nn=1

)
for a chosen time discretization {tn}Nn=1.

5



Ordinary differential equations and probabilistic numerical solutions

▶ Ordinary differential equation (ODE):

ẏ(t) = f (y(t), t), y(0) = y0,
with vector field f : Rd × R→ Rd and initial value y0.

▶ Probabilistic numerical ODE solution:

p
(
y(t) | y(0) = y0, {ẏ(tn) = f (y(tn), tn)}Nn=1

)
for a chosen time discretization {tn}Nn=1.

5



Filtering-based probabilistic numerical ODE solvers

p
(
y(t) | y(0) = y0, {ẏ(tn) = f (y(tn), tn)}Nn=1

)
with vector field f : Rd × R→ Rd, initial value y0, and time discretization {tn}Nn=1.

▶ Prior: y(t) ∼ GP

a Gauss–Markov process with state-space representation x(t):

x(0) ∼ N
(
µ−

0 ,Σ
−
0
)
,

x(t+ h) | x(t) ∼ N
(
A(h)x(t), σ2Q(h)

)
,

y(t) = E0x(t), ẏ(t) = E1x(t),
where A,Q define the Gauss–Markov prior (e.g. an integrated Wiener process).

To satisfy the initial condition, set µ−
0 to match y0 and set Σ−

0 = 0.

▶ Likelihood: (aka “observation model” or “information operator”)
z(tn) = E1x(tn)− f(E0x(tn), tn) ≡ 0

▶ Inference:

Extended Kalman filter / smoother (or other Bayesian filtering / smoothing methods).

6



Filtering-based probabilistic numerical ODE solvers

p
(
y(t) | y(0) = y0, {ẏ(tn) = f (y(tn), tn)}Nn=1

)
with vector field f : Rd × R→ Rd, initial value y0, and time discretization {tn}Nn=1.

▶ Prior: y(t) ∼ GP

a Gauss–Markov process with state-space representation x(t):

x(0) ∼ N
(
µ−

0 ,Σ
−
0
)
,

x(t+ h) | x(t) ∼ N
(
A(h)x(t), σ2Q(h)

)
,

y(t) = E0x(t), ẏ(t) = E1x(t),
where A,Q define the Gauss–Markov prior (e.g. an integrated Wiener process).

To satisfy the initial condition, set µ−
0 to match y0 and set Σ−

0 = 0.
▶ Likelihood: (aka “observation model” or “information operator”)

z(tn) = E1x(tn)− f(E0x(tn), tn) ≡ 0
▶ Inference:

Extended Kalman filter / smoother (or other Bayesian filtering / smoothing methods).

6



Filtering-based probabilistic numerical ODE solvers

p
(
y(t) | y(0) = y0, {ẏ(tn) = f (y(tn), tn)}Nn=1

)
with vector field f : Rd × R→ Rd, initial value y0, and time discretization {tn}Nn=1.

▶ Prior: y(t) ∼ GP a Gauss–Markov process

with state-space representation x(t):

x(0) ∼ N
(
µ−

0 ,Σ
−
0
)
,

x(t+ h) | x(t) ∼ N
(
A(h)x(t), σ2Q(h)

)
,

y(t) = E0x(t), ẏ(t) = E1x(t),
where A,Q define the Gauss–Markov prior (e.g. an integrated Wiener process).

To satisfy the initial condition, set µ−
0 to match y0 and set Σ−

0 = 0.
▶ Likelihood: (aka “observation model” or “information operator”)

z(tn) = E1x(tn)− f(E0x(tn), tn) ≡ 0
▶ Inference:

Extended Kalman filter / smoother (or other Bayesian filtering / smoothing methods).

6



Filtering-based probabilistic numerical ODE solvers

p
(
y(t) | y(0) = y0, {ẏ(tn) = f (y(tn), tn)}Nn=1

)
with vector field f : Rd × R→ Rd, initial value y0, and time discretization {tn}Nn=1.

▶ Prior: y(t) ∼ GP a Gauss–Markov process with state-space representation x(t):

x(0) ∼ N
(
µ−

0 ,Σ
−
0
)
,

x(t+ h) | x(t) ∼ N
(
A(h)x(t), σ2Q(h)

)
,

y(t) = E0x(t), ẏ(t) = E1x(t),
where A,Q define the Gauss–Markov prior (e.g. an integrated Wiener process).
To satisfy the initial condition, set µ−

0 to match y0 and set Σ−
0 = 0.

▶ Likelihood: (aka “observation model” or “information operator”)
z(tn) = E1x(tn)− f(E0x(tn), tn) ≡ 0

▶ Inference:

Extended Kalman filter / smoother (or other Bayesian filtering / smoothing methods).

6



Filtering-based probabilistic numerical ODE solvers

p
(
y(t) | y(0) = y0, {ẏ(tn) = f (y(tn), tn)}Nn=1

)
with vector field f : Rd × R→ Rd, initial value y0, and time discretization {tn}Nn=1.

▶ Prior: y(t) ∼ GP a Gauss–Markov process with state-space representation x(t):
x(0) ∼ N

(
µ−

0 ,Σ
−
0
)
,

x(t+ h) | x(t) ∼ N
(
A(h)x(t), σ2Q(h)

)
,

y(t) = E0x(t), ẏ(t) = E1x(t),
where A,Q define the Gauss–Markov prior (e.g. an integrated Wiener process).

To satisfy the initial condition, set µ−
0 to match y0 and set Σ−

0 = 0.
▶ Likelihood: (aka “observation model” or “information operator”)

z(tn) = E1x(tn)− f(E0x(tn), tn) ≡ 0
▶ Inference:

Extended Kalman filter / smoother (or other Bayesian filtering / smoothing methods).

6



Filtering-based probabilistic numerical ODE solvers

p
(
y(t) | y(0) = y0, {ẏ(tn) = f (y(tn), tn)}Nn=1

)
with vector field f : Rd × R→ Rd, initial value y0, and time discretization {tn}Nn=1.

▶ Prior: y(t) ∼ GP a Gauss–Markov process with state-space representation x(t):
x(0) ∼ N

(
µ−

0 ,Σ
−
0
)
,

x(t+ h) | x(t) ∼ N
(
A(h)x(t), σ2Q(h)

)
,

y(t) = E0x(t), ẏ(t) = E1x(t),
where A,Q define the Gauss–Markov prior (e.g. an integrated Wiener process).
To satisfy the initial condition, set µ−

0 to match y0 and set Σ−
0 = 0.

▶ Likelihood: (aka “observation model” or “information operator”)
z(tn) = E1x(tn)− f(E0x(tn), tn) ≡ 0

▶ Inference:

Extended Kalman filter / smoother (or other Bayesian filtering / smoothing methods).

6



Filtering-based probabilistic numerical ODE solvers

p
(
y(t) | y(0) = y0, {ẏ(tn) = f (y(tn), tn)}Nn=1

)
with vector field f : Rd × R→ Rd, initial value y0, and time discretization {tn}Nn=1.

▶ Prior: y(t) ∼ GP a Gauss–Markov process with state-space representation x(t):
x(0) ∼ N

(
µ−

0 ,Σ
−
0
)
,

x(t+ h) | x(t) ∼ N
(
A(h)x(t), σ2Q(h)

)
,

y(t) = E0x(t), ẏ(t) = E1x(t),
where A,Q define the Gauss–Markov prior (e.g. an integrated Wiener process).
To satisfy the initial condition, set µ−

0 to match y0 and set Σ−
0 = 0.

▶ Likelihood: (aka “observation model” or “information operator”)
z(tn) = E1x(tn)− f(E0x(tn), tn) ≡ 0

▶ Inference:

Extended Kalman filter / smoother (or other Bayesian filtering / smoothing methods).

6



Filtering-based probabilistic numerical ODE solvers

p
(
y(t) | y(0) = y0, {ẏ(tn) = f (y(tn), tn)}Nn=1

)
with vector field f : Rd × R→ Rd, initial value y0, and time discretization {tn}Nn=1.

▶ Prior: y(t) ∼ GP a Gauss–Markov process with state-space representation x(t):
x(0) ∼ N

(
µ−

0 ,Σ
−
0
)
,

x(t+ h) | x(t) ∼ N
(
A(h)x(t), σ2Q(h)

)
,

y(t) = E0x(t), ẏ(t) = E1x(t),
where A,Q define the Gauss–Markov prior (e.g. an integrated Wiener process).
To satisfy the initial condition, set µ−

0 to match y0 and set Σ−
0 = 0.

▶ Likelihood: (aka “observation model” or “information operator”)
z(tn) = E1x(tn)− f(E0x(tn), tn) ≡ 0

▶ Inference: Extended Kalman filter / smoother (or other Bayesian filtering / smoothing methods).
6



The extended Kalman filter

Given a state-space model:

x(0) ∼ N (µ0,Σ0),

x(t+ h) | x(t) ∼ N (Ax(t),Q),
z(tn) = E1x(tn)− f(E0x(tn), tn)︸ ︷︷ ︸

=:h(x(tn))

≡ 0

The EKF computes:

p(x(tn) | z(t1:n−1)) ≈ N
(
µP,ΣP)

p(x(tn) | z(t1:n)) ≈ N
(
µF,ΣF)

by iterating prediction and update steps.

Algorithm Kalman filter prediction
1 procedure KF_PREDICT(µ,Σ, A,Q)
2 µP ← Aµ � Predict mean

3 ΣP ← AΣA⊤ + Q � Predict covariance

4 return µP,ΣP

5 end procedure

Algorithm Extended Kalman filter update
1 procedure EKF_UPDATE(µ,Σ, h)
2 ẑ← h(µ) � evaluate the observation model

3 H← Jh(µ) � Jacobian of the observation model

4 S← HΣH⊤ � Measurement covariance

5 K← ΣH⊤S−1 � Kalman gain

6 µF ← µ+ K(0− ẑ) � update mean

7 ΣF ← Σ− KSK⊤ � update covariance

8 return µF,ΣF

9 end procedure

7



The extended Kalman filter

Given a state-space model:

x(0) ∼ N (µ0,Σ0),

x(t+ h) | x(t) ∼ N (Ax(t),Q),
z(tn) = E1x(tn)− f(E0x(tn), tn)︸ ︷︷ ︸

=:h(x(tn))

≡ 0

The EKF computes:

p(x(tn) | z(t1:n−1)) ≈ N
(
µP,ΣP)

p(x(tn) | z(t1:n)) ≈ N
(
µF,ΣF)

by iterating prediction and update steps.

Algorithm Kalman filter prediction
1 procedure KF_PREDICT(µ,Σ, A,Q)
2 µP ← Aµ � Predict mean

3 ΣP ← AΣA⊤ + Q � Predict covariance

4 return µP,ΣP

5 end procedure

Algorithm Extended Kalman filter update
1 procedure EKF_UPDATE(µ,Σ, h)
2 ẑ← h(µ) � evaluate the observation model

3 H← Jh(µ) � Jacobian of the observation model

4 S← HΣH⊤ � Measurement covariance

5 K← ΣH⊤S−1 � Kalman gain

6 µF ← µ+ K(0− ẑ) � update mean

7 ΣF ← Σ− KSK⊤ � update covariance

8 return µF,ΣF

9 end procedure

7



The extended Kalman filter

Given a state-space model:

x(0) ∼ N (µ0,Σ0),

x(t+ h) | x(t) ∼ N (Ax(t),Q),
z(tn) = E1x(tn)− f(E0x(tn), tn)︸ ︷︷ ︸

=:h(x(tn))

≡ 0

The EKF computes:

p(x(tn) | z(t1:n−1)) ≈ N
(
µP,ΣP)

p(x(tn) | z(t1:n)) ≈ N
(
µF,ΣF)

by iterating prediction and update steps.

Algorithm Kalman filter prediction
1 procedure KF_PREDICT(µ,Σ, A,Q)
2 µP ← Aµ � Predict mean

3 ΣP ← AΣA⊤ + Q � Predict covariance

4 return µP,ΣP

5 end procedure

Algorithm Extended Kalman filter update
1 procedure EKF_UPDATE(µ,Σ, h)
2 ẑ← h(µ) � evaluate the observation model

3 H← Jh(µ) � Jacobian of the observation model

4 S← HΣH⊤ � Measurement covariance

5 K← ΣH⊤S−1 � Kalman gain

6 µF ← µ+ K(0− ẑ) � update mean

7 ΣF ← Σ− KSK⊤ � update covariance

8 return µF,ΣF

9 end procedure
7



Probabilistic numerical ODE solvers in action

8



Uncertainty propagation in ordinary differential equations

9



ODEs with uncertain initial values and how to solve them

▶ Ordinary differential equation with uncertain initial condition:

ẏ(t) = f (y(t), t) , y(0) ∼ N (µ0,Σ0),

with vector field f : Rd × R→ Rd and initial distributionN (µ0,Σ0).

▶ An attempt at solving this with ODE filters: Remember the ODE filter definition

x(0) ∼ N
(
µ−

0 ,Σ
−
0
)
,

x(t+ h) | x(t) ∼ N
(
A(h)x(t), σ2Q(h)

)
,

z(tn) = E1x(tn)− f(E0x(tn), tn) ≡ 0.

⇒ Idea: Just set (µ−
0 ,Σ

−
0 ) to match the true initial distributionN (µ0,Σ0)!

10



ODEs with uncertain initial values and how to solve them

▶ Ordinary differential equation with uncertain initial condition:

ẏ(t) = f (y(t), t) , y(0) ∼ N (µ0,Σ0),

with vector field f : Rd × R→ Rd and initial distributionN (µ0,Σ0).

▶ An attempt at solving this with ODE filters: Remember the ODE filter definition

x(0) ∼ N
(
µ−

0 ,Σ
−
0
)
,

x(t+ h) | x(t) ∼ N
(
A(h)x(t), σ2Q(h)

)
,

z(tn) = E1x(tn)− f(E0x(tn), tn) ≡ 0.

⇒ Idea: Just set (µ−
0 ,Σ

−
0 ) to match the true initial distributionN (µ0,Σ0)!

10



ODEs with uncertain initial values and how to solve them

▶ Ordinary differential equation with uncertain initial condition:

ẏ(t) = f (y(t), t) , y(0) ∼ N
(
µ0 , Σ0

)
,

with vector field f : Rd × R→ Rd and initial distributionN (µ0,Σ0).

▶ An attempt at solving this with ODE filters: Remember the ODE filter definition

x(0) ∼ N
(
µ−

0 , Σ−
0

)
,

x(t+ h) | x(t) ∼ N
(
A(h)x(t), σ2Q(h)

)
,

z(tn) = E1x(tn)− f(E0x(tn), tn) ≡ 0.

⇒ Idea: Just set (µ−
0 ,Σ

−
0 ) to match the true initial distributionN (µ0,Σ0)!

10



Applying this “solution” to the github example
▶ ODE: A simple linear damped oscillator

ẏ(t) = Ly(t), y(0) ∼ N (µ0,Σ0).

▶ Result:

What’s going on???

11



Applying this “solution” to the github example
▶ ODE: A simple linear damped oscillator

ẏ(t) = Ly(t), y(0) ∼ N (µ0,Σ0).

▶ Result:

What’s going on???

11



Applying this “solution” to the github example
▶ ODE: A simple linear damped oscillator

ẏ(t) = Ly(t), y(0) ∼ N (µ0,Σ0).

▶ Result:

What’s going on???
11



Let’s simplify the problem

12



Simplifying the problem to just a single step

▶ Simplified problem: A generic state-space
model with only a single time step:

Unknown initial state: p(x0)
Transition model: p(x1 | x0)

Observation model: p(z1 | x1)

▶ Goal: Learn from z1 and marginalize out x0

pUP(x1 | z1) =
∫

p(x1 | z1, x0)p(x0) dx0

=

∫
p(z1 | x1) p(x1 | x0)

p(z1 | x0)
p(x0) dx0

▶ What Bayesian filtering computes: Predict:
Marginalize out x0

ppredict(x1) =
∫

p(x1 | x0)p(x0) dx0

Update: Learn from z1 with Bayes’ rule

pfilter(x1 | z1) =
p(z1 | x1) ppredict(x1)

p(z1)

Together:

pfilter(x1 | z1) =
∫

p(z1 | x1) p(x1 | x0)
p(z1)

p(x0) dx0 .

pUP ̸= pfilter

13



Simplifying the problem to just a single step

▶ Simplified problem: A generic state-space
model with only a single time step:

Unknown initial state: p(x0)
Transition model: p(x1 | x0)

Observation model: p(z1 | x1)

▶ Goal: Learn from z1 and marginalize out x0

pUP(x1 | z1) =
∫

p(x1 | z1, x0)p(x0) dx0

=

∫
p(z1 | x1) p(x1 | x0)

p(z1 | x0)
p(x0) dx0

▶ What Bayesian filtering computes: Predict:
Marginalize out x0

ppredict(x1) =
∫

p(x1 | x0)p(x0) dx0

Update: Learn from z1 with Bayes’ rule

pfilter(x1 | z1) =
p(z1 | x1) ppredict(x1)

p(z1)

Together:

pfilter(x1 | z1) =
∫

p(z1 | x1) p(x1 | x0)
p(z1)

p(x0) dx0 .

pUP ̸= pfilter

13



Simplifying the problem to just a single step

▶ Simplified problem: A generic state-space
model with only a single time step:

Unknown initial state: p(x0)
Transition model: p(x1 | x0)

Observation model: p(z1 | x1)

▶ Goal: Learn from z1 and marginalize out x0

pUP(x1 | z1) =
∫

p(x1 | z1, x0)p(x0) dx0

=

∫
p(z1 | x1) p(x1 | x0)

p(z1 | x0)
p(x0) dx0

▶ What Bayesian filtering computes: Predict:
Marginalize out x0

ppredict(x1) =
∫

p(x1 | x0)p(x0) dx0

Update: Learn from z1 with Bayes’ rule

pfilter(x1 | z1) =
p(z1 | x1) ppredict(x1)

p(z1)

Together:

pfilter(x1 | z1) =
∫

p(z1 | x1) p(x1 | x0)
p(z1)

p(x0) dx0 .

pUP ̸= pfilter

13



Simplifying the problem to just a single step

▶ Simplified problem: A generic state-space
model with only a single time step:

Unknown initial state: p(x0)
Transition model: p(x1 | x0)

Observation model: p(z1 | x1)

▶ Goal: Learn from z1 and marginalize out x0

pUP(x1 | z1) =
∫

p(x1 | z1, x0)p(x0) dx0

=

∫
p(z1 | x1) p(x1 | x0)

p(z1 | x0)
p(x0) dx0

▶ What Bayesian filtering computes: Predict:
Marginalize out x0

ppredict(x1) =
∫

p(x1 | x0)p(x0) dx0

Update: Learn from z1 with Bayes’ rule

pfilter(x1 | z1) =
p(z1 | x1) ppredict(x1)

p(z1)

Together:

pfilter(x1 | z1) =
∫

p(z1 | x1) p(x1 | x0)
p(z1)

p(x0) dx0 .

pUP ̸= pfilter

13



Simplifying the problem to just a single step

▶ Simplified problem: A generic state-space
model with only a single time step:

Unknown initial state: p(x0)
Transition model: p(x1 | x0)

Observation model: p(z1 | x1)

▶ Goal: Learn from z1 and marginalize out x0

pUP(x1 | z1) =
∫

p(x1 | z1, x0)p(x0) dx0

=

∫
p(z1 | x1) p(x1 | x0)

p(z1 | x0)
p(x0) dx0

▶ What Bayesian filtering computes: Predict:
Marginalize out x0

ppredict(x1) =
∫

p(x1 | x0)p(x0) dx0

Update: Learn from z1 with Bayes’ rule

pfilter(x1 | z1) =
p(z1 | x1) ppredict(x1)

p(z1)

Together:

pfilter(x1 | z1) =
∫

p(z1 | x1) p(x1 | x0)
p(z1)

p(x0) dx0 .

pUP ̸= pfilter

13



Simplifying the problem to just a single step

▶ Simplified problem: A generic state-space
model with only a single time step:

Unknown initial state: p(x0)
Transition model: p(x1 | x0)

Observation model: p(z1 | x1)

▶ Goal: Learn from z1 and marginalize out x0

pUP(x1 | z1) =
∫

p(x1 | z1, x0)p(x0) dx0

=

∫
p(z1 | x1) p(x1 | x0)

p(z1 | x0)
p(x0) dx0

▶ What Bayesian filtering computes: Predict:
Marginalize out x0

ppredict(x1) =
∫

p(x1 | x0)p(x0) dx0

Update: Learn from z1 with Bayes’ rule

pfilter(x1 | z1) =
p(z1 | x1) ppredict(x1)

p(z1)

Together:

pfilter(x1 | z1) =
∫

p(z1 | x1) p(x1 | x0)
p(z1)

p(x0) dx0 .

pUP ̸= pfilter

13



Simplifying the problem to just a single step

▶ Simplified problem: A generic state-space
model with only a single time step:

Unknown initial state: p(x0)
Transition model: p(x1 | x0)

Observation model: p(z1 | x1)

▶ Goal: Learn from z1 and marginalize out x0

pUP(x1 | z1) =
∫

p(x1 | z1, x0)p(x0) dx0

=

∫
p(z1 | x1) p(x1 | x0)

p(z1 | x0)
p(x0) dx0

▶ What Bayesian filtering computes: Predict:
Marginalize out x0

ppredict(x1) =
∫

p(x1 | x0)p(x0) dx0

Update: Learn from z1 with Bayes’ rule

pfilter(x1 | z1) =
p(z1 | x1) ppredict(x1)

p(z1)

Together:

pfilter(x1 | z1) =
∫

p(z1 | x1) p(x1 | x0)
p(z1)

p(x0) dx0 .

pUP ̸= pfilter
13



A visual demonstration

⇒ Bayesian filters perform state estimation and not uncertainty propagation!

14



A visual demonstration

⇒ Bayesian filters perform state estimation and not uncertainty propagation!

14



A visual demonstration

⇒ Bayesian filters perform state estimation and not uncertainty propagation!

14



A visual demonstration

⇒ Bayesian filters perform state estimation and not uncertainty propagation!

14



A visual demonstration

⇒ Bayesian filters perform state estimation and not uncertainty propagation!

14



A visual demonstration

⇒ Bayesian filters perform state estimation and not uncertainty propagation!

14



A visual demonstration

⇒ Bayesian filters perform state estimation and not uncertainty propagation!

14



A visual demonstration

⇒ Bayesian filters perform state estimation and not uncertainty propagation!

14



A visual demonstration

⇒ Bayesian filters perform state estimation and not uncertainty propagation!

14



A visual demonstration

⇒ Bayesian filters perform state estimation and not uncertainty propagation!

14



A visual demonstration

x0 x1 x1 ∣ z1

x0 x1 x1 ∣ z1

S
ta

te
 E

st
im

at
io

n
U

nc
er

ta
in

ty
 P

ro
pa

ga
tio

n

Initial

Predict

Filter

Observation

Initial

Marginal predict

Marginal filter

Samples

Observation

Initial

Predict

Filter

Observation

Initial

Marginal predict

Marginal filter

Samples

Observation

⇒ Bayesian filters perform state estimation and not uncertainty propagation!

14



A visual demonstration

x0 x1 x1 ∣ z1

x0 x1 x1 ∣ z1

S
ta

te
 E

st
im

at
io

n
U

nc
er

ta
in

ty
 P

ro
pa

ga
tio

n

Initial

Predict

Filter

Observation

Initial

Marginal predict

Marginal filter

Samples

Observation

Initial

Predict

Filter

Observation

Initial

Marginal predict

Marginal filter

Samples

Observation

⇒ Bayesian filters perform state estimation and not uncertainty propagation!
14



Back to ODEs

15



Uncertain ODEs and how to actually solve them
▶ Problem: Ordinary differential equations with model uncertainty:

ẏ(t) = fθ(y(t), t), t ∈ [0, T],
y(0) = cθ,

θ ∼ p(θ).

▶ Goal: Compute the mean and covariance of y(t):

E[g(yθ(t))]p(θ) =
∫

g(yθ(t))p(θ) dθ

with g(y) = y and g(y) = (y− E[y])2
▶ Approach: Approximate unknown yθ(t) with probabilistic numerical solution pPN(y(t) | θ):

E[g(yθ(t))]p(θ) ≈
∫ ∫

g(y(t))pPN(y(t) | θ)p(θ) dθ dy(t)

16



Uncertain ODEs and how to actually solve them
▶ Problem: Ordinary differential equations with model uncertainty:

ẏ(t) = fθ(y(t), t), t ∈ [0, T],
y(0) = cθ,

θ ∼ p(θ).

▶ Goal: Compute the mean and covariance of y(t):

E[g(yθ(t))]p(θ) =
∫

g(yθ(t))p(θ) dθ

with g(y) = y and g(y) = (y− E[y])2

▶ Approach: Approximate unknown yθ(t) with probabilistic numerical solution pPN(y(t) | θ):

E[g(yθ(t))]p(θ) ≈
∫ ∫

g(y(t))pPN(y(t) | θ)p(θ) dθ dy(t)

16



Uncertain ODEs and how to actually solve them
▶ Problem: Ordinary differential equations with model uncertainty:

ẏ(t) = fθ(y(t), t), t ∈ [0, T],
y(0) = cθ,

θ ∼ p(θ).

▶ Goal: Compute the mean and covariance of y(t):

E[g(yθ(t))]p(θ) =
∫

g(yθ(t))p(θ) dθ

with g(y) = y and g(y) = (y− E[y])2
▶ Approach: Approximate unknown yθ(t) with probabilistic numerical solution pPN(y(t) | θ):

E[g(yθ(t))]p(θ) ≈
∫ ∫

g(y(t))pPN(y(t) | θ)p(θ) dθ dy(t)

16



Uncertain ODEs and how to actually solve them
▶ Problem: Ordinary differential equations with model uncertainty:

ẏ(t) = fθ(y(t), t), t ∈ [0, T],
y(0) = cθ,

θ ∼ p(θ).

▶ Goal: Compute the mean and covariance of y(t):

E[g(yθ(t))]p(θ) =
∫

g(yθ(t))p(θ) dθ

with g(y) = y and g(y) = (y− E[y])2
▶ Approach: Approximate unknown yθ(t) with probabilistic numerical solution pPN(y(t) | θ):

E[g(yθ(t))]p(θ) ≈
∫

g(y(t))
(∫

pPN(y(t) | θ)p(θ) dθ
)

dy(t)

16



Approximate uncertainty propagation via numerical quadrature
▶ Step 1: Approximate

∫
pPN(y(t) | θ)p(θ) dθ with some quadrature scheme:∫

p(y(t) | θ)p(θ) dθ ≈
N∑

i=1

wi · pPN(y(t) | θi),

with nodes θi ∈ Re and weights wi ∈ R.

We obtain a Gaussian mixture distribution:∫
p(y(t) | θ)p(θ) dθ ≈

N∑
i=1

wi · N (µi(t),Σi(t))

▶ Step 2: Compute the expectation and covariance of the Gaussian mixture:

E[y(t)]p(y(t)) =
N∑

i=1

wiµi(t),

V[y(t)]p(y(t)) =
N∑

i=1

wi [Σi(t) + (µi(t)− µ̄(t)) (µi(t)− µ̄(t))⊺] ,

17



Approximate uncertainty propagation via numerical quadrature
▶ Step 1: Approximate

∫
pPN(y(t) | θ)p(θ) dθ with some quadrature scheme:∫

p(y(t) | θ)p(θ) dθ ≈
N∑

i=1

wi · pPN(y(t) | θi),

with nodes θi ∈ Re and weights wi ∈ R. We obtain a Gaussian mixture distribution:∫
p(y(t) | θ)p(θ) dθ ≈

N∑
i=1

wi · N (µi(t),Σi(t))

▶ Step 2: Compute the expectation and covariance of the Gaussian mixture:

E[y(t)]p(y(t)) =
N∑

i=1

wiµi(t),

V[y(t)]p(y(t)) =
N∑

i=1

wi [Σi(t) + (µi(t)− µ̄(t)) (µi(t)− µ̄(t))⊺] ,

17



Approximate uncertainty propagation via numerical quadrature
▶ Step 1: Approximate

∫
pPN(y(t) | θ)p(θ) dθ with some quadrature scheme:∫

p(y(t) | θ)p(θ) dθ ≈
N∑

i=1

wi · pPN(y(t) | θi),

with nodes θi ∈ Re and weights wi ∈ R. We obtain a Gaussian mixture distribution:∫
p(y(t) | θ)p(θ) dθ ≈

N∑
i=1

wi · N (µi(t),Σi(t))

▶ Step 2: Compute the expectation and covariance of the Gaussian mixture:

E[y(t)]p(y(t)) =
N∑

i=1

wiµi(t),

V[y(t)]p(y(t)) =
N∑

i=1

wi [Σi(t) + (µi(t)− µ̄(t)) (µi(t)− µ̄(t))⊺] ,

17



Applying the this algorithm to the github example

18



Applying the this algorithm to the github example

18



Examples on more linear and nonlinear ODEs

0 3

t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

proposed

reference

samples

Logistic equation

−2

0

2

y 1

0 7

t

−2

0

2
y 2

FitzHugh-Nagumo

10

20

y 1

0 2

t

10

20

y 2

Lotka-Volterra

−5

0

5

y 1

0 10

t

−5

0

5

y 2

Van der Pol

19



Applying this to ODE filters vs. non-PN methods

E[y(t)]p(y(t)) =
N∑

i=1

wiµi(t)

V[y(t)]p(y(t)) =
N∑

i=1

wiΣi(t) +
N∑

i=1

wi (µi(t)− µ̄(t)) (µi(t)− µ̄(t))⊺

1.0e-02 3.6e-02 1.3e-01 4.5e-01 1.6e+00

Step size

1e-02

1e-01

1e+00

V
ar

ia
n

ce non-PN

PN

reference

Linear ODE

1.0e-02 2.0e-02 4.2e-02 8.5e-02 1.7e-01

Step size

4e-05

5e-05

6e-05

7e-05

8e-05

Lotka-Volterra

20



Applying this to ODE filters vs. non-PN methods

E[y(t)]p(y(t)) =
N∑

i=1

wiµi(t)

V[y(t)]p(y(t)) =
N∑

i=1

wiΣi(t)︸ ︷︷ ︸
PN

+
N∑

i=1

wi (µi(t)− µ̄(t)) (µi(t)− µ̄(t))⊺︸ ︷︷ ︸
non-PN

1.0e-02 3.6e-02 1.3e-01 4.5e-01 1.6e+00

Step size

1e-02

1e-01

1e+00

V
ar

ia
n

ce non-PN

PN

reference

Linear ODE

1.0e-02 2.0e-02 4.2e-02 8.5e-02 1.7e-01

Step size

4e-05

5e-05

6e-05

7e-05

8e-05

Lotka-Volterra

20



Applying this to ODE filters vs. non-PN methods

E[y(t)]p(y(t)) =
N∑

i=1

wiµi(t)

V[y(t)]p(y(t)) =
N∑

i=1

wiΣi(t)︸ ︷︷ ︸
PN

+
N∑

i=1

wi (µi(t)− µ̄(t)) (µi(t)− µ̄(t))⊺︸ ︷︷ ︸
non-PN

1.0e-02 3.6e-02 1.3e-01 4.5e-01 1.6e+00

Step size

1e-02

1e-01

1e+00

V
ar

ia
n

ce non-PN

PN

reference

Linear ODE

1.0e-02 2.0e-02 4.2e-02 8.5e-02 1.7e-01

Step size

4e-05

5e-05

6e-05

7e-05

8e-05

Lotka-Volterra

20



Conclusion

21



Concluding remarks:

▶ ODE filters seem like they can do uncertainty propagation out-of-the-box, but they can’t!
▶ More generally, just because an algorithm operates on probability distributions does not imply it

computes the right quantity! (e.g. marginalization vs. inference)
▶ A simple ad-hoc solution: Marginalize approximately via sampling / numerical quadrature.
▶ Open: How to propagate uncertainty in ODEs with PN for both time and space discretization?

Hennig, Osborne, Girolami. Probabilistic numerics and uncertainty in computations. 2015.

Thanks!

22



Concluding remarks:
▶ ODE filters seem like they can do uncertainty propagation out-of-the-box, but they can’t!

▶ More generally, just because an algorithm operates on probability distributions does not imply it
computes the right quantity! (e.g. marginalization vs. inference)

▶ A simple ad-hoc solution: Marginalize approximately via sampling / numerical quadrature.
▶ Open: How to propagate uncertainty in ODEs with PN for both time and space discretization?

Hennig, Osborne, Girolami. Probabilistic numerics and uncertainty in computations. 2015.

Thanks!

22



Concluding remarks:
▶ ODE filters seem like they can do uncertainty propagation out-of-the-box, but they can’t!
▶ More generally, just because an algorithm operates on probability distributions does not imply it

computes the right quantity! (e.g. marginalization vs. inference)

▶ A simple ad-hoc solution: Marginalize approximately via sampling / numerical quadrature.
▶ Open: How to propagate uncertainty in ODEs with PN for both time and space discretization?

Hennig, Osborne, Girolami. Probabilistic numerics and uncertainty in computations. 2015.

Thanks!

22



Concluding remarks:
▶ ODE filters seem like they can do uncertainty propagation out-of-the-box, but they can’t!
▶ More generally, just because an algorithm operates on probability distributions does not imply it

computes the right quantity! (e.g. marginalization vs. inference)
▶ A simple ad-hoc solution: Marginalize approximately via sampling / numerical quadrature.

▶ Open: How to propagate uncertainty in ODEs with PN for both time and space discretization?

Hennig, Osborne, Girolami. Probabilistic numerics and uncertainty in computations. 2015.

Thanks!

22



Concluding remarks:
▶ ODE filters seem like they can do uncertainty propagation out-of-the-box, but they can’t!
▶ More generally, just because an algorithm operates on probability distributions does not imply it

computes the right quantity! (e.g. marginalization vs. inference)
▶ A simple ad-hoc solution: Marginalize approximately via sampling / numerical quadrature.
▶ Open: How to propagate uncertainty in ODEs with PN for both time and space discretization?

Hennig, Osborne, Girolami. Probabilistic numerics and uncertainty in computations. 2015.

Thanks!

22



Concluding remarks:
▶ ODE filters seem like they can do uncertainty propagation out-of-the-box, but they can’t!
▶ More generally, just because an algorithm operates on probability distributions does not imply it

computes the right quantity! (e.g. marginalization vs. inference)
▶ A simple ad-hoc solution: Marginalize approximately via sampling / numerical quadrature.
▶ Open: How to propagate uncertainty in ODEs with PN for both time and space discretization?

Hennig, Osborne, Girolami. Probabilistic numerics and uncertainty in computations. 2015.

Thanks!

22



Concluding remarks:
▶ ODE filters seem like they can do uncertainty propagation out-of-the-box, but they can’t!
▶ More generally, just because an algorithm operates on probability distributions does not imply it

computes the right quantity! (e.g. marginalization vs. inference)
▶ A simple ad-hoc solution: Marginalize approximately via sampling / numerical quadrature.
▶ Open: How to propagate uncertainty in ODEs with PN for both time and space discretization?

Hennig, Osborne, Girolami. Probabilistic numerics and uncertainty in computations. 2015.

Thanks!
22


